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Abstract: Alternative energy resources have a significant function in the performance and decar-
bonization of power engendering schemes in the building application domain. Additionally, “green
buildings” play a special role in reducing energy consumption and minimizing CO2 emissions in the
building sector. This research article analyzes the performance of alternative primary energy sources
(sun and hydrogen) integrated into a hybrid photovoltaic panel/fuel cell system, and their optimal
synergy to provide green energy for a green building. The study addresses the future hydrogen-based
economy, which involves the supply of hydrogen as the fuel needed to provide fuel cell energy
through a power distribution infrastructure. The objective of this research is to use fuel cells in
this field and to investigate their use as a green building energy supply through a hybrid electricity
generation system, which also uses photovoltaic panels to convert solar energy. The fuel cell hydro-
gen is supplied through a distribution network in which hydrogen production is outsourced and
independent of the power generation system. The case study creates virtual operating conditions for
this type of hybrid energy system and simulates its operation over a one-year period. The goal is to
demonstrate the role and utility of fuel cells in virtual conditions by analyzing energy and economic
performance indicators, as well as carbon dioxide emissions. The case study analyzes the optimal
synergy between photovoltaic panels and fuel cells for the power supply of a green building. In the
simulation, an optimally configured hybrid system supplies 100% of the energy to the green building
while generating carbon dioxide emissions equal to 11.72% of the average value calculated for a
conventional energy system providing similar energy to a standard residential building. Photovoltaic
panels account for 32% of the required annual electricity production, and the fuel cells generate 68%
of the total annual energy output of the system.

Keywords: fuel cell; green building; hybrid energy system; hydrogen energy; optimal synergy;
photovoltaic panel; power supply; solar energy

1. Introduction

The implementation of energy efficiency sustainability elements in the construction
domain is the goal of numerous international organizations engaged in this field. The
use of alternative energy sources, alone or in hybrid configurations, to provide power
to buildings is recommended more and more often, and will become mandatory in the
near future. The implementation of hydrogen energy in various practical applications has
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been a growing concern for the community of researchers in the field, and, during 2020,
hydrogen energy was in the spotlight as a major part of the world’s energy strategies.

Chaouki Ghenai et al. [1] considered an off-grid system composed of photovoltaic
panels (PV)/fuel cells (FCs), located in a desert region from the economic perspective. They
described conditions in which the system was placed because of its extreme characteristics.
Considering dust accumulation and the operating temperature of the panels, they built
models and simulated the system to optimize its functionality and increase its performance.
Hongbo Ren et al. [2], considering environmental and economic objectives, analyzed a
system composed of a PV/FC/battery (B). They highlighted the performance, cost, and size
of the equipment. This model was filtered and analyzed through numerical examples. The
strategy for the application was selected from several perspectives to improve and demon-
strate the environmental performance of the system. Ishaq and Dincer [3] presented a novel
system in which hydrogen was added to natural gas for combustion. The hybrid system
included wind and solar sources. In order to increase efficiency and decrease emissions,
they added 0 to 20% hydrogen gas. They observed that carbon dioxide (CO2) emissions
decreased with inverse proportionality to hydrogen addition, and the combustion energy
efficiency grew by 10%. In [4], Al-Hamed and Dincer envisioned a clean locomotive with
an integrated solid oxide fuel cell (SOFC) system. To optimize the system they assessed its
effectiveness, fuel costs, and carbon emissions. The results showed that compared to diesel,
natural gas has a better impact on the environment, reducing costs and emissions.

Ishaq and Dincer [5] comprehensively considered hydrogen’s role in the transition to
100% renewable energy. They described the implementation of this process, highlighting
three elements: hybrid hydrogen production, renewable energy sources, and applications
and services that could use hydrogen. The paper presents classifications, methods, systems,
and a case of study.

Jamshidi and Askarzadeh [6] studied a PV/FC/diesel generator system from a multi-
objective optimization perspective, with the purpose of optimizing size, operating emis-
sions, and investigating uncertainties and reservations. The Crow search algorithm was
introduced to solve the sizing problem, and the system proved efficient. Bukar and
Tan [7] described energy management strategies (EMS) for the system to find the most
cost-effective one and analyzed and compared multiple cases from the literature.

