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Abstract: Given the highly visible nature, transportation infrastructure construction projects are
often exposed to numerous unexpected events, compared to other types of construction projects.
Despite the importance of predicting financial losses caused by risk, it is still difficult to determine
which risk factors are generally critical and when these risks tend to occur, without benchmarkable
references. Most of existing methods are prediction-focused, project type-specific, while ignoring the
timing aspect of risk. This study filled these knowledge gaps by developing a neural network-driven
machine-learning classification model that can categorize causes of financial losses depending on
insurance claim payout proportions and risk occurrence timing, drawing on 625 transportation
infrastructure construction projects including bridges, roads, and tunnels. The developed network
model showed acceptable classification accuracy of 74.1%, 69.4%, and 71.8% in training, cross-
validation, and test sets, respectively. This study is the first of its kind by providing benchmarkable
classification references of economic damage trends in transportation infrastructure projects. The
proposed holistic approach will help construction practitioners consider the uncertainty of project
management and the potential impact of natural hazards proactively, with the risk occurrence
timing trends. This study will also assist insurance companies with developing sustainable financial
management plans for transportation infrastructure projects.

Keywords: transportation infrastructure; economic damage; financial loss; insurance claim payout;
risk occurrence timing; machine learning; neural network; data classification; risk assessment

1. Introduction
1.1. Point of Departure

The third-party liability insurance has been commonly adopted by the owners of large-
scale construction projects, in order to cover economic damages caused by construction
operation, project management, or other external risks [1]. In general, risk is interpreted
as the probability of losses that would be caused by undesirable events, such as damage,
vulnerability, or disaster in a certain region during particular time periods [2–5]. To
reduce economic damages, it is pivotal to use proper risk assessment methods and thus to
contribute to improving sustainability in project management. Given the significance of
sustainable risk management, many research efforts were made by estimating economic
damages in broad ranges of construction projects [1,6–16].

Among various construction projects, transportation infrastructure projects need to
paid more attention because these are larger, more complex, and mostly capital-intensive,
compared to others. Transportation infrastructure is well known as a key built asset
to facilitate sustainable economic growth [17–20]. More specifically, as essential social
and economic assets, transportation infrastructure systems (e.g., roads, bridges, tunnels)
construct space, enhance the productivity of a nation by increasing the mobility and
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responding to social needs. However, given the highly visible nature, transportation
infrastructure construction projects are more often exposed to numerous unexpected events
(i.e., risk), compared to other construction projects.

For better risk management in transportation infrastructure projects, many studies
have focused on predicting the value of economic damages in certain types of projects.
Some researchers identified risks in bridge construction projects, including safety, traffic
conditions, shortage of labor and materials, adverse weather conditions, financial risk,
equipment risk, health and safety issues, construction and management risk, contractual
issues [21–25]. In addition, bridge projects were examined statistically to estimate economic
damages depending on project information (i.e., types of superstructures and foundations,
the scope of project, construction cost and schedule, construction methods, company’s
reputation) and environmental risk factors based on flood and typhoon records [6,9]. More
recently, the impact of natural hazard-driven risk on the financial loss was assessed based
on tunnel projects. To this end, wind speeds, flooding occurrences, and rain falls were
incorporated into a multiple regression analysis [1]. Despite many research efforts, most
of previous studies are project type-specific. In this sense, it is still not easy to determine
which risk factors are generally critical and when these risks tend to occur, without proven
references to be benchmarked. Hence, it should be also highlighted that post-assessment
of economic damages is crucial to provide benchmarkable references and thus develop
more effective and sustainable risk management strategies for transportation construction
project plans in the future.

To achieve benchmarkable references, classifying generalizable patterns in economic
damages into certain risk indicators. Responding to this need, it is acknowledged that
hidden patterns within a set of data can be uncovered through a data mining process [26].
Compared to prediction approaches, a classification method is intended to build a model
that can classify data points by evaluating accuracy of characteristics of data [27]. However,
a solid literature review concludes that most of previous studies focused on predicting
financial losses associated with various risk factors that cannot universal for different types
of transportation infrastructure projects.

In the pursuit of classifying the trends, it would be more beneficial to know about risk
occurrence timing trends in conjunction with risk factors and financial losses occurred in
each different type of transportation infrastructure projects because economic damages
can be evaluated deeply and systematically at the temporal scale. However, through
a thorough literature review, it was found that very little known about timing aspects.
Overall, knowledge about a holistic approach to classifying generalizable trends in financial
losses by key indicators of economic damage is still largely missing.

