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Abstract: This paper examines the remediation techniques of cadmium (Cd)-contaminated dredged
river sediments after land disposal in a city in East China. Three remediation techniques, including
stabilization, soil leaching, and phytoremediation, are compared by analyzing the performance of
the techniques for Cd-contaminated soil remediation. The experimental results showed that the
stabilization technique reduced the leaching rate of soil Cd from 33.3% to 14.3%, thus effectively
reducing the biological toxicity of environmental Cd, but the total amount of Cd in soil did not
decrease. Leaching soil with citric acid and oxalic acid achieved Cd removal rates of 90.1% and
92.4%, respectively. Compared with these two remediation techniques, phytoremediation was more
efficient and easier to implement and had less secondary pollution, but it took more time, usually
several years. In this study, these three remediation techniques were analyzed and discussed from
technical, economic, and environmental safety perspectives by comprehensively considering the
current status and future plans of the study site. Soil leaching was found to be the best technique for
timely treatment of Cd contamination in dredged river sediments after land disposal.

Keywords: sediments; cadmium contamination; stabilization for soil remediation; soil leaching; phy-
toremediation

1. Introduction

With recent social and economic developments, an increasing amount of industrial,
agricultural, and domestic sewage waste has been regularly discharged into urban rivers,
causing continuous river deterioration [1]. Dredging is an effective treatment method for
urban rivers with fetid and dark-colored water. Dredged river sediments usually require
further treatment, such as ex situ land or landfill disposal. The heavy metal Cd is one of the
most common contaminants in river sediments [2–4]. Cadmium has high mobility in soil
and is highly toxic [5–9]. Even at low concentrations, this contaminant can affect the compo-
sition and structure of plant enzymes, thereby slowing plant growth and development, can
accumulate in plants, and can even cause plants to be carcinogenic [10–12]. For most crops,
Cd can also inhibit normal development, leading to substantial crop yield reduction [13].
When Cd enters the human body through the food chain, it accumulates in the kidney and
liver, leading to many problems, such as renal dysfunction, lung cancer, and neurological
and reproductive diseases [14–17]. In addition, Cd can also alter the community structure
and active biomass of soil microbes, thereby affecting the bioaccessibility and release of
nutrients in soil [18–22].

There are two main ideas to remediate Cd-contaminated soil: (1) changing the form of
Cd in soil to reduce its mobility and bioavailability, and (2) reducing the Cd concentrations
in soil by removing Cd from the soil. The remediation approaches can be divided into two
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categories: (1) physical and chemical methods, such as stabilization remediation technol-
ogy [23–25], soil leaching [26–28], soil exchange method, electric remediation method [29]
and thermal desorption technology [30]; (2) biological methods, such as microbial reme-
diation [31], phytoremediation [32–35], and animal remediation [36]. Although single
remediation methods have their own advantages, they often have specific limitations.
Therefore, combined remediation technology is also commonly used in the application of
soil remediation [37].

Stabilization, soil leaching, and phytoremediation are the most widely used reme-
diation approaches in practical engineering. Stabilization for soil remediation refers to
effectively reducing the bioavailability and mobility of Cd in soil with passivators, modi-
fiers, surfactants, and other reagents or materials that react with Cd through complexation,
precipitation, adsorption, etc. Soil leaching refers to the removal of Cd from soil by trans-
ferring Cd from contaminated soil into a leached solution through the addition of chemical
eluents that increase the solubility of Cd in soil via precipitation, adsorption, chelation, etc.
Phytoremediation is a decontamination process mediated by the plants, involving various
steps including heavy-metal uptake (phytoextraction), accumulation and translocation of
heavy metals (phytoaccumulation), their stabilization in the root zone (phytostabilization),
and emission to atmosphere (phytovolatilization) [38]. Phytoextraction refers to contami-
nants are absorbed by the plants along with nutrients and water. The contaminants are
then precipitated and accumulated in the shoot or leaves of the plant by the process called
phytoaccumulation. Phytostabilization can achieve in-situ immobilization or inactivation
of contaminants by absorbing them on the roots of plants [39]. Phytovolatilization refers
to plants transport contaminant into the xylem that can further transformed into volatile
forms, and finally released in the atmosphere by stomata.