Siddiquio and Dincer [8] proposed a multigeneration system with a novel recovery
technique for waste heat. They conducted a dynamic investigation with analyses on
exergetic and energetic efficiency to evaluate the system over the period of a full year.
Several tests were conducted to prove the system’s efficiency. Luta and Raji [9] proposed
an algorithm for energy management strategies to balance the load between supply and
demand for a fuel cell system. This solution proved also to be effective in the reduction
of power losses. Gharibi and Askarzadeh [10] discussed on-grid diesel/PV/FC system
optimization. They introduced purchase and selling coefficients in the optimization of its
size. Their multiple objectives were renewability, loss of power supply probability (LPSP),
and leveled cost of energy.

In [11], Bizon proposed a 2D function to optimize fuel cell fuel consumption. Dynamic
power was defined by power profiles and loads or energy sources. Variable mitigation in
load and renewable energy was ensured and control of power flow ensured a charge sus-
taining mode. Therefore, fuel economy increased for this strategy. Krishan and Suhag [12]
provided an assessment from technical and financial points of view for two hybrid energy
storage systems with configurations technically compared using Mathlab/Simulink mod-
els. Configuration feasibility was checked with a real-time hardware in-loop simulator.
Samy et al. [13] investigated the technical and financial aspects of a combined renewable
energy system (CRES) using simulation, mathematical modeling, and optimization ap-
proaches. The project was located in Egypt and contained a small-scale PV/FC/wind
turbine (WT). Multiple combinations were developed and presented for optimization.
Temiz and Javeni [14] used hydrogen as a medium to store energy for a floating system
formed of integrated photovoltaic cells and hydrogen. The main objective was to increase
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efficiency and avoid occupying the land. This application provides the cost of electricity per
unit. Kamel et al. [15] used the conventional proportional integrated (PI) control strategy
as an energy management strategy in a PV/FC/batteries/supercapacitor (SC) system. This
system was built to supply the demand power for a dump load. Using high-frequency
decoupling and fuzzy logic, the system proved to be efficient as a microgrid system. To
provide environmental protection, Ellahi et al. [16] built a database that addressed further
hybrid systems and their applicability. They provided an analysis using forecasting tech-
niques, predicted renewable energy sources (RES) availability, and extracted information.
Rezk et al. [17] analyzed a hybrid PV/FC/B system built in Neom, Saudi Arabia, where
the solar irradiance reaches high levels. The technical–financial and feasibility evaluation
covered 500 kWh. To measure the size of the system, the net existing costs and energy costs
were calculated. The system proved to be viable when compared to a diesel generation
system. In [18], Bizon and Thounthong provided two hybrid power system topologies
based on RESs and FC. RESs power flow consisted of modeled wind turbines and photo-
voltaic arrays. Efficiency in the fuel consumption was observed, as well as the total fuel
consumption. Bizon, Stan, and Cormos [19] compared seven control topologies to obtain
the optimal strategy in operational aspects such as fuel economy, best operating model for
loading, or most appropriate strategy for switching. They found a strategy that ensured a
reduction in fuel consumption by 15%.

Balencia, Benavides, and Cardenas [20] conducted an analysis in order to optimize
the electricity production in a non-interconnected area in the Colombian Caribbean re-
gion. Using the meteorological history of the zone, they ran a comparative analysis on a
WT/FC/electrolyzer/SP/regulator. The optimization through the Pareto diagram obtained
minimization in CO2 emissions and in energy costs. Kosmadakis et al. [21] assessed the
economic feasibility of a system consisting of PV and lead–acid batteries. Calculations of
costs per kWh were variable depending on the conditions. This system was optimized
to reduce costs and improve functioning. Dawood, Shafiullah, and Anda [22] analyzed a
stand-alone energy-based system installed in rural and urban locations. Multiple scenarios
were simulated in order to identify the optimal one from the perspective of technical and
financial feasibility. The study by Shakti et al. [23] provided an environmentally friendly
and cost-effective system. This project was made to supply the demand in India, in a
central community. The system used an electrolyzer, hydrogen storage tank, and fuel cell.
Mathematical modeling and operational algorithm were used to optimize the costs. The
Homer software proved the effectiveness of the system.

