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Abstract: Local climate zones (LCZs) emphasize the influence of representative geometric properties
and surface cover characteristics on the local climate. In this paper, we propose a multi-temporal LCZ
mapping method, which was used to obtain LCZ maps for 2005 and 2015 in the Guangdong–Hong
Kong–Macao Greater Bay Area (GBA), and we analyze the effects of LCZ changes in the GBA on land
surface temperature (LST) changes. The results reveal that: (1) The accuracy of the LCZ mapping of
the GBA for 2005 and 2015 is 85.03% and 85.28%, respectively. (2) The built type category showing
the largest increase in area from 2005 to 2015 is LCZ8 (large low-rise), with a 1.01% increase. The
changes of the LCZs also vary among the cities due to the different factors, such as the economic
development level and local policies. (3) The area showing a warming trend is larger than the area
showing a cooling trend in all the cities in the GBA study area. The main reasons for the warming
are the increase of built types, the enhancement of human activities, and the heat radiation from
surrounding high-temperature areas. (4) The spatial morphology changes of the built type categories
are positively correlated with the LST changes, and the morphological changes of the LCZ4 (open
high-rise) and LCZ5 (open midrise) built types exert the most significant influence. These findings
will provide important insights for urban heat mitigation via rational landscape design in urban
planning management.

Keywords: surface urban heat island (SUHI) effect; land surface temperature (LST); local climate zone
(LCZ); Guangdong–Hong Kong–Macao Greater Bay Area (GBA); spatio-temporal dynamic changes

1. Introduction

As one of the most significant changes in the development of human society, ur-
banization is the inevitable result of socio-economic development [1]. The variation of
land use/land cover (LULC) and the enhancement of human activities in rapid urbaniza-
tion [2,3] have caused changes to the urban thermal fields, which have led to the emergence
of the urban heat island (UHI) effect [4,5]. The UHI effect refers to the higher temperature
that occurs in urban areas compared to that in suburban or rural areas. Therefore, the UHI
intensity is defined as the temperature difference between the urban and rural areas. Most
current calculations of the UHI intensity are based on the urban–rural temperature differ-
ences. Urban theorists claim that the relation between city and country is more accurately
described as a continuum, or a dynamic, rather than as a dichotomy [6]. The complexity
of urban–rural systems and the difficulty of defining urban–rural boundaries [7,8] have
brought great uncertainty to the quantification of the UHI intensity. In addition, only
using urban and rural areas to describe the major differences in the urban thermal en-
vironment could result in the loss of numerous surface details (e.g., land cover, urban
morphology and function) that determine the local climate differences. Hence, Stewart and
Oke proposed a detailed surface classification framework for urban thermal field research
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named the local climatic zone (LCZ) classification scheme. LCZs are regions with uniform
surface cover, structure, materials, and human activity, in a horizontal scale of hundreds
of meters to several kilometers, including 10 built types and seven land-cover types. The
LCZ classification scheme does not include climate factors, but is based on the attributes
that affect climates, namely the surface structure (height and spacing of buildings and
trees) and surface cover (pervious or impervious). The surface structure affects the local
climate through its modification of airflow, atmospheric heat transport, and shortwave and
longwave radiation balances, while surface cover modifies the albedo, moisture availability,
and heating/cooling potential of the ground [8]. Thus, although the description of the LCZ
classification is similar to the land cover or land use classification, the LCZ characteristics
are more focused on climate-related factors. Being highly correlated with urban structure
and the land-cover types, the LCZ classification scheme emphasizes the influence of the
representative geometric properties and surface cover characteristics on the local climate [9].
As consequence, LCZs have been used to explore how urbanization affects the thermal
fields of human life, mainly referring to the urban heat island (UHI) effect.

The land surface temperature (LST) regulates the lower-layer air temperature of the
urban atmosphere [10]. When obtained from thermal infrared remote sensing imagery, LST
can represent the continuous daytime or nighttime temperatures over a larger geographic
area than air temperature [11]. Hence, LST has become a key variable in the study of the
surface UHI (SUHI) effect during the urbanization process [12–17].

To date, the studies of the relationship between LCZs and LST have mainly focused
on the correlation analysis of a single time phase [18–21], including the descriptive analysis
of LCZs and LST [22], the comparative analysis of LST in the LCZs of different regions [7],
and the correlation analysis of surface features and LST [23]. However, there is no doubt
that the single-time analyses ignore the changes in urban structure and urban thermal
fields during the urbanization process. Multi-temporal LCZ analysis has the potential to
be used to investigate the causes and trends of urban climate changes by studying the
long-term dynamics of LCZs and LST, which can compensate for the shortcomings of a
single-year analysis. Despite the apparent importance of multi-temporal LCZ analysis for
SUHI research, there have been few studies to date of multi-temporal LCZ and LST analysis.
Moreover, these studies have only described LCZ changes from the macroscopic point of
view [24–27]; for example, by simply studying the variation of the spatial composition
of the LCZs in a single city over a long period of time, or the LST statistics for multiple
LCZ categories at different times. To sum up, due to the lack of microscopic and refined
quantitative analysis, the studies conducted to date cannot clearly reflect the changes of the
LCZs and LST within a city. Consequently, a more fine-grained study of the relationship
between LCZs and LST over a long time series is of great importance for an in-depth
understanding of the impacts of urbanization on the SUHI effect.

