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Abstract: Substantial investment from both the private and public sectors will be needed to achieve
the ambitious Sustainable Development Goal 2 (SDG2), which focuses on ending poverty and
achieving zero hunger. To harness the private sector, high quality, transparent metrics are needed to
ensure that every dollar spent reaches the most marginalized segments of a community while still
helping institutions achieve their goals. Satellite-derived Earth observations will be instrumental
in accelerating these investments and targeting them to the regions with the greatest need. This
article proposes two quantitative metrics that could be used to evaluate the impact of private sector
activities on SDG2: measuring increases in yield over baseline and ensuring input availability and
affordability in all markets.

Keywords: sustainable business models; sustainable development; food security; agriculture value
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1. Introduction

The Sustainable Development Goals (SDGs) were adopted by all United Nations
Member countries in 2015 as a universal call to end poverty and protect the planet by
2030. SDG2 aims to end hunger, achieve food security, improve nutrition and promote
sustainable agriculture [1]. The focus of SDG2 is to double agricultural productivity and
incomes for smallholder farmers, and to ensure access to food for farming households.
United Nations estimates for investment to achieve these goals for low income countries
range from $3 to $5 trillion per year [2]. This level of investment requires the engagement
of the private sector. Key players in the private sector include agriculture technology
companies producing high yielding seeds and the inputs needed to sustain them, as well as
retailers, agronomists and agro-dealers involved in last-mile delivery to small growers [3].

To achieve the food security and poverty goals of SDG2, private sector investment
needs to increase by a factor of four [4]. Large and small-scale businesses, microenterprises,
wholesalers and retail stores as well as large multi-national corporations all have a role
to play in lifting people out of poverty and hunger through responsible and productive
investment, innovation, enhanced efficiency and employment creation [5,6]. However, not
all investment results in reductions in poverty or food insecurity.

Displacement of small, disenfranchised growers [7], increased inequality [8] or in-
creased indebtedness [9] due to inability to repay loans for agricultural inputs may also
occur from agricultural investment. Research has shown that increases in the total amount
of calories produced by agriculture has progressively reduced its nutrient content through
displacement of locally grown, low yielding but highly nutritious food [10]. We need
quantitative metrics to ensure that private sector investments result not only in increased
availability of nutritious food, but also preserves biodiversity [11] and works well in
smallholder agricultural systems that support the majority of rural communities [12].

To harness the private sector, high quality, transparent metrics are needed to ensure
that every dollar spent reaches the most marginalized segments of a community while still
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helping institutions achieve their goals (Figure 1) [13]. Strong direction from stakeholders
such as governments and cross-sectoral institutions such as healthcare and education as
they seek to achieve SDG2 will be required to ensure progress. For example, in the area
of transportation investment, SDG metrics are required to credibly link activities of a
company to changes in local social and environmental conditions. These metrics should
be uniform, internally consistent, transparent and match the geographical resolution of
financial data that companies often disclose [14]. Unfortunately, metrics on the performance
of investments in the agriculture sector are extremely variable, and often only weakly
evaluate the impact a particular activity has on achieving broader societal goals articulated
in SDG2 [15]. Here I propose several metrics that, together, can guide private sector
investment relevant to SDG2.
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2. Earth Observation Data on Agriculture

The ever-growing archive of new and historical satellite-derived Earth observation
data provides an opportunity to underpin metrics that demonstrate which investments
enhance global food security (Table S1) [16]. Although we are in a ‘golden age’ of satellite-
driven Earth observation [17], transforming these datasets into information that can be
used to change food security outcomes has proven challenging [18].

For example, non-climatic drivers of yield decline need moderate to high resolution
satellite data to capture field-level decline in leaf area index resulting from infestation [19].
The impact of pests such as the desert locust [20] and fall armyworm [21] can be countered
with cost-effective solutions such as integrated pest management [22] coupled with new
resistant crop varieties and targeted biological control agents, such as the use of Metarhizium
flavoviride fungus as a control agent for the desert locust [20]. Metrics focused on raising
yields must be able to capture climatic, economic and social outcomes of investment and
changes of policy through time [23], and show clearly how new agriculture management
strategies, technology and interventions can counter these pests while still reducing poverty
and food insecurity (Table S1) [12].
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Satellite remote sensing data can be used at each stage of the agriculture value chain,
but needs to be connected with high quality, spatially explicit, regularly updated field
data obtained from growers that captures agricultural activities to transform it into useful
metrics [24]. New initiatives such as the EO4SD, funded by the European Space Agency, are
focused on supporting the uptake of remote sensing data in sustainable development [25].
Big data approaches provide the opportunity to combine satellite remote sensing with
legal, economic and food security outcomes in new and novel ways, particularly leveraging
improved computing power and machine learning techniques [26].