1.2. Research Objective and Method

To fill the gaps in existing knowledge delineated above, this study attempted to
scientifically classify economic damages in major transportation infrastructure projects.
More specifically, the main objective of this study is to develop a neural network-driven
machine-learning classification model that can categorize causes of financial losses de-
pending on insurance claim payouts caused by risks and their occurrence timing in three
different major types of transportation infrastructure projects, such as bridges, roads, and
tunnels. Machine learning techniques have become the most widely-used method for either
prediction or classification by finding hidden patterns of data, specifically aiming at un-
locking the complexity and nonlinearity of data [28]. Especially, in the context of assessing
financial loss or economic development, it has been underlined that the use of machine
learning techniques is effective to improve predictability [29,30]. Compared to prediction
approaches, a machine-learning classification method aims to automatically maximize the
classification accuracy by certain indicators or groups in order to assess the performance of
any kind of systems [26]. Given the strength, machine-learning classification approach was
adopted for this study. More specifically, the objective of this study was achieved by the
following five steps:
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1. Collect construction insurance and project data from 625 transportation infrastructure
projects completed over the past 15 years in South Korea, which consist of bridge,
road, tunnel construction projects;

2. Identify causes of financial losses and cluster the causes to set the learning database;
3. Explore various neural network alternatives and shortlist the top five;
4. Assess the classification accuracy of the shortlisted network alternatives and select

the most feasible classification model;
5. Classify the generalized financial loss clusters by insurance claim payout proportions

and risk occurrence timing per project type.

The following is the assumption of this research:
It was assumed that a certain point when claim payout was made is same as the

timing when risk occurred. In other words, a few days of gaps between risk occurrence
and paid-out amounts of construction insurance were assumed to insignificantly affect the
classification performance.

2. Materials and Methods
2.1. Economic Damage Indicators for Measurement: Magnitude and Timing Aspects

For this study, the following indicators were used to learn and classify generalized
economic damages in three different types of transportation infrastructure projects:

• Claim payout ratio (CPR);
• Occurrence timing (OT).

CPR was used to examine the proportion of insurance claim payout amounts, against
the total amount of contract insurance allocated. It is defined as the following Equation (1):

CPR =
Claim Payout Amount (KRW)

Total Amount o f Insurance Allocated (KRW)
(1)

As a way to interpret CPRs, if a CPR is less than one, a claim caused by project
risks (e.g., management, natural hazards, etc.) was covered sufficiently from the allocated
amount of insurance. On the other hand, the value of CPR exceeding one means that
project risks were severe, resulting in over-paid insurance amounts.

In addition, OT was used to capture the trends in risk occurrences at the time scale,
which provides generalizable knowledge when certain causes of financial losses occurred.
To this end, OT is defined as seen in Equation (2):

OT =
(Claim Payout Date − Contract Start Date)

(The Original Contract End Date − Contract Start Date)
(2)

For example, the OT value of 0.3 indicates that the financial loss caused by a certain
project risk occurred since 30% of the project schedule has processed. If the value of OT
is greater than 1, it represents that the claim was accepted for risk occurred, based on the
contract adjustment. This case would be acknowledged that the planned project schedule
was delayed for some unforeseen reasons (e.g., change orders, idle time based on the
proactive plan adjustment, due to forecasted severe weather conditions).

2.2. Descriptive Analysis

The insurance- and project-related data sets were collected from 625 transportation
infrastructure projects completed in South Korea, which consist of bridge, road, tunnel
construction projects. The collected data sets include the total amount of construction
insurance, insurance claim payout amounts, contract start and end dates, project types,
risk occurrence dates, types of causes of financial losses. In transportation infrastructure
projects adopted in this study, 14 different causes of financial losses were identified:

• Careless;
• Collapse;
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• Damage;
• Fire & explosion;
• Slips, trips & falls;
• Soil settlement;
• Stolen;
• Flooding;
• Heavy rain;
• Heavy snow;
• Hurricane;
• Storm;
• Thunderstroke;
• Others.