On the other hand, multi-temporal LCZ mapping is the basis of dynamic LCZ analysis.
To date, the method of single-temporal mapping has commonly been adopted to obtain
multi-temporal LCZ maps. Specifically, the LCZ training samples with different time
phases have been selected separately, and then the World Urban Database and Access
Portal Tools (WUDAPT) method [27,28] or a supervised classification method [25,29] has
been applied to obtain multi-temporal LCZ maps. However, because of the relatively
large number of LCZ categories and the large amount of training samples required for the
mapping, selecting samples for each separate classification process is a time-consuming and
labor-intensive task. Therefore, this kind of sample selection method is difficult to apply
for multi-temporal or large-geographic-scale LCZ mapping, especially for time phases for
which samples are difficult to obtain. Moreover, this approach it is not conducive to the
accurate and consistent classification of time-series images in a more automated manner.
In this context, a time-series sample migration strategy is proposed in this paper to reduce
the workload of sample collection and facilitate faster and more efficient multi-temporal
LCZ classification.
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As one of the most important bay areas in the world, and one of the most open
and economically dynamic regions in China, the Guangdong–Hong Kong–Macao Greater
Bay Area (GBA) stands at an important strategic position in the overall development of
China. According to the Outline Development Plan for the Guangdong–Hong Kong–Macao
Greater Bay Area (https://www.bayarea.gov.hk/filemanager/en/share/pdf/Outline_
Development_Plan.pdf, accessed on 28 January 2021), the aim is for the GBA to be not only a
vibrant world-class city cluster and an important part of the “One Belt One Road” initiative,
but also a high-quality living area that is pleasant to live in, work in, and travel to, which
will eventually become a model for high-quality urban development. However, the urban
agglomeration in the GBA, as the main spatial carrier of urbanization, has brought about a
series of ecological and environmental problems while promoting rapid socio-economic
and political development. One of these problems is the UHI effect, which is caused
by the dramatic increase of artificial surfaces and the enhancement of human activities.
Accordingly, how to mitigate the UHI effect and promote the sustainable development of
the GBA region has become an important goal of regional development planning.

Recently, several studies related to the impacts of urbanization on ecological quality
have been conducted in the GBA [30–33], for which the SUHI effect has been one of the
important concerns. Some of these studies have analyzed urban outdoor comfort from the
perspective of resident perception [34,35], while other studies have investigated the effects
of building layout or urban morphology on LST [36–39]. Some studies have compared the
multiple-city correlations [22,40] based on surface coverage, whereas other studies have
been limited to single-temporal LCZ mapping [41–43]. Only a few studies have evaluated
the SUHI effect in a long time series, such as the study of Wang [27], in which the dynamic
distribution of LST was explored.

In summary, the previous studies on the SUHI effect carried out in the GBA have
mostly focused on the relationships between mono-temporal LULC characteristics and
the SUHI effect, which is an approach that cannot reveal the change patterns of thermal
fields in a time series during the urbanization process. Furthermore, the studies that have
considered long time series have failed to address microscopic descriptive analysis, and
they have ignored the impacts of fine surface structure changes on the SUHI effect in the
urbanization process. In addition, it is worth noting that most of the previous studies have
only covered parts of the cities in the GBA, and there is a lack of research and analysis
covering the whole of the GBA. Given these circumstances, it is clear that carrying out
research on the dynamic changes of the LCZs in the GBA and their spatio-temporal effects
on the SUHI effect is of great significance.

The main purposes of this study were (1) to propose a multi-temporal LCZ mapping
method that can be used to achieve the detection of multi-temporal LCZ changes in the
GBA region, and (2) to analyze the relationship between the multi-temporal LCZ changes
and LST changes.

The rest of this paper is structured as follows: Sections 2 and 3 introduce the overview
of the study area, the data, and the methods; Section 4 provides the results and a discussion
of the results; Section 5 summarizes the findings of this study.

2. Study Area

The GBA (21◦32′–24◦26′ N, 111◦20′–115◦24′ E) is located in southern China and
includes nine cities in the Pearl River Delta city cluster (i.e., Guangzhou, Shenzhen, Foshan,
Dongguan, Zhongshan, Zhuhai, Huizhou, Jiangmen and Zhaoqing), as well as two Special
Administrative Regions (i.e., Hong Kong and Macao) (Figure 1). With multiple financial
services, educational resources, cultural industries, and high-tech industries, the GBA is
representative of China’s efforts to build a world-class city cluster and plays an important
strategic role in the overall development of China. However, the rapid urbanization has led
to prominent human-nature conflicts, especially environmental problems such as the UHI
effect [31,44,45]. During the development of ecological civilization in China, establishing
the concept of “people-oriented” development and handling the relationships between

https://www.bayarea.gov.hk/filemanager/en/share/pdf/Outline_Development_Plan.pdf
https://www.bayarea.gov.hk/filemanager/en/share/pdf/Outline_Development_Plan.pdf
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“development” and “protection” have become the key to the high-quality development
of the GBA. Therefore, how to relieve the SUHI effect in order to make the GBA region
more conducive to living and sustainable development is an urgent issue that needs to
be addressed.