Previous studies have focused on the remediation of Cd contamination in terrestrial
soils. However, there are few studies on the remediation of Cd contaminant in river
sediments. It is of great significance to select an appropriate remediation method for Cd-
contaminated river sediment for improving remediation efficiency and reducing economic
cost. A dredged sediment disposal site was used as an example in this paper to investigate
the remediation of Cd-contaminated river sediments. The feasibility and applicability of
stabilization, soil leaching, and phytoremediation were comparatively analyzed in detail.
The results of this study provide a theoretical and reference basis for the further application
and development of remediation techniques for Cd-contaminated soil.

2. Materials and Methods
2.1. Basic Description of the Studied Site

The dredged sediment disposal site was located at the urban-rural boundary area,
where farmlands and rivers comprise most of the area, with fewer sensitive sites and low
population density. The disposal site was mostly wasteland covered with weeds. The layer
of dredged river sediments on the disposal site had an average depth of approximately
2.0 m and a volume of approximately 8000 m3. The latest land use plan designates the
disposal site as agricultural land. If the dredged river sediments are not decontaminated
in a timely manner, the current soil quality might not meet the functional requirements
for subsequent agricultural land use, thereby causing environmental pollution incidents.
Before dredging, river sediments which consist mainly of fine sand and clay were sampled
and measured by inductively coupled plasma atomic emission spectrometry, and the results
are shown in Table 1. The pH was measured in suspension of soil and water. The study
results showed that only the Cd concentration exceeded the risk screening value.
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Table 1. Heavy metal concentrations (mg/kg) in dredged sediment samples.

Qualities Tested Risk Screening Value Test Results Standard

pH <5.5 5.5~6.5 6.5~7.5 >7.5 7.75~8.66

Cd 0.3 0.3 0.3 0.6 1.26 above

Cu 50 50 100 100 59.48 under

Pb 70 90 120 170 66.96 under

Zn 200 200 250 300 238.95 under

Hg 1.3 1.8 2.4 3.4 1.31 under
Note: The standards reference “Soil Environment Quality—Risk control standard for soil contamination of
agriculture land” (GB 15618-2018).

2.2. Sampling and Pretreatment

According to the detection results of Cd-contaminated river sediments, a further
pollution survey and risk assessment of the disposal site were carried out. The results of
the survey and drilling indicated that the dredged sediments were piled in a cuboid shape,
with a thickness of approximately 2.0 m, as shown in Figure 1. To determine whether the
native soil under the sediment layer was contaminated, stratified sampling at two or three
depths was performed at each monitoring site. The depth of deep soil sampling points
is more than the thickness of dredged sediments. Meanwhile, four underground water
monitoring wells were constructed at each monitoring site to collect groundwater samples
for ascertaining whether the soil underlying the sediments was contaminated. In addition,
soil sampling sites with two layers were established within 10 m of the east, south, and
west boundaries of the disposal site (a river was on the north side of the disposal site) to
determine whether the soil surrounding the disposal site was contaminated by dredged
sediments. A total of 26 soil samples and four groundwater samples were collected from
11 soil sampling sites and four groundwater sampling sites inside and outside of the study
site. The layout of the disposal site and sampling sites is shown in Figure 1.
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After removing stones in the soil, the soil samples were reduced to 100 g by quartering
method. The soil samples were grinded and pressed with wooden sticks after air drying,
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and then was screened by 2 mm nylon screen. After evenly mixing the soil samples, grind
them with an agate mortar. After passing the 100 mesh nylon screen, it is left to be tested.
Groundwater samples were collected in polyethylene plastic bottles. Add nitric acid to the
water sample for acidification (pH between 1 and 2) and leave it to be tested.

2.3. Stabilization for Remediation

Stabilization for remediation refers to the use of physical and chemical methods that
convert contaminants into insoluble, low-mobility, or low-toxicity forms. The key to suc-
cessful stabilization for remediation is selecting an appropriate stabilizer. We choose a
green and efficient stabilizing material with a pH value of about 7.5, the particle size is less
than 1 mm, the density is 1.2~1.5 g/cm3, the moisture content is 3~5%. The appearance of
the stabilizing material is light brown powder, which is mainly made of natural mineral
crystals of zeolite, mixed with a small amount of calcium and magnesium compounds,
iron and manganese salts and clay. Zeolite has a large specific surface area and strong
electrostatic filed, which performs significant ion exchange capacity and adsorption charac-
teristics [40]. Mineral crystals have excess negative charge, and the crystal structure can
facilitate the adsorption of Cd ions in contaminated soil and exchange with compensating
cations (Ca2+, Mg2+, Mn2+ and Fe2+) to form more stable compounds. According to Appelo
and Postma [41], the order of adsorption affinity of divalent cations is: Cd2+ > Ca2+ > Mg2+