The identified risks were then classified into three different clusters for the purpose of
improving the classification performance of the proposed machine learning model: (1) man-
agement risk; (2) natural hazards; (3) miscellaneous (misc.) risk. Figure 1 summarizes
the proportions of risks identified in the whole set of data, which is classified into three
different clusters by project types (i.e., bridge, road, tunnel). As a snapshot of causes of
financial losses, in the management risk group, it was found that bridge and tunnel projects
were often affected by damage and slips, trips, and falls. In this study, damage indicates
financial losses particularly caused by equipment malfunction, mechanical or construction
defect. Damage (15.36%) and soil settlement (11.52%) were identified as the most frequent
causes of financial loss in road projects. When it comes to natural hazards, all the types of
transportation projects were often affected by heavy rainfalls. However, it was found that
historical natural hazard records in bridge and tunnel projects hold a relatively smaller
portion, compared to road projects.
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Based on the financial cause clusters, Table 1 summarizes variables used in the machine
learning classification process. In detail, to classify economic damages, claim payout
ratios and risk occurrence timing drawing on 625 data points were used as continuous
input variables. Meanwhile, three different types of transportation infrastructure projects
were employed.

Then, to improve the accuracy performance of learning model alternatives, temporal
indicators at the seasonal scale were mapped with the corresponding date of risk occurrence
date (i.e., claim payout date). The addition of temporal indicators was supported by the
sample size of the financial cause clusters by project types during spring, summer, fall,
and winter seasons, shown in Figure 2. Initially, it was expected that the only natural
hazards cluster is significantly affected by summer season, considering the effect of heavy
rainfalls shown in Figure 1. However, for all the three clusters, most of risks were identified
commonly during four seasons. Hence, temporal indicators were assigned to the categorical
input variable.

Table 1. Description of variables.

Classification Model Variable (Data Type) Mean Median Minimum Maximum Std. Dev.

Inputs

Claim Payout Ratio
(continuous) 0.48716 0.17815 0.00062 9.60976 0.96602

Risk Occurrence Timing
(continuous) 0.60374 0.60000 0.00438 1.411713 0.29508

Construction Project Type
(categorical)

• Bridge
• Road
• Tunnel

Temporal Indicator
(categorical)

• Spring (March-May)
• Summer (June-August)
• Fall (September-November)
• Winter (December-February)

Outputs Financial Loss Cluster
(categorical)

• Management Risk = [{careless}, {collapse}, {damage}, {fire & explosion}, {slips,
trips & falls}, {soil settlement}, {stolen}]

• Natural Hazards = [{flooding}, {heavy rain}, {heavy snow}, {hurricane},
{storm}, {thunderstroke}]

• Miscellaneous = [others]

2.3. Developing a Neural Network-Driven Machine-Learning Classification Model

As machine learning classification techniques, support vector machine (SVM) and
neural networks have been most commonly used in various study areas [26,31]. It is well
known that SVM is powerful to improve the generalization ability against nonlinear data,
but it is difficult to interpret the results of learning outputs with no tangible shape of the
trained model. In addition, it is underpinned by the similarity function (i.e., kernel), but
there is no common solution to determine the optimal kernel that maximizes the distance
between the nearest values in different groups. In contrast, neural networks are capable
of providing a tangible model structure unveiled from hidden patterns, while effectively
controlling highly nonlinear characteristics of data [26,31].
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Given the nonlinearity of data and different types of variables used in this study, a
neural network technique was adopted to develop a classification model that can accurately
categorize the financial cause clusters associated with claim payout proportions and risk
occurrence timing drawing on major transportation infrastructure projects, such as bridges,
roads, and tunnels. The network structure was firstly confirmed based on 9 input nodes
and 3 output nodes. As shown in Table 1, 9 input variables include claim payout ratios,
risk occurrence timings, project types including bridges, roads, tunnels, and four seasons,
while 3 outputs indicate three different financial loss clusters based on management risk,
natural hazards, and miscellaneous risks. The topology of the proposed classification
model includes an input layer, one hidden layer, and an output layer.

2.3.1. Setting the Subsets of Data and Training Algorithm

It is acknowledged that the goodness of fit is affected by the complexity of the learning
model on aspects of the number of hidden nodes and types of variables. To improve the
learning performance, in general, the 80:20 split is widely used for training set (60% of
training and 20% of cross-validation) and test set (20%). A training set plays a key role in
monitoring the optimal connection weight that can minimize errors in the neural network.
As a subset of training set, a cross-validation set is used to determine the optimal number of
hidden nodes by detecting errors during training and then stopping the training properly.
Then, the generalization ability of the fully trained network is assessed by the test set [32,33].
This split method is suitable when a large amount of data to train is available [34].
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For this study, due to a smaller set of data used, a 70:30 holdout method was alternately
adopted, which divides the original data into 70% training set and 30% test set. Within the
training set, 30% of data was assigned randomly to the cross-validation set to determine
the optimal number of hidden nodes. This alternate approach was intended to improve
the learning performance and thus achieve more accurate classification outputs.