Cheng and Lin [24] aimed to enhance the performance of a green building with the
purpose to improve its characteristics and optimize its processes. This building used wind
turbines, solar cells, proton exchange membrane fuel cells (PEMFCs), batteries, power elec-
tronic devices, and electrolyzers. In conclusion, this system proved reliable, improving costs
and performance. In [25], Jena and Kumar Kar projected a system that covers the demand
for commercial, residential, and domestic sectors using noncarbonaceous resources. They
used the approximation method to estimate the lifespan of the electrolyzer. This system
was validated through modeling and simulation in MATLAB/Simulink. Arnaout et al. [26]
found a new solution using building-integrated photovoltaics (BIPV) for the façade of the
buildings. The value of this solution is its reliability and cleanliness of the solution. The
location chosen for the system is in Malaysia, a tropical region, and on the roof surface, to
provide the potential for maximum energy levels, and different functional scenarios were
analyzed. The main purpose was to preserve energy, satisfy BIPV rules, and capitalize the
space on the roof. Hosseini et al. [27] analyzed a system with PV and FC for a residential
area, and they investigated the monthly performance of the building. They compared
electricity unit cost considering the lifetime of the system through exergonic and financial
analysis. The results have shown that the system is not rentable for the winter months due
to its low efficiency and costs. In [28], Sedaghati and Shakarami proposed a multiple phase
control strategy using fuel cell, battery systems, and photovoltaic panels to establish certain
parameters and conditions. The control strategy shows lower steady-state error and faster
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response. Alam et al. [29] designed a system of 110V DC for fuel cell and photovoltaic
generators to operate on loads such as laptops, fans, mobile phones, and LED lights in a
microgrid DC. The system proved to be applicable on stable applications, and it was used
for railways. Amirkhalili and Zahedi [30] studied wind power with backup power from a
storage system. The system contained a fuel cell, a hydrogen storage tank, an electrolyzer,
and a wind turbine. Located in Kouhin, Qazvin, this system proved to be efficient when
three wind turbines are used, and the fuel cell provides the energy. Yoichi and Masao [31]
used PEMFCs to provide for household cogeneration. This system was chosen because of
its high efficiency and to improve the performance of the system.

Ou et al. [32] built a hybrid system for household application with a battery/fuel
cell and studied its efficiency and robustness. Using dynamic programming, fuzzy logic
control, and state machine control, they simulated the system. This system proved to have a
longer life and easier operability. Tai et al. [33] analyses aimed to improve the development
of the fuel cells and to save time on the demand for manufacturability and flexibility. This
article reviewed the applications and advantages of additive manufacturing in fuel cells.
In [34], Doi et al. conceived a system using high purity hydrogen as fuel. They needed to
obtain better power that was continuously generated and provided stability and reliability.

The European Green Deal strongly recommends the widespread use of green energy,
and clean hydrogen vector energy is gaining special importance in all energy strategies
across the globe. Research articles, literature reviews, and scientific initiatives in the field
of integrating hydrogen fuel cell technologies into practical applications [35] successfully
demonstrate the sustainability of hydrogen energy in serving as power supplies for station-
ary applications, in general, and green buildings, in particular [36,37]. This study addresses
the future of a hydrogen-based economy, which involves the supply of hydrogen as the
fuel needed for fuel cells in the distribution infrastructure. The practical application of the
system is in the “green building” sector, a concept that defines this type of construction as
a building that supplies its energy directly from solar energy, with a low energy demand
that can be satisfied exclusively by alternative resources [38,39]. This research paper shows
the results of a case study on the analysis of the performance of alternative primary energy
sources (solar and hydrogen), integrated into a hybrid photovoltaic panel/fuel cell system,
and their optimal synergy to provide green energy for a green building. The highlights of
this study can be summarized as follows:

• The optimal sizing of solar units implemented in the design, along with the optimal
capacities of hydrogen technology, to fulfill the daily electricity demand of the green
building in an uninterrupted manner;

• Assessing the feasibility of the proposed hybrid energy system pairing solar energy
with hydrogen technologies to power a low-energy green residential building;

• Investigating the possibility of supplying 100% green energy to green residential build-
ings under conditions of constraints and limitations due to the stochastic nature of the
building’s electricity consumption, volatile and intermittent nature of solar resources,
local weather conditions specific to the building location, and space limitations for the
positioning of the photovoltaic panels, as well as determining the amount of hydrogen
fuel required for such a practical application as the one presented in the case study.

2. Materials and Methods
2.1. Framework

This case study is part of a complex project whose main objective was to investigate
the ways of integrating fuel cells and the role of hydrogen energy in energy supply sys-
tems of energy-efficient buildings [40–44]. Within the project, different possible practical
situations for the implementation of hydrogen energy in the domain of these types of
buildings were subjected to the study. Fuel cells are suitable for the energy supply of
individual residential consumers with low energy requirements, but such systems with
small power capabilities have already been developed, and therefore, the new projects
aimed at providing fuel cells for the energy supply of residential building complexes that
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include more apartments [45,46]. The energy efficiency of fuel cells is higher than that
of conventional power generation systems, which operate at an efficiency of over 45%,
compared to traditional ones that offer maximum efficiencies of 25–35% [37,46]. This also
leads to significant reductions in CO2 emissions [47–50].