Figure 1. The location of the GBA and the area of each city within the GBA.

3. Methods
3.1. LST Retrieval

The UHI is strongest in summer due to the high temperature. Thus, the summer
temperature is usually analyzed in the UHI studies. The GBA is rainy in summer. In
order to reduce the interference of other factors (clouds, etc.), we used the average surface
temperature obtained based on multiple remote sensing images. The average daily air
temperatures of the GBA in 2005 and 2015 were obtained from the China Meteorological
Data Network (Figure 2). It can be seen that, in both 2005 and 2015, the temperature differ-
ence between July and August was the smallest and the fluctuation range was minimal,
which means that the climate in July and August was the most stable. However, in 2005,
the temperature in June was close to that in May, and the difference was about 3 ◦C from
that in July. Therefore, in order to reduce the influence of the difference in June on the
average value, we analyzed the spatio-temporal impacts of LCZ changes on LST changes
in the process of urbanization by utilizing the average LST in July and August in 2005 and
2015. The LST was acquired from the EOS-Aqua-MODIS eight-day (MYD11A2) product
for daytime (13:30), which has a spatial resolution of 1000 m. The accuracy of this product
has been reported to be better than 1 ◦C [46]. The advantages of the high precision and
wide area coverage have resulted in MODIS LST data being widely employed in SUHI
research [47–49].
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Figure 2. Box plots of the daily average air temperature in the GBA in 2005 (a) and 2015 (b).

3.2. Time-Series LCZ Mapping

The common LCZ types in the GBA are shown in Figure 3. LCZ7 (lightweight low-rise)
is usually used as informal settlements, shantytowns, smallholder lots, and so on. The
building surface fraction and impervious surface fraction of LCZ9 (sparsely built) are both
less than 20%. Due to the high level of economic development in the GBA, there are very
few lightweight low-rise buildings, and the buildings are relatively dense as well as the
impervious surfaces in the built-up area. Consequently, the LCZ7 (lightweight low-rise)
and LCZ9 (sparsely built) are almost non-existent in the GBA. LCZC (bush, scrub) refers to
the open bushes, shrubs, and short, woody trees on bare soil or sand, which are also rare in
the GBA. As a result, we selected 14 common LCZ types.

Figure 3. Examples of LCZs in the GBA from Google Earth imagery.

As suggested in existing studies [27,42], LCZ maps of the GBA were generated with a
spatial resolution of 100 m in our research. To reduce the interference of factors such as
clouds and improve the accuracy of the classification, we obtained the atmospherically
corrected (and almost cloud-free) Landsat 8 surface reflectance (SR) products for the GBA
for the whole of 2015 from the United States Geological Survey (USGS), and then performed
image mosaicking and clipping. After careful visual interpretation, a total of 2987 samples
were selected based on the high-resolution images of the same period from Google Earth,
of which 25% were randomly used as test samples and the others were used as the training
samples. The preparation of the input features consisted of two parts: (1) The multispectral
and thermal infrared bands of the Landsat 8 SR products were bilinearly resampled to
a 10-m resolution, and then resampled to a 100-m resolution by a zonal mean function
based on the LCZ grid area. To consider the contextual characteristics of the features, the
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mean, minimum, maximum, median, 25th, and 75th quantile values of the nine pixels in a
3 × 3 window were calculated (Figure 4b) [42]. (2) We also produced input features based
on the China Land Use/Cover Dataset (CLUD, http://www.igsnrr.ac.cn/, accessed on 28
January 2021) for the same year. The CLUD dataset was mainly generated from Landsat
TM/ETM+/OLI and HJ-1A/1B imagery by a human–computer interactive method and
has been reported as having an overall accuracy of more than 90% [50,51]. Specifically,
as with the Landsat data, we also calculated the feature values, including the fractions
of impervious surfaces, trees, and water, at a spatial scale of 100 m. The random forest
classifier was finally employed to complete the LCZ mapping in the GBA for 2015.

Figure 4. (a) The proposed framework for LCZ mapping, and (b) the input features.

Due to the wide area of the GBA and the workload involved in selecting samples, we
developed a time-series sample migration method to automatically obtain a large number
of samples for 2005 based on the LCZ mapping for 2015. The specific principles and steps
of this method are as follows:

(1) Unchanged: the change vector analysis (CVA) method was applied to determine
whether a pixel had changed using the multispectral and thermal infrared bands
of the two time phases [52,53]. The gray values of a pixel for 2005 and 2015 were,
respectively, described by G = (g1, g2, . . . , gn)

T and H = (h1, h2, . . . , hn)
T , where n

represents the number of bands. The change vector was described as:

∆G = G− H =


g1 − h1
g2 − h2

. . .
gn − hn

, (1)

The change magnitude was calculated by:

||∆G|| =
√
(g1 − h1)

2 + (g2 − h2)
2 + . . . + (gn − hn)

2, (2)

A greater change magnitude corresponds to a higher possibility of image change. When
the change intensity exceeds a specific threshold, it can be treated as a changed pixel.

http://www.igsnrr.ac.cn/
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(2) Reliable: in a region where the images had not changed, only the positions with
higher reliability in the time 1 image classification could be considered as samples for
time 2. The reliability of a pixel was measured by the classification probability of the
image [54], and the classification certainty w(x) of pixel x was defined as:

w(x) =
k−1

∑
k=1

[pk(x)− pk+1(x)]× 1
k

, (3)

where pk(x), pk+1(x) are descending probabilistic outputs; k refers to the number of
probabilistic outputs.