As stated earlier, the most feasible training process is determined by connection
weights. The connection weights are unknown and thus estimated by a training algo-
rithm [35]. The back propagation (BP) algorithm is well known as a training algorithm
for neural network applications [35–37]. It trains networks by producing random weights
and changing them iteratively, until the most feasible network is found. The standard BP
algorithm often confined to the local minima, while converging slowly. In contrast, conju-
gate gradient (CG) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton methods
are known as advanced BP algorithms, which avoid a local minima issue and converge
faster than the standard BP algorithm [38]. It was underscored by some researchers that
BFGS often converges faster than the CG [36–39]. Hence, this study adopted the BFGS
algorithm to train the neural networks and classify economic damages in transportation in-
frastructure projects, on aspects of claim payout proportions by risk occurrence timing. The
training process was conducted using the automated search engine in Statistica software
version 13.3.

2.3.2. Training the Network Alternatives

As stated earlier, achieving the optimal number of hidden nodes is driven by a cross-
validation set. The number of hidden nodes is dependent mainly on the complexity of
network structure and types of variables to be trained. To search the most feasible number
of hidden nodes for this study, the node numbers ranging from 1 to 200 were explored in
the search module. Meanwhile, a total of 100 different network structure alternatives were
considered associated with 25 different combinations of activation functions for hidden and
output layers. Activation functions serve to transform input values and then determine the
output of nodes processed. In detail, for this study, five different functions were applied
for the training process (five different possible cases per layer): the identity function
( f (x) = x); the exponential function ( f (x) = x, i f x ≥ 0; f (x) = α[exp(x)− 1], i f x < 0);
the hyperbolic tangent function ( f (x) = [exp(x)− exp(−x)]/[exp(x) + exp(−x)]); the
logistic function ( f (x) = [1 + exp(−x)]−1); the sine function ( f (x) = sin (x)). To find a
reasonable stopping point of the training process in each different network alternative,
the maximum number of epochs (i.e., training cycles) was set to 500. By training all the
network alternatives, five alternatives were retained as the shortlist.

3. Results

The results shown in Table 2 reveal that most of shortlisted network alternatives are
reasonably accurate, holding about 70% accuracy of the classification. Among these, NN
9-70-3 BFGS 39 with the exponential function for the hidden activation and the hyper
tangent (tanh) function for the output activation shows the highest accuracy in all the
subsets of data, 74.104%, 69.38%, and 71.845% in training, cross-validation, and test sets,
respectively. BFGS 39 means that the fully trained network was achieve at the 39th training
cycle out of 500. With the highest classification accuracy, NN 9-70-3 was selected as the
final model to classify financial loss clusters by claim payout ratios and risk occurrence
timing in bridge, road, and tunnel construction projects. Accordingly, Figure 3 illustrates
the structure of the final model.
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Table 2. Shortlisted network alternatives.

Neural
Network
Alternative

Accuracy (%)

Training
Algorithm

Activation Function

Training
Set

Cross-
Validation

Set

Test
Set

Hidden
Layer

Output
Layer

9-70-3 * 74.104 69.380 71.845 BFGS 39 Exponential Tanh
9-154-3 72.908 65.241 70.053 BFGS 21 Tanh Identity
9-116-3 72.510 65.241 70.588 BFGS 13 Sine Exponential
9-79-3 72.908 65.241 70.054 BFGS 22 Sine Tanh
9-156-3 66.534 67.380 71.123 BFGS 3 Exponential Sine

* The network structure selected as the final model.
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4. Discussion