> Mn2+ > Fe2+. This means that Cd2+ has a stronger adsorption affinity than Ca2+, Mg2+,
Mn2+ and Fe2+, thus converting Cd into a less soluble form through cation exchange, as
shown in Figure 2. The related ion exchange reaction equations are shown below:

Cd2+ + Ca–X2 = Ca2+ + Cd–X2 , (1)

Cd2+ + Mg–X2 = Mg2+ + Cd–X2 , (2)

Cd2+ + Mn–X2 = Mn2+ + Cd–X2 , (3)

Cd2+ + Fe–X2 = Fe2+ + Cd–X2 , (4)

where ( )-X2 denotes the cation exchanger or an exchange position. Stabilizing material
can reduce the chemical effectiveness of pollutants, weaken their migration and diffusion
ability, and thus achieve the purpose of preventing their transformation and endangering
human health. The stabilized material has the following main characteristics: (a) the cation
exchange capacity is up to 140 meq/100 g, (b) no biological toxicity, (c) low cost and
quick results.
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The dose-dependence of the stabilizing effect of stabilizing material on the soil Cd
concentration was experimentally investigated. The detection index was the leaching rate
of Cd from stabilized soil samples. Soil samples were collected from site and were dried and
passed through a 2-mm sieve. A total of ten samples (200 g each) were accurately weighed
and placed in ten 1000-mL beakers. Stabilizing materials were added at mass fractions
of 0, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5%, and 6.0%, respectively. Deionized
water was added to each sample at a solid-to-liquid ratio of 1:0.5, mixed well, sealed, and
aged at room temperature (15 ◦C) for seven days. Samples were then dried and subjected
to leaching and detection. The above experiment was repeated three times to ensure the
reliability of the results.

2.4. Soil Leaching

Soil leaching removes Cd from soil by adding chemical eluents to contaminated soil
through desorption, chelation, dissolution, etc. This method typically involves three steps:
mixing the eluent with soil, collecting the leached solution, and treating and recovering the
leached solution [42]. Commonly used eluents mainly include inorganic solvents, chelating
agents, and surfactants.

The present study investigated the influences of eluent type and the eluent-to-soil
ratio on Cd leaching from soil. The effectiveness of leaching was evaluated with the Cd
concentrations detected in the soil samples after leaching. The eluents used in this study
included (1) deionized water, (2) 0.1 mol/L hydrochloric acid (HCl), (3) 0.1 mol/L sulfuric
acid (H2SO4), (4) 0.1 mol/L HCl + 0.4 mol/L ferric chloride (FeCl3), (5) 1.0 mol/L citric
acid (C6H8O7), and (6) 1.0 mol/L oxalic acid (H2C2O4). Three control experiments were
designed for each eluent. The related ion exchange reaction equations are shown below:

Fe3+ + 3H2O→ Fe(OH)3 + 3H+ , (5)

Cd2+ + Cl− → CdCl+ , (6)

Cd2+ + 2Cl− → CdCl2 , (7)

Cd2+ + 3Cl− → CdCl−3 , (8)

Cd2+ + 4Cl− → CdCl2−4 , (9)

3. Result
3.1. Determination of Cd

The concentration of Cd in soil and groundwater was determined by referring to
the “Soil quality–Determination of lead, cadmium–Graphite furnace atomic absorption
spectrophotometry” (GB/T 17141-1997) and “Water quality–Determination of copper,
zinc, lead and cadmium–Atomic absorption spectrometry” (GB 7475-87) in China. Cd
concentration in 26 soil samples was detected three times by AAS9000 atomic absorption
spectrometer. The results were compared with the corresponding standard limits, as shown
in Figure 3. Risk screening value (0.3 mg/kg) and risk control value (4.0 mg/kg) refer to
the “Soil Environment Quality—Risk control standard for soil contamination of agriculture
land” (GB 15618-2018) in China. Figure 3 shows that the Cd in disposal site mainly exists in
the river sediment and does not spread to the surrounding area (S9 and S11 are lower than
the risk screening value). The pH value of the sediments at the disposal site ranged from
7.20–7.95. Cd was detected in all river sediment samples. The Cd concentrations in 12 soil
samples were 0.5 to 7.0 times the risk screening value, with an over-limit ratio of 60%. The
Cd concentrations in two samples (WS3-1 and S6-1) exceeded the risk control value. The
pH values of soil samples outside the disposal site ranged from 7.16 to 7.91, with no Cd
concentrations exceeding the risk screening value. In addition, the pH values of the four
groundwater samples ranged from 7.20 to 7.29, with Cd detected in one of the samples at
a concentration lower than the Class III limit of the “standard for groundwater quality”
(GB/T14848-2017) in China, that is, the groundwater of the disposal site was not polluted.
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3.2. Stabilization for Remediation