(3) Representative: the candidate samples were further refined according to their rep-
resentativeness in order to reduce the redundancy. Specifically, on the basis of the
invariability and reliability of the samples, the k-nearest neighbor algorithm was
adopted to further select representative samples [55].

Due to the insufficient samples for the high-rise buildings (LCZ1 and LCZ4), heavy
industry (LCZ10), and bare rock (LCZE) categories, some samples needed to be added
manually after the sample migration (Table 1). The classification input features for 2005
were obtained in the same way as for 2015, based on the multispectral and thermal infrared
bands of the Landsat 5 SR products and the CLUD dataset, with random forest utilized
for the classification. A total of 735 test samples were randomly collected in the region,
outside of the training samples, to ensure that the test and training samples were spatially
independent of each other.

Table 1. Training and test datasets for each LCZ type in 2015 and 2005. The number of manually
delineated polygons is shown in parentheses, and the other figures are the number of corresponding
100-m resolution pixels of the samples.

Training Samples Test Samples

2015 2005
2015 2005

Manual Manual Automatic Total

LCZ1 583(50) 630(40) 9 639 12 8
LCZ2 2533(253) 2171 2171 86 85
LCZ3 1182(194) 1283 1283 52 60
LCZ4 4354(229) 2105(41) 2204 4309 68 51
LCZ5 3954(252) 1986 1986 57 65
LCZ6 3627(196) 2206 2206 55 44
LCZ8 6660(200) 4431 4431 77 71

LCZ10 806(30) 762(29) 9 771 9 8
LCZA 13,971(210) 20,054 20,054 74 73
LCZB 1961(175) 1072 1072 42 40
LCZD 7290(188) 10,845 10,845 63 69
LCZE 4072(152) 1539(82) 191 1730 41 42
LCZF 5214(202) 3412 3412 52 49
LCZG 12,678(178) 11,862 11,862 66 70
Total 68,885(2509) 5036(192) 61,735 66,771 754 735

3.3. Analysis of the LCZ and LST Changes

The landscape metrics are quantitative indicators that can effectively reflect the spatial
composition and spatial configuration of the landscape, so they could be used to assist
with the quantification of the spatial morphology of the LCZs in the GBA. Based on
previous studies [40,56,57], four widely used landscape indices were employed (Table 2):
the percentage of landscape area (PLAND), the edge density (ED), the largest patch index
(LPI), and the aggregation index (AI). PLAND is a spatial composition index, which
measures the number of different patch types in the landscape, and the others are spatial
configuration indices, which estimate the spatial structure of the patches. FRAGSTATS
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software was adopted to calculate the landscape indices (http://www.umass.edu/landeco/
research/fragstats/fragstats.html, accessed on 28 January 2021). In order to identify the
influence of the changes in the spatial morphology of the LCZs on the changes of LST,
the most commonly used multiple linear regression models were applied [58–60]. The
correlation between each landscape metric of LCZ changes and the LST changes from 2005
to 2015 was analyzed separately.

Table 2. The landscape metrics selected in this study.

Metric (Abbreviation) Calculation Description

Percentage of landscape
(PLAND) ∑n

j=1 aij/A× 100
Measures the proportional

abundance of each class in the
landscape (unit: %).

Edge density (ED) ∑m
k=1 eik/A× 10, 000

Measures the shape
complexity and isolation

degree (unit: m/ha).

Largest patch index (LPI) max
(

aij

)
/A× 100

Measures the dominance of
each class in the landscape

(unit: %).

Aggregation index (AI)
[

gii
max→gii

]
× 100

Measures the degree of spatial
aggregation (unit: %).

aij = area of patch ij; ni = number of patches in the landscape for class i; eik = total length of edge in landscape
involving class i, including landscape boundary and background segments involving class i; A = total landscape
area; gii = number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count
method; max → gii = maximum number of like adjacencies (joins) between pixels of patch type (class) i based
on the single-count method.

4. Results and Discussion
4.1. LCZ Classification Results and Analysis of the LCZ Changes

Figures 5 and 6 show the LCZ maps and classification accuracies for the GBA in
2005 and 2015, respectively. The results demonstrate that reliable accuracies are achieved
for the LCZ classification in the GBA, with an overall accuracy of 85.03% and 85.28%
in 2005 and 2015, respectively, and a Kappa coefficient of 0.84 for both 2005 and 2015.
There are 13 categories of LCZ types detected in the GBA. Theoretically, the 13 classes
involve 156 (13 × 12) change transition types but, in fact, only 25 change types occur.
Some change categories are rare, e.g., buildings (built types) to LCZG (water) or vegetation
(LCZB/D), LCZG (water) to LCZA (dense trees), and compact high-rise buildings (LCZ1)
to other types. Due to the large number of change categories and the distinct areas of
some change types, approximately 30 samples were randomly selected for each change
transition type to ensure that the test samples could cover all the change types, with a
total of 738 samples. The overall accuracy of the change detection is 76.83% and the Kappa
coefficient is 0.759 (Figure 7).