This case study involved the supply of energy to an energy-efficient building by a
hybrid energy system that used the sun as the primary renewable source of energy and
hydrogen as an alternative resource, delivered through a centralized distribution network
in the event of a future hydrogen-based economy, shown schematically in Figure 1.
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Figure 1. PV–FC hybrid energy system; principal scheme.

The system used photovoltaic panels for the conversion of solar energy for electricity
generation, and the hydrogen-powered fuel cell from the central grid supported the en-
ergy demands of consumers during periods when solar energy was not available or was
inefficient in ensuring energy demand.

The case study concerned the optimal sizing of energy conversion equipment, deter-
mining the hydrogen demand as fuel for fuel cell consumption, analysis of the optimal
synergy between the photovoltaic panels and the fuel cell for powering the green build-
ing, highlighting environmental performance compared to the traditional version of grid
electricity and cost analysis.

2.2. Methodological Approach

The research methodology used in conducting the case study is schematically illus-
trated in Figure 2. Input data refers to the potential of renewable energies available at the
studied location, the energy demands of the green building to be supplied with clean, sus-
tainable energy, as well as the technical, environmental, and financial elements particular to
the main energy conversion equipment: photovoltaic panels, the fuel cell, and the inverter.

The virtual simulation software of the energy system was Hybrid Optimization by
Genetic Algorithms (iHOGA) PRO +2.5 version [51–55], and output data are presented in
detail in Section 3, Results.

The power produced by the PV was computed using the following Equation (1):

PPV = Gi · ISC · FP · UDC (1)

where PPV is power produced by the PV (kWp), Gi is the hourly solar irradiation (kW/m2),
ISC is the short-circuit current (A), Fp is the factor of loss compensation by power due to
shading, and UDC is the DC voltage generated by the PV (V) [40,51–56].

The demand for hydrogen as fuel by FC is directly influenced by the nominal power
and actual power generated in the system. The computation of fuel cell consumption using
hydrogen as the fuel is based on the following equations [40,51–56]:
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When PFC
PN_FC

≤ Pmax_ef, the fuel cell consumption is computed with the following
math formula:

CFC = βFC · PN_FC + αFC · PFC (2)

and when PFC
PN_FC

> Pmax_e f , the fuel cell consumption of fuel cell is computed with the
following math formula:

CFC = βFC · PNFC + αFC · PFC·
[

1 + Fe f ·
(

PFC
PNFC

− Pmax_e f

)]
(3)

where
CFC is the fuel cell hydrogen consumption (kg/h);
PN_FC is the fuel cell nominal power (kW);
PFC is the fuel cell real power produced by the energy system (kW);
αFC and βFC are coefficients of consumption and efficiency curve (kg/kWh);
Fe f is consumer factor furthermore of the yield power at maximum efficiency;
Pmax_e f is the power generated for green building at the fuel cell maximum efficiency. (kW).
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Figure 2. Methodological approach.

2.2.1. Placement Specific Geo-Climatic Parameters

The geographical data of the location and the particularities of the external climatic
parameters of the municipality of Cluj-Napoca, Romania, are summarized in Table 1,
as follows:

Table 1. Geographical and climatic particularities for Cluj-Napoca.

Particularities Measure Unit Value

Latitude ◦N 46.76
Longitude ◦E 23.6
Altitude m 523

Daily average solar irradiation kWh/m2/zi 3.29
Wind speed m/s 3.4

Relative humidity % 71.2
Atmospheric pressure kPa 95.6

Soil temperature ◦C 9
Outdoor temperature ◦C −18
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The values taken into account for determining the green building energy demand
were in accordance with the reference documents recommended for average monthly
temperatures, average daily temperatures for the months of a year, the intensity of solar
irradiation, and the conventional wind calculation speed, depending on the wind area.

The conventional calculation of outdoor temperatures was considered in accordance
with the climate zoning map of the Romanian territory for the winter period. Mc 001/2-
2006 [57] includes this map, according to which the Romanian territory is divided into four
climatic zones; the municipality of Cluj-Napoca is located in climatic zone III, with the
conventional outdoor temperature of calculation θe = −18 ◦C.

The establishment of values of the necessary parameters for the calculation of the
energy performance of the building was made based on the data measured according to
the methodology established by the World Meteorological Organization and processed in
accordance with the technical regulations in force [58,59].