The economic damage trends in transportation infrastructure projects that are learned
from the developed neural network model were classified into the claim payout proportions
and risk occurrence timing, using box-and-whisker plots. As depicted in Figure 4, the plots
consist of the median values, the upper (75%) and lower (25%) quartiles, non-outlier ranges,
and the mean values of generalized claim payout ratios under two different financial loss
clusters (i.e., management risk, natural hazards) associated with risk occurrence timing. It
should be noted that a small portion of the miscellaneous risk occurrence cases were not
captured by the developed classification model. In addition, due to a smaller set of natural
hazards occurred in tunnel projects, the corresponding outcomes were excluded from the
generalized classification, which is aligned well with historical records of tunnel projects,
seen in Figure 1.
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As a way to interpret the results, detail trends in causes of financial losses could
be referenced by Figure 1, in conjunction with the generalizable main outcomes of the
financial loss clusters shown in Figure 4. More specifically, although bridge projects are
often affected by both management risk and natural hazards compared to the other projects,
the ranges of claim payout ratios were less than or similar with one maximum. This reveals
that the allocated amounts of construction insurance for bridge projects are reasonably
efficient during construction (OT ≤ 100%) and based on the adjusted contract time period
(i.e., 100% < OT ≤ 150%).

Overall, it is recommended that the original contract end dates would be reconsidered
properly for transportation infrastructure projects from the beginning of contract stage,
towards sustainable project management. This is because the financial losses caused by the
identified risks were investigated in all the types of projects, by showing the occurrence
timing ratios between 100% and 150%. Especially, claim payout ratios associated man-
agement risk shown in tunnel projects might exceed one, which means that the allocated
insurance amount might not be effective from the perspective of insurance companies.

In addition, in road construction projects, late stages of the project might be more af-
fected by risk, especially causes included in the management risk cluster (careless, collapse,
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damage, fire & explosion, slips, trips & falls, soil settlement, stolen). By comparing with
the observed data shown in Figure 1, in the management risk cluster for road construction
projects, the probability of damage and soil settlement would be considered as the most
frequent cases causing financial losses.

5. Conclusions

The third-party liability insurance has been commonly adopted by the owners of
large-scale construction projects, in order to cover economic damages caused by construc-
tion operation, project management, and other external risks. Among various types of
construction projects, transportation infrastructure is well known as a key built asset to
facilitate sustainable economic growth, but transportation construction projects are exposed
to numerous unexpected events, compared to other types of construction projects. Given
the nature of transportation infrastructure construction projects, many research efforts were
made to predict economic damages caused by various types of risk. Although predicting
financial losses associated with various risk factors is important, it is still difficult to deter-
mine which risk factors are generally critical and when these risks tend to occur, without
proven references to be benchmarked. In turn, post-assessment of economic damages is
crucial by classifying their generalizable patterns to develop more effective and sustainable
risk management strategies for projects in the future. However, most of previous studies
are prediction-focused, project type-specific, while ignoring the timing aspect of risk.

To fill these knowledge gaps, this study attempted to scientifically classify economic
damages in major transportation infrastructure projects, by developing a neural network-
driven machine-learning classification model that can categorize causes of financial losses
depending on insurance claim payouts caused by risks and their occurrence timing in three
different types of transportation infrastructure projects, such as bridges, roads, and tunnels.
To this end, the insurance- and project-related data sets were collected from 625 transporta-
tion infrastructure projects completed in South Korea. The causes of financial losses were
identified from historical records collected and classified into the management risk, natural
hazards, and miscellaneous risk clusters. For this study, insurance claim payout proportion
and risk occurrence timing were measured as economic damage indicators. Then, a total
of 14 risk indicators combined with the financial loss clusters were classified into bridge,
road, and tunnel projects to set the learning database. Using the BFGS back propagation
training algorithm, 100 different neural network alternatives were explored incorporating
25 different combinations of activation functions for hidden and output layers into the
learning process. Based on the classification accuracy in training, cross-validation, and test
sets, five networks were then shortlisted. Among these alternatives, the network 9-70-3
having the highest classification accuracy was selected as the final model, which showed
acceptable accuracy of 74.1%, 69.4%, and 71.8% in training, cross-validation, and test sets,
respectively. Using the classification model achieved, generalizable economic damage
trends were provided by claim payout ratios in each financial loss cluster associated with
risk occurrence timing and project types.

This study is the first of its kind by providing benchmarkable classification references
of economic damage trends in major types of transportation infrastructure projects. How-
ever, it should be noted that the limitations of this study would be considered for future
work. This study was conducted based on the limited number of historical records achieved
from an insurance company. With more sets of high-confidence data, the learning perfor-
mance to classify the generalized patterns would be improved further. Nevertheless, the
holistic approach proposed in this study will help construction practitioners consider the
uncertainty of project management and the potential impact of natural hazards proactively.
This study will also assist insurance companies with developing more effective and efficient
financial management plans for a certain type of transportation infrastructure projects.
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