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Abstract: Background and objectives: The impacts of COVID-19 are like two sides of one coin.
During 2020, there were many research papers that proved our environmental and climate conditions
were improving due to lockdown or large-scale restriction regulations. In contrast, the economic
conditions deteriorated due to disruption in industry business activities and most people stayed
at home and worked from home, which probably reduced the noise pollution. Methods: To assess
whether there were differences in noise pollution before and during COVID-19. In this paper, we
use various statistical methods following odds ratios, Wilcoxon and Fisher’s tests and Bayesian
Markov chain Monte Carlo (MCMC) with various comparisons of prior selection. The outcome of
interest for a parameter in Bayesian inference is complete posterior distribution. Roughly, the mean
of the posterior will be clear with point approximation. That being said, the median is an available
choice. Findings: To make the Bayesian MCMC work, we ran the sampling from the conditional
posterior distributions. It is straightforward to draw random samples from these distributions if
they have regular shapes using MCMC. The case of over-standard noise per time frame, number of
noise petition cases, number of industry petition cases, number of motorcycles, number of cars and
density of vehicles are significant at α = 5%. In line with this, we prove that there were differences of
noise pollution before and during COVID-19 in Taiwan. Meanwhile, the decreased noise pollution in
Taiwan can improve quality of life.

Keywords: noise pollution; noise reduction; COVID-19; Bayesian MCMC; prior selection

1. Introduction

COVID-19 has caused tremendous, problematic situations in the world’s communities.
These include poverty, that further disrupted sustainable livelihoods, hunger and disease,
increasing socio-economic disparities attributable to educational disparities, alienation and
foreign policy [1–3] and they affect the responses in critical policy areas, including public
health directives and financial responses. In the presence of such obstacles, each nation
uses its own strategies [4–8].

COVID-19 has a clear impact on all parties included in the Penta Helix model, in-
cluding academia, government, industry, non-governmental organization (NGOs) and
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civic sectors of society, and social entrepreneurs, the agriculture sector [9], macro-economic
factors [10] and social vulnerability [11]. There are positive environmental effects that
can be witnessed, including the reduction in air emissions in the atmosphere [12–16] and
also noise pollution, proven by outdoor and neighbor noise, acoustic measurements and
complaints [17–22].

Noise pollution cannot be seen by the eye but still causes suffering. Noise pollution
can be inferred when disturbance triggers different kinds of human health conditions.
All noises or movements are measured in dB units. Previous studies have proven that
noise pollution has a very strong impact on human health [23], including hearing loss [24],
cardiovascular effects [25], anger and smoking addiction [26], and a negative impact on
the physiology, behavior and fitness of marine organisms [27,28]. Noise pollution is a
persistent response to sudden sound, and is damaging to health and the environment,
including animals and plants. It generally involves outdoor annoyances from scooters,
motorbikes and traffic noise [29–32], longitudinal annoyance [33], viaduct rail transit [34]
and seaports [35]. Sounds under 70dB are considered to also likely impact living organisms,
and exposure to these sounds tends to persist over a prolonged period, for example, if peo-
ple work 8 h a day near to a major road. To overcome this, the WHO issued environmental
noise guidelines for the European region [36].

Previous research used a dataset using 12 monitoring stations’ data in Dublin, Ire-
land [17], noise levels averaged over 14 days in Madrid [18] and the port of Koper and
the adjacent residential areas in Koper and Ankaran [35]. The contribution of this article
is to examine whether there are differences regarding noise pollution in Taiwan before
and during COVID-19. In line with this, the Local Environmental Protection Bureaus,
the Environmental Protection Administration (EPA), Executive Yuan, Taiwan launched a
dataset that provides information on reports of people who felt disturbed by noise pollution
originating from industrial activities, households and others. Therefore, we address the
question of whether it is true that before and during COVID-19, there was a significance
difference regarding noise reduction. Taiwan will only see lockdowns if 100 COVID cases
perday. In line with this, for the objective of this research, we ran a Bayesian MCMC
to calculate the posterior odds of the reported cases of noise pollution. The use of prior
probability distributions represents a powerful mechanism for incorporating information
from studies [37–39].

This article is organized as follows. In Section 2, we review the materials and methods
for using Bayesian MCMC. The construction of Bayesian Markov chain Monte Carlo
(MCMC) and evidence of noise reduction during COVID-19 are examined in Section 3 via
simulation studies. Finally, Section 4 gives a summary and discussion.

2. Materials and Methods
2.1. Busy Areas of Taiwan and Sources of Noise Pollution

The most common source of noise pollution is motor vehicle noise and industrial
parks. In line with this, the EPA reports that the primary sources for motor vehicle noise
are engine noise, intake, emissions and wheels. In a previous inspection scheme, however,
the noise from vehicles, intakes and exhaust was reduced considerably. Noise from city
traffic should not be restricted to the control systems of cars with advances in automotive
technology; the noise from tires has steadily gained prominence in relation to this. Recently
enacted limits for noise reduction by the United Nations and EU and inspection procedures
improved automotive acceleration noise test results significantly. The EPA referred to recent
international rules to draft the current amendments to significantly decrease the effects
of urban road pollution on communities and follow the Sustainable Development Goal
(SDG) Indicators for Health and Pollution. The Environmental Protection Administration,
ROC (Taiwan) focus on volatile organic air pollution control and emission Standards and,
in particular, on the latest European noise guidelines (United Nations/ECE R51.03).