For the geographical location of the studied climatic zone, in which the green building
is located, the values of the solar irradiation are shown in Figure 3, and the values of
the wind speed are presented in Figure 4. The solar energy resource has a total annual
irradiation potential of 1297.6 kWh/m2/year, with an average daily solar irradiation of
3.29 kWh/m2/day [60].
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Figure 4. Average values of wind speed [60].

The wind speed has an average of 3.39 m/s and is important in computing the green
building energy demand [60].

2.2.2. Dimensional Characteristics of Green Building Envelope Elements

The building envelope consists of a series of surfaces through which heat transfer
takes place. The area of the building envelope ((A); m2) representing the sum of all the
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areas of the perimeter constructive elements of the building through which a thermal
transfer takes place is calculated as

A = ∑k
1 Ak (m2), (4)

where Ak is the area of the building element that forms part of the building envelope.
The dimensional characteristics of the constructive elements for the studied building

are presented in Table 2.

Table 2. Area of the constructive elements of the envelope.

Constructive Element Temperature Zone Aria (m2)

Exterior walls outdoor environment 184.3
Terrace–Roof outdoor environment 83.4

Floor above the ground ground 80.9
Windows and doors outdoor environment 43.5

TOTAL 392.07

The envelope area was calculated taking into account exclusively the interior surfaces
of the perimeter construction elements, ignoring the existence of the interior construction
elements (structural and nonstructural interior walls, as well as the intermediate floors).

The volume of the building ((V); m3) represents the volume delimited by the perimeter
surfaces that make up the building envelope, which is, in fact, the heated volume of the
building, comprising both directly heated rooms (with heating elements) and indirectly
heated rooms (without heating elements but ones in which heat penetrates through adjacent
walls, devoid of significant thermal insulation). The volume of the studied building is
equal to 400.00 (m3).

As a general principle, the surfaces of the perimeter construction elements that to-
gether make up the building envelope are delimited from the external environments by the
inner faces of the construction elements. In this sense, the following elements are involved
in performing the calculations regarding the whole building: the free height of the rooms,
which is equal to 2.50 (m), and the developed usable area, which is equal to 160.00 (m2).

The lengths of the thermal bridges (l) are measured according to their actual lengths
existing within the areas (A) determined above; consequently, they are delimited at the
extremities by the contour of the respective surfaces. In terms of values, l—the lengths of
the thermal bridges in contact with the external environment were equal to 116.86 (m), and
the lengths of the thermal bridges in contact with the ground were equal to 11.35 (m).

2.2.3. Green Building—Energy Demands

The energy demand established by the computational and mathematical calculations
in accordance with the design norms, standards, and the legislation in force [57] for the
green building studied, along with the values of the main consumers, are illustrated in
Figure 5, and the hourly distribution of the energy demand is shown in Figure 6.

It turned out that the energy demand of the studied building falls in the category of energy-
efficient class A constructions. The energy required for heating was 2106 kWh/year, and in
terms of the developed surface of the building of 160 m2, the value of 13.16 kWh/m2·year
was obtained, a value that was lower than the maximum standardized value in the field of
“passive houses,” which is, respectively, 15.00 kWh/m2·year. With reference to the total
energy demands for the green building, it was also observed that the total value amounted
to 6759 kWh/year, compared to the developed area of 160 m2, i.e., 42.24 kWh/m2·year;
in the context initially established, all the demands supported by electricity fell within
the standards of the “passive houses,” with the total demand for primary energy being
≤120 kWh/m2·year, respectively.
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Figure 6. Green building load.

Energy demand data referred to alternating current with a lower frequency of 50 Hz,
voltage by 230 V, and power factor cos ϕ = 0.9 [58,59].

The graph of hourly energy demand, shown in Figure 6, highlights the waveforms
specific to energy consumption. The most adverse case can be noticed during December,
when the hourly maximum active load was 1695 W, occurring between 9 and 11 p.m., and
the hourly minimum active load was 360 W, obtained between 4 and 6 a.m.

The most advantageous case may be achieved during June when the hourly maximum
active load was 920 W, occurring between 10 and 11 p.m., and the hourly minimum active
load was 310 W, achieved between 4 and 6 a.m. Other months registered intermediate
values to those presented as limits.
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2.2.4. The Hybrid Energy System Proposed for Analysis in the Case Study

The energy conversion equipment units that were the main components in the ana-
lyzed hybrid energy system are presented in Table 3.

Table 3. Hybrid energy system equipment.