Soil sample WS3-1 (the Cd concentration in the sample exceeded the risk control value)
was selected to investigate the dose-dependence of stabilizing effect of stabilizing material
on the soil Cd concentration. The detection results are shown in Figure 4.
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The leaching rate of Cd decreased from 33.3% to 14.3% as the mass fraction of sta-
bilizing material increased from 0 to 2%, and further increases of the mass fraction of
stabilizing material did not significantly affect the leaching rate of Cd. The results indicate
that although stabilizing material can stabilize Cd, it did not significantly affect the leaching
rate of Cd within the scope of this study. This finding may have occurred because the
rich soluble organic matter in soil samples from river sediments binds to Cd and precipi-
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tates together during the leaching process. This result also indicates that stabilization for
remediation can significantly reduce the toxicity of Cd-contaminated soil.

3.3. Soil Leaching

Experimental results of soil leaching showed that the leaching effect of deionized
water on Cd was the worst, followed by the inorganic eluents HCl and H2SO4, while the
mixed inorganic eluent HCl + FeCl3 and the organic eluents, citric acid and oxalic acid, had
good leaching effects of Cd in the soil, with the highest removal rates of 73.3%, 90.1%, and
92.4%, respectively (Figure 5).
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After leaching with deionized water, there was almost no removal of Cd, indicating
that there was very little water-soluble Cd in the soil samples. Theoretically, all three types
of inorganic eluents can provide H+ to replace carbonate-bound Cd in soil samples so that
Cd can be dissolved into water. However, the ability of H+ to replace Cd is weak [43],
resulting in the poor leaching effect of Cd by the eluents HCl and H2SO4 that mainly rely
on H+. The mixed eluent HCl + FeCl3 not only provides H+ and Fe3+ to replace Cd in
soil but also provides a large amount of H+ due to hydrolysis of Fe3+ during leaching. In
addition, the excellent complexation ability of highly soluble Cl- for Cd can significantly
increase the extraction of Cd from soil [44,45]. It is worth noting that the removal capacity
of the mixed eluent for Cd did not increase with the eluent-to-soil ratio, because H+ only
had a significant removal effect on the carbonate-bound Cd. The excess H+ would lose its
value when the carbonate-bound Cd was removed. Unlike inorganic eluents, which are
more targeted on removing carbonate-bound Cd, the organic eluents, citric acid, and oxalic
acid can also chelate exchangeable Cd and thus enhance the removal of exchangeable Cd
in soil. In this study, the leaching effects of citric acid and oxalic acid on Cd were superior
to those of inorganic acids, which may be due to the large proportion of exchangeable Cd.
The deprotonated –OH group and –COOH group formed coordination compounds with
exchangeable Cd ions, which improved their mobility in the soil and significantly increased
the leaching rate of Cd [46,47]. In addition, the results showed that the removal rate of citric
acid and oxalic acid on Cd be restricted by the eluent-to-soil ratio. The optimal ratio was 3:1
and 5:1 respectively in the research range. Thus, the removal rate of Cd can be significantly
improved through optimization measures, such as choosing a proper eluent-to-soil ratio,
performing leaching multiple times, and prolonging the leaching duration.
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3.4. Phytoremediation

Phytoremediation is an in situ remediation technique mainly using hyperaccumulators
to absorb heavy metal ions. Heavy metal ions are retained and accumulate in plants
through complexation and localization by glutathione, phytochelatins, metallothioneins,
and organic acids in the plants, thereby reducing the toxicity of and environmental pollution
caused by heavy metals [48]. Due to the variety of hyperaccumulators and long growth
cycle, it is usually difficult to carry out relevant experiments in soil remediation. Previous
studies usually have excellent reference significance. The known Cd hyperaccumulators
and corresponding study cases are shown in Table 2.