Taiwan has six industrial parks, Changhua Coastal Industrial Park, Hsinchu Industrial
Park, Linhai Industrial Park, Nankang Software Park, Tai Yuen Hi-Tech Industrial Park and
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Taichung Gateway. Activities that take place in these areas have a high impact on noise
pollution in Taiwan. Together with the increasing development of industry, industries are
established at once and then spread throughout Taiwan. Throughout the early period, the
government did not attempt to provide factory locations in industrial parks, and many
industries grew mainly along major highways and also in distinct locations, due to an
inability to use and manage land and the conditions properly.

Currently, there are four international airports in Taiwan: Taiwan Taoyuan Interna-
tional Airport, Kaohsiung International Airport, Taichung International Airport and Taipei
Songshan Airport. Activities that occur at the airports also cause noise pollution from the
roar of aircraft, which causes disturbances to people living in residential areas around the
airports. Noise is an unpleasant part in the airport environment, induced by the running
of the airport, in other words, the noise of aircraft engines. This activity triggers noise
that impacts operations and residents who live close to the airport. The psychological
effect of noise on humans is shock as well as inhibition of concentration and impaired
conversational contact and may further affect work performance, including safe systems of
work, as well as cause hearing problems and distress at a rather severe stage. The current
measurement method uses the CNS-7129 noise meter, which is also known as a sound
level meter, and is compliant with the national Taiwanese guidelines, or the aircraft noise
level measuring meter IEC-1672 Class 1, which is compliant with the norms of the IEC. The
calculated noise levels could be used to test the aircraft noise predictor readings such as
the average sound DNL. The indicated techniques are used for assessing non-stationary
noise in the airport environment and also for monitoring indoor DNL [40].

There are 151 Local Environmental Protection Bureaus in Taiwan that calculate time
frames with over-standard environmental noise. Therefore, people living in the area can
report their discomfort regarding noise pollution.

2.2. Bayesian Regression MCMC

In the heart of statistics analysis, the regression and prediction model is as a tool in
decision making. In non-parametric contexts, the Gaussian process combines a Bayesian
regression model with parameter metrics and a Gaussian process prior to having an
optimal solution. A generative model can collect new information while mimicking the
representations of currently available information.

In terms of statistics, this model can be defined as a procedure for sampling data. a
is derived from the data distribution, p(a) is derived from the provided data collection
A = {a}. Typically, we define a latent variable l to describe the semantics of the data and A
to define the distribution p(a), a|A . Then, the latent variable l is realized by the p(l|a) when
the data a are given. This is the Bayesian statistics interpretation of latent variables, which
we are focused on. The Bayesian method, which is beneficial in solving the generative
model problem, offers several realistic approaches to exploring the latent space, such as
sampling. Below is a thorough explanation of Bayesian statistics in Equation (1) [37].

E[ f ] =
∫

f (l) p(l)dl (1)

The joint distribution p(l, a) = p(l|a)p(a) is defined by the likelihood function p(l|a)
and the prior p(a). The prior probability p(a) captures our assumption about a, until
reviewing the information. In most situations, the posterior distribution is required for the
purpose of obtaining expectations, for example, in order to make predictions. Therefore,
the fundamental problem we are trying to solve is finding expectations for some function
f (l) with respect to a probability distribution p(l). In the case of a continuous variable l,
our goal is to solve the expectation in Equation (2) [41].

p(l|a) = p(a, l)
p(a)

(2)
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If l is a discrete variable, the integral will be substituted. In many applications, the
expectations are too complex to be empirically calculated using analytical methods. The
key idea of the Monte Carlo approximation is to obtain independent samples li from the
distribution p(l) and use them for approximation. Using the set of samples li = 1, 2, . . . , N
and we can approximate the expectation in Equation (3) [42]:

f =
1
N

N

∑
i=1

f
(

li
)

(3)

We can easily confirm that the estimator f has a correct mean because E[ f ] = E[ f ].
The estimator converges to the actual expectation according to the ‘law of large numbers’,
and we can assume high precision once given ten to twenty independent samples. The
log of marginal likelihood of the model (LOGMARG), which is approximately 1

2 BIC, is as
follows [43]:

BIC = −2 ln
(

ˆlikelihood
)
+ (p + 1) ln(n) likelihood = p

(
yi

∣∣∣α, β, σ2
)
= L(α, β, σ2

)
(4)

2.3. Dataset

This paper uses a dataset from Local Environmental Protection Bureaus, the EPA,
Executive Yuan, Taiwan, from 2015 to the 4th quarter of 2020. We only focus on the dataset
regarding complaints and petitions related to noise pollution. The dataset consists of the
cases of over-standard noise per time frame, number of noise petitions, number of industry
petitions, number of motorcycles, number of cars and density of vehicles. Meanwhile, we
provide the nomenclature in Nomenclature.