Figure 8 shows the percentage of the LCZ area changes in the total area from 2005
to 2015, indicating the degree of the LCZ area changes. As shown in Figure 8, the area
of the built types (LCZ1–10) in the GBA shows an increase of 2.38% from 2005 to 2005,
among which LCZ8 (large low-rise) shows the largest increase in area of 1.01%, followed
by open buildings (LCZ4, LCZ5 and LCZ6), while LCZ3 (compact low-rise) is the only
built category that shows a decrease, of 0.51%. Among the land-cover types (LCZA–G),
the largest area change is in LCZD (low plants), which shows a significant reduction, and
accounts for about 2.17% of the total area of the GBA.

In the following, the results are analyzed from the perspective of each city, considering
the changes in LCZ area and gross domestic product (GDP) and gross industry product
(GIP) (Figure 9) As inland first-tier and new first-tier cities, Guangzhou, Shenzhen, and
Dongguan show the largest increase in the proportion of LCZ4 area (more than 1%), which
can be attributed to the high incremental GDP, the strong economic dynamics, and the
high verticalization rate of the urban buildings. Among the four second-tier cities, Foshan
shows the highest GIP growth, which is close to that of the first-tier cities (i.e., Guangzhou

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
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and Shenzhen). More importantly, Foshan’s GIP accounts for 58% of the GDP, ranking first
in the Pearl River Delta city cluster in 2015. The rapid industrial development in Foshan is
partly on account of its geographical location, i.e., the proximity of Guangzhou, making
it vulnerable to the economic radiation of Guangzhou. Under these circumstances, the
percentage increase (3.46%) in the area of LCZ8 (large low-rise buildings), representing
industrial buildings, in Foshan is much higher than in the other cities. In addition, Jiangmen
and Zhaoqing, which are two third-tier cities, are relatively distant from Guangzhou and
Shenzhen, with weak radiation effects from the big cities. As a result, their GDP and GIP are
relatively low, and the amount of increased area in the built types is the smallest among the
inland cities. With respect to Macau and Hong Kong, which are two Special Administrative
Regions of China, because of the high density of population and the scarcity of available
land, the variations in the area change of the built types are the smallest and the urban
buildings are extremely compact. Consequently, the LCZ1 (compact high-rise) areas show
an increase of more than 0.5%, which is larger than the increase seen in the nine inland
cities. Furthermore, the area proportion of LCZG (water) in Macao shows a significant
reduction (11.36%), as a result of the construction of the Zhuhai–Macao artificial island.

Figure 5. LCZ classification for the GBA in 2005 (a) and 2015 (b).
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Figure 6. Confusion matrix diagrams for the LCZ classification in 2005 (a) and 2015 (b).

Figure 7. Confusion matrix diagram for the pixel-level change transitions from 2005 to 2015.
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Figure 8. LCZ area changes in the GBA from 2005 to 2015 (%).

Figure 9. The growth of gross domestic product (GDP) and gross industry product (GIP) in the inland cities of the GBA
from 2005 to 2015 and the ratio of GIP to GDP in 2015.

It should be noted here that economic activity and LCZ changes differ between urban
centers and suburban areas. However, LCZ is proposed to eliminate the impact of the
inaccurate division between urban and rural areas on the study of the UHI. In addition, we
have focused on the variation between cities, and discussed the possible influence of the
economy and the policy on the change of the LCZs in the GBA from the macro level, so we
did not indicate the urban centers with active economic activities. We will study the urban
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center delineation method and the relationship between the local changes in the LCZ and
the economy in depth in the future.

It is important to pay attention to the fact that the growth rate of the compact building
types in 11 cities in the GBA was less than 1% in the process of urbanization. The compact
building types are LCZ1 (compact high-rise), LCZ2 (compact midrise) and LCZ3 (compact
low-rise), all of which have the building surface fraction greater than 40% and the impervi-
ous surface fraction of less than 20% with few or no trees. Therefore, the compact building
categories increased in size by less than 1%, indicating that new buildings are rarely laid
out in a compact manner, taking into account the feelings of residents and emphasizing the
concept of livability, workability and people-orientation. In addition, the forest coverage
areas of all the cities in the GBA do not show significant decreases, with the LCZA (dense
trees) area of Zhuhai showing the greatest reduction, at only 3.1%. That may be related
to the fact that the nine inland cities in the GBA have successfully achieved the titles of
National Forest City or National Garden City, adopted and implemented policies and
regulations related to the protection of forestland, and explicitly proposed to build a forest
city cluster in the GBA. The results signify that, in the process of urban development, the
GBA has not overly expanded in a disorderly manner, and there has been a commitment to
the protection of forest vegetation and the improvement of the ecological environment.

In the following, we further analyzed the characteristics and reasons for the LST
changes based on the analysis of the LCZ changes. Since the main purpose of the LCZ
concept is to avoid the influence of the urban–rural division on the study of the UHI, the
whole urban area is used as the study object, and no distinction is made between the central
urban area and the surrounding rural areas in the LST change analysis.

4.2. LST Variation Analysis

The average LST of July to August in 2005 and 2015 in the GBA was obtained based
on the MYD11A2 product (Figure 10). The LST differences between the two time phases
were then divided into six levels, and the LST change categories for each city and the
composition of the LST change categories in the GBA were analyzed (Figure 11).