Table 2. Cd hyperaccumulators and application cases.

Plant Background Value Cd Concentration in
Plants (mg/kg) Reference

Festuca arundinacea 2.8 mg/kg 49.0–64.0 [49]

Celosia argentea 4.2 mg/kg 101.0–105.0 [50]

Bidens pilosa 4.4 mg/kg 122.0–138.0 [51]

Solanum nigrum 12.0 mg/kg 84.82–92.94 [52]

Trifolium repens 25.5 mg/kg 56.0–68.0 [53]

Mirabilis jalapa 30.0 mg/kg 63.93–77.41 [54]

Brassica napus 50.0 mg/kg 371.1–409.7 [55]

Indian mustard 75.0 mg/kg 420.0–480.0 [56]

Sedum plumbizincicola 210.0 mg/kg 1400.0–1847.7 [57]

Viola inconspicua 25.0 µmol/L 760.0–800.0 [58]

Viola baoshanensis 25.0 µmol/L 975.0–995.0 [58]

Ricinus communis 27.3 µmol/L 1700.0–1830.0 [59]

Sedum alfredii 50.0 µmol/L 5500.0–5800.0 [60]

Salix aureo-pendula 107 µmol/L 97.0–110.0 [61]

Phytolacca acinosa 273 µmol/L 320.0–500.0 [62]

It is worth noting that the common unit of Cd background value is mg/kg or µmol/L
due to different experimental conditions. The former is usually used to characterize back-
ground value in contaminated soil, while the latter is mostly used in artificially prepared
solutions in the laboratory. Previous studies have shown that both plant species and Cd
concentration in the soil have an impact on the remediation effect. The efficiency of various
hyperaccumulators is different under the same concentration, for example, Viola inconspicua
and Viola baoshanensis. Furthermore, the background value of contaminants in soil has a
significant effect on the accumulation efficiency of plants. Li et al. (2020) found that the re-
mediation ability of the hyperaccumulator was inhibited when the Cd concentration in the
soil was too high [50]. As shown in Table 2, Festuca arundinacea, Celosia argentea, and Bidens
pilosa have relatively significant effects in the remediation of contaminated soil with low
Cd concentration, while Brassica napus, Indian mustard, and Sedum plumbizincicola are often
used in the remediation of contaminated soil with high Cd concentration. Although Viola
baoshanensis, Viola inconspicua, and Ricinus communis also show outstanding accumulation
capacity for Cd, they have not been widely used due to the limitations of survival rate, soil
environment, and climate conditions. In general, phytoremediation is low cost, efficient,
simple, effective, and pollution free. However, this technique has some limitations: (1) the
slow growth rate of plants can significantly extend the remediation time to several years.
(2) Many phytoremediation studies are still in the experimental stage, with few known
plant species that only possess tolerance to single factors. Enhancing phytoremediation
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ability and resource utilization after phytoremediation are feasible ways to improve the
practical application of phytoremediation [63,64].

Considering that various hyperaccumulators have different application ranges of Cd
concentration, Festuca arundinacea that is most similar to that of the disposal site (Figure 3)
is an appropriate choice for the remediation of the study site. Qin et al. (2021) conducted
a series of experiments to investigate the impact of planting density on the phytoreme-
diation efficiency of Festuca arundinacea in Cd-contaminated soil [49], they founded that
Festuca arundinacea can remove 1.78–2.66 g Cd/m3 from the soil at a planting density of
1.0–1.4 kg/m2, if the whole plant was harvested at the end of the treatment. Assuming
that the remediation efficiency of Qin et al. (2021) is also applicable to the disposal site,
in first growth cycle, the Cd remove rate is 23.9~36.0% in areas exceeding the risk control
value, and 48.6~72.7% in areas exceeding the risk screening value. Cd removal rate can be
further improved by repeated planting of Festuca arundinacea, but it significantly increases
the duration of remediation.

4. Discussion

According to the experimental results of the three remediation techniques and related
case studies, all three remediation techniques can remove Cd from soil samples collected
at the study site. Under the premise that the remediation effect meets the standards,
three remediation techniques were compared in this paper from various aspects, and the
evaluation indexes of each remediation technique are shown in Table 3.

Table 3. Comparative analysis of three remediation techniques.