3. Metric to Estimate Market Size to Guide Investment

Market size is the approximate number of individuals in a certain market segment who
are potential buyers of a product. In regions with dated or only national-level agricultural
statistics, the size of the market for high yielding varieties and fertilizer blends designed to
meet the needs of specific crops is often unknown [27]. Improvements in computer power
and massive reductions in cost mean that, in the near future, the scientific community
should be able to create annual global maps of rainfed agriculture for the major crop types
of maize, wheat, soybean and sugarcane (Figure 2). Using the spectral, spatial, temporal
and agronomic information about crop cultivation practices, the research community can
now create high quality cultivated annual area maps for each crop in Africa and Asia in
near-real time [28,29].
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Figure 2. Example of an operational maize cultivated area map in Zambia created by 6th Grain from Sentinel 2a/b and crop
identification models (see at http://zambia.cropmap.6grain.com/Database, accessed on 21 March 2021).

For example, development and use of operational 10 m annual maize maps in Zambia
in 2019 showed a significant market opportunity in underserved communities across the
border in the Katanga region of the Democratic Republic of Congo. This has resulted in the
investment in new distribution centers, retail outlets, and hybrid seed and crop protection
product distribution by a large agtech company in 2019. Without a well-established
channel to deliver sufficient quantities of high-quality seeds or fertilizer, unadulterated
inputs, growers may experience higher input prices or late delivery that may interfere with
yield improvements [30]. Private sector companies can use cropped area maps to ensure
that small scale subsistence farmers have the same access to crop inputs and agronomic
advice via retailers as large commercial growers to high yielding varieties, fertilizers and
agronomic advice.

http://zambia.cropmap.6grain.com/Database
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4. Metric for Measuring Crop Performance and Field-Level Productivity

High quality, accurate, annually updated information on crop production combined
with field size is necessary to estimate yield. These data need to capture not only crop type
and variety, but also management strategy, such as information on fertilizer timing and
quantity, planting density, weeding protocols, and pest and disease prevalence. Given the
hundreds of millions of small growers around the world, the large number of varieties
available and the need to continuously update the information, keeping the cost per data
point as low as possible is essential. High quality yield estimates underpin financing
which then provides access to additional technology [31], as well as insurance products
needed by millions of farmers facing increasingly uncertain weather [32]. Using insurance
to transfer the risk of buying high quality seeds and inputs to the private sector allows for
the expanded use of inputs [33]. This transfer of risk also provides information to evaluate
whether these inputs provide substantially higher yields year over year.

Assessing yield affordably will require the use of Earth observing data, social media
and innovative mobile chatbot technologies. The private sector can train a large base
of smartphone-owning farmers around the world to create field boundaries to estimate
field size. New yield models are needed to estimate the likely impact of weather shocks
on outcome. Small growers can digitize their field by walking around it, capturing GPS
points which are sent to a server, together with crop, variety and date planted information
(Figure 3). An example of this is shown in Figure 3, provided by 6th Grain and its partner
Tetra Tech, funded by the Bill and Melinda Gates Foundation. It was found that when fields
were digitized by an untrained small grower and an agronomist with Android phones,
they can reproduce field boundaries to within 10% of area and centroid distance of 2 m of
each other, well below the geospatial accuracy of Sentinel 2a/b [34].
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5. Conclusions

Although technology has driven increases in agricultural yields during the past half
century, quantitative metrics, which are used to measure the impact of private sector
investments in the provision of improved seeds, better agronomic advice and increased
productivity, are still lacking. There is substantial complexity in measuring area cultivated,
variety planted and yields across millions of farmers in low-income settings [35]. Estab-
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lishing a structured database of information from the private sector on field size, crop
planted, planting date and inputs used on that field will help actors identify smallholder
farmers that can benefit from their goods and services if they choose to do so, as well as
reduce barriers to access to agricultural technology. Digital tools and Earth observation
data together can provide critical metrics that can both spur investment and measure
their impact.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su13115967/s1, Table S1: Data Sources used in Remote Evaluation of Food Production
and Agriculture.
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