It can be observed from Figure 11a that the area with raised temperature is larger than
that with reduced temperature in all the cities in the GBA. Among these cities, Zhongshan
shows the largest proportion of warming area, accounting for about 94.38% of the total
area of Zhongshan, and the level 5 (2 to 4 ◦C) and level 6 (more than 4 ◦C) categories
have the largest area proportions, at 42.44% and 6.76%, respectively. According to the
Overall Urban Planning of Zhongshan City (2005 to 2020), Zhongshan has taken high-tech
and modern manufacturing industry development as the central task and has formed a
clustered development structure. The warming areas of Zhongshan are mainly found in the
Torch High-tech Industrial Development Zone, as a representative of the eastern district,
and Henglan Town, as a representative of the northwest district. The eastern district is
the concentrated development area for industrial innovation, high-tech industries, heavy
industries, and port industries, and the northwest district has enlarged the industrial
agglomeration effects and actively developed comprehensive service industries. Both areas
have been developed as sub-centers of the city. Therefore, during the urban development
process, both areas have mostly transformed from LCZG (water) and LCZD (low plants),
which both have cooling effects, to LCZ8 (large low-rise), which produces a large amount
of high-temperature wastewater and exhaust gases, which have caused the LST to rise.
The areas of rising LST have also had a thermal radiation effect on the surrounding areas.
At the same time, the process of creating sub-centers of the city has led to an increased
concentration of population and activities, resulting in more anthropogenic heat and an
increase in the area of the habitable open built types (LCZ4, LCZ5 and LCZ6). Accordingly,
the LST has increased in many regions, and the thermal environment has been strongly
influenced by urbanization in Zhongshan (Figure 12).
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Figure 10. Average LST of July to August in 2005 (a) and 2015 (b) in the GBA.

Figure 11. The LST change levels by cities (a) and the composition of the LST change levels in the
GBA (b) from 2005 to 2015.

The city with the largest proportion of cooling area is Guangzhou, where it accounts
for 49.05% of the total urban area. The cooling areas are mainly concentrated in the dense
tree areas such as Nankunshan and Shimen. By paying attention to the construction and
protection of forest areas, Guangzhou became the first city in the GBA to obtain the title of
National Forest City. During the gradual expansion of LCZA (dense trees) and the increase
of the vegetation canopy, the shading and evapotranspiration effects of vegetation have
become pronounced, which has contributed to the significant cooling of the ground surface.
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Figure 12. Examples of changes in the LCZs and LST from 2005 to 2015 in Henglan Town and the
Torch High-tech Industrial Development Zone of the city of Zhongshan.

However, as a whole, the warming area that accounts for 68.44% of the total area
is much larger than the cooling area in the GBA, where the level 4 (0 to 2 ◦C) and
level 5 categories (2 to 4 ◦C) of LST change account for 55.39% and 12.22%, respectively.
In the warming area, 5.97% of the region has been converted from land-cover types to
built types, resulting in an increase in impervious surfaces and a decrease in specific heat
capacity, as well as an enhancement of the anthropogenic heat generated by human activi-
ties, which has led to the rise in LST. In addition, 3.11% of the warming area consists of
new large low-rise buildings (LCZ8), which are mainly found in industrial areas, and 4.9%
consists of new built categories, with high population concentration and strong human
activities (LCZ1, LCZ2, LCZ4 and LCZ5). It should be noted that 75% of the warming area
does not show any LCZ change, so the reason for the increase in LST might be enhanced
human activities, increased heat generation, or the influence of thermal radiation from the
surrounding high-temperature areas. Of the cooling area, 95% is covered by land-cover
types, 91.59% of which is made up of LCZA (dense trees), LCZD (low plants), and LCZG
(water), indicating that vegetation and water have the most dominant role in mitigating
the SUHI effect.

The composition of the LST change levels in the GBA is plotted in Figure 11b. From
level 1 to level 6, the area ratio of each city was gradually similar. The level 1 category is
mainly found in Jiangmen and Zhaoqing, and the area ratios of Jiangmen and Zhaoqing
in the cooling area (levels 1–3) are the largest, accounting for about 31.56% and 32.09%,
respectively. In accordance with the Overall Urban Planning of Jiangmen City approved in
1996 and 2011, Jiangmen was positioned as a light industrial city with high-tech industries
and a waterfront city with modern manufacturing industries, commercial logistics indus-
tries, and cultural tourism. In addition, Zhaoqing was planned as a national historical
and cultural city, in terms of the Overall Urban Planning of Zhaoqing City approved in
2010. Under the influence of these policies, the pace of the economic development of these
two third-tier cities has been relatively slow, and the development of heavy industries has
lagged behind the other cities, leading to slower urban expansion and a lesser area of new
buildings. As a result, the new impervious surface contributing to surface warming [61,62]
and the anthropogenic heat promoting surface thermal radiation have remained at a rel-
atively low level. Simultaneously, the two cities have paid attention to the protection of
ecological resources, and LCZA (dense trees) accounts for 33.4% of the GBA, which benefits
the development of cultural tourism. As time has passed by, the density of the vegetation
canopy has increased, so that the shading and evapotranspiration effects of vegetation have
become more prominent, which can significantly reduce surface temperatures [10,40,56].
Therefore, the cooling areas of Jiangmen and Zhaoqing are the largest, and they are playing
an important role in mitigating the SUHI effect of the entire GBA. Among the warming