Evaluation Index Stabilization Leaching Phytoremediation

Applicability
Applicable to soils

contaminated with multiple
heavy metals

Applicable to soils
contaminated with multiple

heavy metals

Applicable to soils
contaminated with single

heavy metals

Effectiveness
The leaching rate of Cd is

14.3%, but the total amount of
Cd cannot be reduced

The Cd removal rate is up
to 92.4%

The estimated Cd removal
rate is 23.9~36.0% in areas
exceeding the risk control
value in first growth cycle,
which can be improved by

repeating planting

Controlling factor
Stabilizing material type and

mass fraction of
stabilizing material

Eluent type and
eluent-to-soil ratios

Plant species, planting density,
climate and soil type, etc.

Remediation time 5–7 months 2–4 months 20–60 months

Remediation cost
Cost of stabilizing material:

50~200 yuan per ton of
soil remediation

Cost of eluent: 500~800 yuan
per ton of soil

remediation [65]

Plant cost: 3500~65,000 yuan
per hectare; Human cost:
25,000~50,000 yuan per

hectare [66]

Estimated cost-effectiveness ψ 80,000 yuan 55,000 yuan 5000 yuan λ

Nutrient loss No loss of nutrients Large nutrient loss No loss of nutrients

Secondary pollution Hardly causes
secondary pollution

Improper disposal of the
leached solution can easily
cause secondary pollution

The burning of plants may
cause secondary pollution

ψ: Cost-effective denotes the cost of removing or stabilizing 1% of Cd, λ: This is only for the first phytoremediation cycle, and the
cost-effectiveness will increase in subsequent cycles.

As shown in Table 3, stabilization technology and leaching technology both can be
used for remediation of various heavy metal contaminated soils, while phytoremediation
is often suitable for contaminated soil with single heavy metal due to the single tolerance
characteristics of most hyperaccumulators. The stabilization technology reduced the
leaching rate of Cd from 33.3% to 14.3%, which is inferior to the soil leaching technology
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with Cd removal rate of 92.4%. The effectiveness of phytoremediation can be continuously
improved through repeated planting of hyperaccumulator. Take Festuca arundinacea as an
example, the estimated Cd removal rate is about 30% in areas exceeding the risk control
value in first growth cycle. Previous studies have shown that the Cd removal rates of
more than 80% can be expected with sufficient remediation cycles [49]. It is worth noting
that the effectiveness of a single remediation cycle (a growth cycle of hyperaccumulator)
usually decrease continuously as the concentration of Cd in the soil decreases with the
process of phytoremediation. Moreover, phytoremediation has greater uncertainty in
terms of the control factors of remediation effectiveness, so it is necessary to select plants
according to local conditions [60,66]. The remediation time of phytoremediation is about
seven times that of stabilization technology and 13 times that of leaching technology,
which means that phytoremediation is not suitable for emergency remediation. The cost of
removing or stabilizing 1% of Cd was estimated to compare the cost-effective of the three
methods. Phytoremediation is the best cost-effectiveness, followed by soil leaching and
stabilization. In other words, Phytoremediation will be the first choice when remediation
time is sufficient. Nutrient loss is a highly concerned evaluation index for contaminated
sites planned for agricultural used in the future. Stabilization and phytoremediation can
usually preserve native soil nutrients, while soil leaching will cause considerable nutrient
loss. However, some scholars believe that soil nutrients can be effectively replenished by
introducing microbial community and building level ditches or rills, and thus nutrient
loss is not a particularly serious problem [67–69]. In addition, with the development and
improvement of technology, the probability of secondary pollution caused by the three
remediation methods is relatively low.

5. Conclusions

The selection of remediation method requires comprehensive consideration of tech-
nology effectiveness, economy and environment safety. In the remediation engineering of
the river sediment disposal sites, both stabilization and soil leaching meet the timeliness
requirements of the remediation project. It is worth noting that since the city plans to use
the study site as agricultural land, the reference standard mainly requires the maximum
total Cd concentration. Therefore, stabilization for remediation cannot meet the remedia-
tion target. Soil leaching is the better choice, with an estimated remediation efficiency of
about 90%. Phytoremediation can be used as an auxiliary means of remediation under the
condition of sufficient remediation time. According to the degree of pollution, this site can
be divided into two regions, a region with an over-limit risk control value and a region
with an over-limit risk screening value but below-limit risk control value. Soil leaching can
be adopted for the former region, and phytoremediation can be adopted for the latter area.
This divided-region approach can maintain the remediation efficiency at 80%~90% and
reduce the economic cost by 74%.
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