Equipment Type Number of Equipment Units Nominal Capacity of the Equipment

Photovoltaic panel SiP12 A135P: 24 panels 135 Wp; Ptotal = 3.24 kWp
Fuel cell 1 3 kW
Inverter S.Solarix 1200 × 2 1800 VA

The constituent equipment units that composed the hybrid energy system were
photovoltaic panels with a total installed nominal power of 3.24 kWp, a fuel cell with a
nominal power of 3 kW, and an S.Solarix 1200 × 2 type inverter with a capacity of 1800 VA.

(a) Photovoltaic Panels

Photovoltaic panels with the following characteristics were used as technologies
for the conversion of solar energy into electricity [52]: 12 V—nominal voltage; 8.23 A—
shortcut current; 135 Wp—nominal power; 25 years lifespan; 800 kg CO2 equiv./kWp; EUR
192—acquisition cost; 2 EUR/year—operation and maintenance cost. The azimuth of the
photovoltaic panels was 0◦, the ground reflectance had a value = 0.2, the compensation
factor for the loss of power due to shading and dirt deposition was considered = 1.2, and
the photovoltaic panels were not equipped with solar tracking systems.

(b) Fuel Cell

As a technology for the conversion of hydrogen for use as a vector or secondary energy
carrier in the energy system, the iHOGA simulation program database [51–53] has a series
of fuel cells of different rated powers, from 1 to 10 kW. This type of equipment considered
for the present study has low nominal powers due to the influence of the low energy
consumption specific to the building under study. The fuel cell taken into account for
the configuration had a power of 3 kW; 50,000 h—lifetime; EUR 15,000—acquisition cost;
0.15 EUR/h—operation and maintenance cost; the consumption and efficiency diagram
are shown in Figure 7.
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(c) Inverter

For the green building consumer, the primary target of the present case study, an
inverter with the following features was chosen: 1800 VA—rated power; 10 years—lifetime;
EUR 1200—acquisition cost; the efficiency diagram in relation to the generated power is
presented in Figure 8.
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3. Results
3.1. Energy Analysis

The results obtained from the operation simulation are briefly illustrated numerically
in Table 4 and represent annual average values of the parameters that characterize this
type of system. From the provided data in the table, it is observed that during one year
of operation, the photovoltaic panels generated 32% of the total energy production of the
optimally configured system, which was directly influenced by the intermittent conditions
of solar resource availability, and fuel cell provided the majority of energy in the system,
with 68% of the total energy production. It should be noted that in the case of achieving an
energy balance between the amount of energy generated by the system and the amount
of energy consumed by the system, there was a maximum loss of 15.50% due to DC–AC
and/or AC–DC conversion, depending on inverter efficiency.

Table 4. System performance indicators.

Parameter Studied Value Unit

Green building total energy demand 6759 kWh/year
Energy generated by photovoltaic panels 2550 kWh/year
Energy generated by the fuel cell 5413 kWh/year
Hydrogen consumption for electricity generation 403.5 kg/year
Energy loss 1204 kWh/year
Fuel cell operating time 7720 h/year
Total carbon dioxide emissions 613 kg CO2/year

The monthly average values of the energy parameters (consumption and production)
are summarized in Figure 9.

It is observed that the configured hybrid power generation system delivered an
amount of electricity that fully covered the energy demand at the consumer level, and
there were no periods with uncovered charges throughout the year. The advantage of
combining the two types of alternative energies completely eliminated the deficiencies due
to the intermittent availability of solar irradiation, especially that of alternating day/night,
due to the fact that hydrogen is constantly delivered through the centralized network, and
thus, the disadvantage of electricity production by RES disappeared, but the issue of the
nonuniform nature of power generation for 24 h remains valid.

For the analyzed system, the most unfavorable situation was found during December,
when it was observed that the energy demand had a maximum value and the level of solar
irradiation was minimal; the most favorable situation, by contrast, occurred in June when
the energy demand was minimal, and the availability of solar energy was maximum.

Table 5 shows the detailed results obtained for a day in December regarding the most
unfavorable situation, and the values are graphically illustrated in Figure 10.
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Table 5. Hourly values of energy indicators recorded for one day in December.