Sustainability 2021, 13, 6374 15 of 20

regions (levels 4 to 6), the proportions in Zhaoqing, Jiangmen, and Huizhou are higher,
because of the larger total area (15,000 km2, 9505 km2, and 11,300 km2, respectively) and
the larger area of buildings with warming effects, even though these three cities have the
largest area of LCZA (dense trees) (12,337 km2, 6197 km2, and 8478 km2, respectively),
which has substantially impacted the cooling effect. Therefore, it can be stated that when
establishing measures to mitigate the SUHI effect, it is important to focus on not only the
regions with rapid industrial development and high-intensity human activities, but also
the regions with lagging economies but large built-up areas. In addition, we compared
the proportions of the warming areas and cooling areas in each city. The warming area is
11% larger than the cooling area in Zhuhai and Zhongshan, and 6% larger in Shenzhen,
Dongguan, and Foshan. In Hong Kong and Macao, the warming area is about the same as
the cooling area. Nevertheless, the cooling area of Guangzhou, Jiangmen, and Zhaoqing is
10 to 20% larger than the warming area. Therefore, Zhuhai and Zhongshan are the cities in
the GBA where the SUHI effect still needs to be addressed most urgently.

4.3. Influence of LCZ Changes on LST Changes

The PLAND, ED, LPI, and AI metrics were applied to characterize the spatial morphol-
ogy of the LCZ distribution on the data of 1822 samples at a grid size of 5000 m × 5000 m.
Table 3 shows the results of the multiple linear regression analysis for the LCZ spatial
morphology changes and LST changes, indicating the effect of LCZ spatial composition and
configuration changes on LST changes. The variance inflation factors of all the variables
are between 1 and 2, demonstrating that multicollinearity does not exist.

Table 3. Multiple linear regression analysis of LCZ spatial morphology changes and LST changes.
Each column represents a multiple linear regression model for the landscape metric changes of
different LCZ categories and LST changes. The explanatory variables are the values of LCZ landscape
metric changes, i.e., the differences in each landscape metric of different LCZs in Table 2. from 2005
to 2015. The objective variable is LST change from 2005 to 2015 in Figure 10. The values in the color
region refer to the standard regression coefficients, which reflect the importance of the corresponding
explanatory variable. The color represents the magnitude of the regression coefficients, where the
redder the color, the stronger the positive effect of the variable on LST, and the bluer the color,
the stronger the negative effect of the variable on LST. “**” refers to the significance less than 0.01,
indicating that the data is extremely significant, meanwhile, “*” refers to the significance less than
0.05, indicating that the data is significant.

PLAND ED LPI AI

LCZ1 0.038 0.043 0.041 0.012
LCZ2 0.128 ** 0.019 0.048 * 0.026
LCZ3 0.058 * −0.013 0.041 0.037
LCZ4 0.242 ** 0.192 ** 0.116 ** 0.062 **
LCZ5 0.23 ** 0.129 ** 0.113 ** 0.032
LCZ6 0.099 ** 0.051 * 0.075 ** 0.021
LCZ8 0.175 ** 0.036 ** 0.079 ** 0.018

LCZ10 0.064 ** 0.077 ** 0.079 ** 0.101 **
LCZA −0.069 ** −0.11 ** −0.262 ** −0.052 *
LCZB 0.188 ** 0.039 0.139 ** 0.188 **
LCZD −0.015 −0.043 ** −0.024
LCZE 0.102 ** 0.118 ** 0.077 ** 0.06 **
LCZF 0.073 ** 0.024 −0.014 −0.007
LCZG −0.013 −0.125 ** −0.088 ** −0.075 **

p <0.01 <0.01 <0.01 <0.01
R2 0.229 0.188 0.204 0.067

Adjusted R2 0.224 0.182 0.198 0.059

The results reveal that, for the built types (LCZ1–10), the degree of LST increases as
PLAND, ED, LPI, and AI increase. The main reasons for this are as follows: (1) the larger
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the increased area of buildings, the greater the range of human activities and the larger the
area of anthropogenic heat generation. At the same time, the increase of impervious surface
area with a low specific heat capacity causes LST to rise after absorbing solar radiation heat
and artificial heat. (2) ED measures the complexity of the shape and degree of the isolation
between the patches. An increase in ED represents an increase in the fragmentation of
the patches, resulting in an increase in the thermal radiation range of the built types and
an increase in LST. (3) LPI can recognize the dominant category in the spatial range. An
increase in LPI means that the dominant position of the built types is becoming more and
more prominent, resulting in a greater degree of surface temperature increase. (4) An
increase in AI indicates intensification of the population concentration and human activity
in this region, which promotes an increase in anthropogenic heat emissions. It should be
pointed out that, although the ecological significances of ED and AI are mutually exclusive
to a certain extent, the R2 of the AI model is much smaller than that of the ED model,
indicating that the ED model has a stronger explanatory power for the LST changes. For
this reason, we should try to avoid a fragmented distribution of built types and reduce the
effective contact area of buildings with the surrounding environment in the urban planning
and design.