Hour Energy
Demand (Wh)

PV
(Wh)

FC
(Wh)

Hydrogen
Consumption (kg)

Excess
(Wh)

00:00 1005 0 1150 0.08 0
01:00 650 0 727 0.05 0
02:00 501 0 554 0.04 0
03:00 375 0 408 0.032 0
04:00 360 0 392 0.032 0
05:00 360 0 392 0.032 0
06:00 420 0 460 0.035 0
07:00 570 0 635 0.044 0
08:00 765 0 862 0.059 0
09:00 810 232 673 0.046 0
10:00 855 483 473 0.036 0
11:00 900 693 320 0.028 0
12:00 960 813 300 0.027 1.25
13:00 980 813 300 0.027 1.92
14:00 1100 693 554 0.04 0
15:00 1230 483 920 0.063 0
16:00 1200 232 1141 0.079 0
17:00 1185 0 1371 0.098 0
18:00 1260 0 1465 0.10 0
19:00 1410 0 1656 0.124 0
20:00 1575 0 1870 0.145 0
21:00 1695 0 2028 0.162 0
22:00 1650 0 1968 0.155 0
23:00 1380 0 1617 0.12 0
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Figure 10. Diagram of energy performance obtained for one day in December.

For this period, the solar irradiation was available between 9:00 a.m. and 5:00 p.m.,
during which PV manufactured electricity for the green building depending on the avail-
ability of the sun and the capacity of the equipment; from the data provided in the table,
16.65% of the demand was provided by these components, the remaining 83.35% being
delivered by the fuel cell.

It was also observed that the fuel cell worked permanently throughout the day,
ensuring the support of 100% energy demand, except for the time interval 9:00–17:00,
described above.

At the same time, there was an extremely small amount of excess energy in the case of
overlapping energy production from the two alternative sources, which can be exported
to the electricity grid or used in other practical applications; the excess energy occurred
between 12:00 and 2:00 p.m. when the maximum of the solar irradiation characteristic of
the studied period was also registered.

Table 6 shows the detailed results obtained for one day in June regarding the most
favorable situation.

In a summer month, solar irradiation was available between 6:00 a.m. and 9:00 p.m.,
with a maximum achieved during the time interval 11:00 a.m.–5:00 p.m. period in which
the photovoltaic panels generated electricity for the green building consumer. It was also
observed that the fuel cell did not work during this period. During 24 h, the fuel cell
operated for 19 h in this case, providing 100% of the energy demand during the night and
part of the energy in the time interval 6:00–11:00 and 17:00–21:00 when solar irradiation
decreased in intensity. Additionally, an amount of excess energy was observed during
the day when the maximum solar irradiation was recorded, as well as in the case of
overlapping energy production from the two alternative sources, but in a smaller amount,
for a relatively short time of 3 h.

For a better view of the data obtained and analyzed previously, they were graphically
illustrated in Figure 11.



Sustainability 2021, 13, 6304 14 of 20

Table 6. Hourly values of energy indicators recorded for one day in June.

Hour Energy
Demand (Wh)

PV
(Wh)

FC
(Wh)

Hydrogen
Consumption (kg)

Excess
(Wh)

00:00 520 0 576 0.04 0
01:00 510 0 565 0.04 0
02:00 120 0 460 0.035 0
03:00 300 0 325 0.028 0
04:00 310 0 336 0.028 0
05:00 310 0 336 0,028 0
06:00 408 17 445 0.035 0
07:00 423 100 360 0.03 0
08:00 520 195 375 0.03 0
09:00 610 400 300 0.027 28.25
10:00 660 622 300 0.027 184.35
11:00 680 830 0 0 66.6
12:00 700 990 0 0 203.87
13:00 760 1077 0 0 221.15
14:00 810 1077 0 0 161.9
15:00 740 990 0 0 157
16:00 710 830 0 0 31.48
17:00 690 622 300 0.027 150.5
18:00 660 400 330 0.028 0
19:00 711 195 595 0.042 0
20:00 730 100 715 0.05 0
21:00 820 17 925 0.063 0
22:00 920 0 1067 0.072 0
23:00 820 0 930 0.063 0
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Figure 11. Energy performance diagram obtained for one day in June.

It can be argued, in this case, that the values of energy performance indicators are
directly influenced not by the degree of availability of solar irradiation during a year of
operation, but by the fact that the fuel cell uses hydrogen, an alternative energy source,
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constantly delivered by the centralized distribution network in a future hydrogen-based
economy, thus obtaining a 100% autonomous system, compared to the national electric-
ity network. The hourly hydrogen consumption within the analyzed energy system is
presented in Figure 12.
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Figure 12. Hydrogen consumption schedule in June and December.

For one day in December, 1.654 kg of hydrogen was required to ensure the energy
demand of the building. For one day in June, the building needed 58.10% less hydrogen
and 0.693 kg of hydrogen, respectively.