Among the built types (LCZ1–10), the morphology changes of LCZ4 (open high-rise)
and LCZ5 (open midrise) are both strongly correlated with the changes of LST, which
might be due to the fact that LCZ4 (open high-rise) and LCZ5 (open midrise), as the main
built types for urban residential areas, are the categories with the newest area, and less area
converted to other types. The increased impervious surfaces and anthropogenic heat has
led to a significant increase in LST in these two categories.

With regard to the land-cover types (LCZA–G), LCZA (dense trees), LCZD (low
plants), and LCZG (water) show opposite trends. The results reveal that the greater the
variation in area, patch fragmentation, dominance, and aggregation of these categories, the
more favorable the LST reduction, which is correlated with the evapotranspiration effect
of vegetation and water and the shading effect of trees. What is more, it should be noted
that the LPI changes in LCZA (dense trees) correlate most strongly with the LST changes,
which indicates that the extent of the aggregation of dense trees has a significant cooling
effect on LST. Therefore, attention needs to be paid to the aggregation effect of forest in
mitigating the SUHI effect.

When comparing the difference between natural and built-up landscapes with regard
to their effects on LST, it is found that the standardized regression coefficients of LCZ4
(open high-rise) and LCZ5 (open midrise), with the strongest positive correlation with LST
changes, are basically larger than those of LCZD (low plants) and LCZG (water), which
have a cooling effect on LST. The conclusion we can draw is that the influence of the increase
of LCZ4 (open high-rise) and LCZ5 (open midrise) on LST is much greater than that of
LCZD (low plants) and LCZG (water). As analyzed above, to mitigate the urban warming
effect effectively, rational layouts should be based on the correlation between built-up
landscapes and LST. More specifically, LCZD (low plants) and LCZG (water) should be
expanded within a certain range, and a large patch area for LCZ4 (open high-rise) and
LCZ5 (open midrise) should be avoided, to weaken the dominant position of the built
types. Meanwhile, the degree of patch fragmentation in the built types should be reduced
to mitigate the effect of thermal radiation on the surrounding area.

In addition, it is commonly recognized that the grid size can have a significant in-
fluence on the relationship between temperature and urban surface structure, so a suit-
able analysis cell is crucial for the study of the spatial characteristics of the SUHI ef-
fect [40,63,64]. Since the pixel size of the LCZ classification images produced for this study
was 100 m × 100 m and the acquired MODIS LST products were 1000 m × 1000 m, the
side length of the grid should be an integer multiple of 1000 m. As a consequence, the
strength of the linear regression (R2 values) was used to examine the effect of grid sizes
with side lengths ranging from 2000 m to 5000 m in increments of 1000 m. As presented in
Figure 13, the linear regression strength (R2 values) of the model shows a slowly increasing
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trend with the increase of the grid size, and the peak value appears at the grid side length
of 5000 m. Considering the slow increase of R2 and the sudden decrease of the sample
size, it was not advisable to increase the grid size anymore. Thus, 5000 m × 5000 m was
determined as the appropriate grid size in this study.

Figure 13. Sensitivity of the correlation between LCZ spatial morphology changes and LST changes
to the grid size.

5. Conclusions

In this study, with the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as
the study area, we derived LCZ classification maps of the GBA by a time-series sample
migration method and obtained the LST based on MODIS data from 2005 and 2015. We
then systematically investigated the dynamic change characteristics of the LCZs and LST
in the urbanization process of the GBA, and quantitatively analyzed the influence of LCZ
changes on LST variation through calculating the changes of LCZ spatial composition and
configuration by the use of landscape indices.

Our findings suggested that the time-series sample migration method can be used
to achieve rapid and efficient mapping of LCZs with multiple time series in a large area.
The accuracy of the LCZ mapping for the GBA in 2005 and 2015 was 85.03% and 85.28%,
respectively. The built type category with the largest increase in area in the GBA from 2005
to 2015 was LCZ8 (large low-rise), with a 1.01% increase, while LCZ3 (compact low-rise)
was the only built type with a decrease in area, of 0.51%. Among the land-cover types
(LCZA–G), the largest area change was in LCZD (low plants), which decreased by 2.17%.
The changes in the LCZ categories varied among the cities due to the different factors, such
as the economic development level and local policies.

During the urbanization process, we found that the area of warming was larger than
that of cooling in all the cities of the GBA. The main reasons for the increase of LST were
the conversion of land-cover types into built types, the enhancement of human activities,
and the heat radiation from surrounding high-temperature areas. The characteristics of the
LST changes varied from city to city because of the influence of local planning, the area of
the region, and the economic development level.

Another contribution of this study is that we have revealed the different effects of LCZ
spatial morphology changes on LST variation. The spatial morphology changes of the built
categories were found to be positively correlated with LST changes, and the morphological
changes of LCZ4 (open high-rise) and LCZ5 (open midrise) exerted the most significant
influence, while the change of the LPI of LCZA (dense trees) had the strongest negative
correlation with LST variation. Consequently, there is a need to focus on the rationalization
of the layout of the built types, and attention also needs to be paid to the agglomeration
effect of forest in urban planning.
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