3.2. Environmental Analysis

Taking into account the fact that for a residential building in Romania, an average
carbon footprint of 5.23 tons CO2/year resulting from household energy consumption
was calculated [61,62], the analyzed green building supplied by the PV–FC hybrid energy
system generated CO2 emissions equal to 11.72% of the average value computed for a
standard residential building supplied with power by traditional electricity from the grid
(Figure 13).
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3.3. Economic Analysis

Table 7 summarizes information on the financial aspects that characterize this type
of energy system; the centralized data are as follows: initial investment, the total cost for
a life of 25 years, cost of component equipment, the unit price of energy, other costs of
generating the inflation rate, the discount rate, interest rates, etc. [63]. In addition, the
description of this hypothesis includes the cost of purchasing hydrogen, the fuel for the
fuel cell, which is delivered to the consumer through the distribution network supposed to
exist within a hydrogen infrastructure in a future hydrogen-based economy, and the tariff
of the purchase price was considered 3 EUR/kg H2 purchased.
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Table 7. System costs.

Financial Indicator Cost (Euro)

PV–FC system—Initial investment 24,190
PV–FC system—Total cost during lifespan 132,350
PV Cost 5808
FC Cost 88,950
Cost—H2 fuel purchase 30,262.5
Inverter cost 3946.5
Other costs 3383
Unit energy price 0.665 euro/kWh

The costs of the component equipment of the system, along with the costs associated
with the acquisition of hydrogen, are illustrated as percentages in Figure 14. At 25 years of
operation, it was found that the largest share in the cost diagram was held by the fuel cell,
the equipment for converting hydrogen into electricity, which was 67.20%. This share of
total expenditures was followed by the costs of purchasing hydrogen fuel necessary for
electricity generation, with a value of 22.87%.
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A relatively small share of 4.39% was obtained for photovoltaic panels—the technology
for converting solar energy into electricity.

Hydrogen-based electricity generation technology, as well as hydrogen production,
storage, and distribution methods, are in continuous research and development, and
since a number of pilot projects currently underway in this field will be validated, it
is expected that in the near future, this equipment, and hydrogen fuel, in general, will
decrease costs, gaining a competitive advantage against other technologies in the field of
energy production and storage.

4. Conclusions

In the hypothesis studied in this case study, the optimally configured system energeti-
cally supported 100% of the green building consumer, the subject of the study, generating
carbon dioxide emissions of 11.72% of the average value calculated for a conventional
energy system in a standard residential building, photovoltaic panels achieving 32% of the
annual electricity production, and the fuel cell generating the remaining 68% of the total
annual energy production of the system with a hydrogen consumption of 403.5 kg/year,
operating 7720 h/year.
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Following the computational simulations and the analysis of the results on the energy
and financial performance of the electricity generation system, the hypothesis of supplying
energy to the green building through a hybrid system consisting of photovoltaic panels for
the conversion of solar energy and the fuel cell that consumes the delivered hydrogen was
validated. Using the distribution network for electricity generation, in which hydrogen
production is outsourced and independent of the power generation system, leads to the
conclusion that fuel cell technology is a promising solution for supporting the energy
demands of green building consumers, with high efficiency and low carbon emissions, in a
future hydrogen-based economy.

The implementation and public acceptance of hydrogen technology depend largely
on the development of this technology and the infrastructure necessary for safe operation
as well as on the reduction of global costs of this type of alternative energy.

Quantifying the main research findings of this study, the following future research
directions will be considered as topics to be addressed in future dedicated works:

• Validation of the present research findings by comparison with results obtained from
virtual simulations with OPAL-RT technology that works with PC/FPGA-based real-
time simulators, hardware-in-the-loop (HIL) testing equipment, and rapid control
prototyping (RCP) systems to design, test, and optimize control and protection systems
used in power grids;

• Economical features are extremely important in the implementation of green energy
systems. While photovoltaic panels are gaining extensive practical applicability,
the prices of this technology are already decreasing, whereas hydrogen fuel cell
technologies have still high prices. Green Deal European Strategies encourage and
influence the development of renewable energies domain and their implementation
in all sectors. In this sense, an interesting future research direction to address is
the impact analysis of EU directives and government incentives in supporting the
hydrogen and fuel cell industry players;

• The social component, as an essential pillar of sustainability, leads imperatively to
the elaboration of some studies to outline the societal perception, viability, and public
acceptance of the use of new technologies, especially of hydrogen, as an alternative en-
ergy resource in the regional transition to sustainable and ecological energy generation
systems based on green energies.
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