3. Results
3.1. The Construction Steps of Bayesian MCMC

Therefore, we use a generic and powerful framework called Markov chain Monte
Carlo (MCMC) which allows sampling from a large class of distributions and can manage
the large dimensions of the sample space. Markov chain Monte Carlo (MCMC) is an
algorithm in which the sample li of the state l is connected to the Markov chain and
iteratively discovers the state space. The purpose of the algorithm is to let the sampled li

mimic the samples from the posterior p(l|A), where A is the set of data s. For simplicity, li

is assumed to be in discrete space in this section, where li
∣∣{z1, z2, . . . , zs} . The stochastic

process zi is called a Markov process when it satisfies Equation (5).

p
(

li
∣∣∣l1, l2, . . . , li−1

)
= p

(
li
∣∣∣li−1

)
(5)

The Markov chain in the MCMC algorithm should be unobservable and time-varying,
which can be fulfilled when the chain satisfies the thorough balance condition of the
Metropolis–Hastings algorithm, the most popular algorithm programmed to fulfill the
comprehensive balance condition [38,39,44–46]. To bring these algorithms into effect, the
proposal distribution must be well established. If the proposal distribution produces a
significant number of rejected samples, the convergence speed is sluggish, as proven in
Equation (6).

Z
(

l f , lc
)
= min

p
(

l f

)
q
(

lc
∣∣∣l f

)
p(lc)q

(
l f

∣∣∣lc) (6)

3.2. Evidence of Noise Pollution Reduction

Based on Table 1, it can be seen that there was a significant difference in the cases
of over-standard noise per time frame before and during COVID-19 according to the
reduction in the number of noise pollution petition reports submitted by each household
to the Environmental Protection Administration, Taiwan. The p-value of Wilcoxon’s and
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Fisher’s tests is significant at α = 5%. Meanwhile, there are also differences in the industry
petitions of complaints about noise pollution. For vehicles, there is a significant difference
in the values of motorcycles, cars and vehicle density both before and during the COVID-19
period. Since in Taiwan there was no lockdown nor large-scale restriction, then the number
of cases of over-standard noise per time frame before and during COVID-19 should be the
same. Yet, the density of vehicles was different before and during COVID-19. The petition
cases represent the number of people in Taiwan who submit complaints about noise due
to feeling depression because of noise around major cities. Household activities ran as
usual, for example, people went to supermarkets or traditional markets to buy household
groceries. In line with this, with the p-value of both Wilcoxon’s and Fisher’s tests, there is a
significant difference in the values of motorcycles, cars and vehicle density both before and
during the COVID-19 period.

Table 1. Information on noise reduction before and during COVID-19.

Descriptive
Cases of

Over-Standard Noise
per Time Frame

Petition
Cases

Industry
Petitions Motorcycles Cars Density of

Vehicles

Before
COVID-19

Min. 2 39,636 25,445 13,195,265 6,667,542 549
1st 3 58,722 29,201 13,719,027 6,769,454 587

Median 4 81,368 32,034 13,968,198 7,287,146 595
Mean 6 72,394 31,628 14,110,811 7,351,197 593

3rd 9 87,076 33,998 14,425,164 7,869,013 606
Max. 14 96,739 40,174 15,173,602 8,193,237 617

During
COVID-19

Min. 6 85,457 31,142 13,992,922 8,118,885 611
1st 6 87,926 33,400 14,020,632 8,137,473 612

Median 7 90,394 35,658 14,048,343 8,156,061 613
Mean 7 90,394 35,658 14,048,343 8,156,061 613

3rd 7 92,863 37,916 14,076,053 8,174,649 615
Max. 8 95,331 40,174 14,103,763 8,193,237 616

Statistical
Test

p-value Wilcoxon
test (before and

during COVID19)
0.58680 0.00002 0.66670 0.50000 0.50000 0.66700

Fisher’s test
(before and during

COVID-19)
0.43750 0.02564 0.00020 0.00050 0.00051 0.00050

Figure 1 represents the connections between various entities known as nodes and it can
be seen that there is a significant connection between vehicles, connecting motorcycles and
cars to the number of petitions. A label on the outer part of the circular layout represents
each entity. There are significant differences, especially for the number of noise pollution
disturbance petitions due to industrial activity. The highest correlation value between
petition cases and the population is (0.95). It means that the people of Taiwan are very
active in giving their opinion to the government. In addition, the correlation value between
the population and the petitioning industry of (0.71). In represents, people who live in
the manufacturing industry area and its surroundings also have active participation in
reporting on noise pollution. This study also highlighted that all percentage noise values
have negative values such as petition cases (−0.78), petition industry (−0.56), motorcycles
(−0.43), cars (−0.49), and density vehicles (−0.75), respectively. All things considered
during the COVID-19 pandemic there was a reduction in activity by the local people
in Taiwan.
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Figure 1. Chord diagram noise pollution in Taiwan 2005–2019 (before COVID-19) and 2020 (during COVID-19).

Figure 2 explains the linear projection with the labels before COVID-19 (0) and during
COVID-19 (1). It is clear that there are differences in projection values, especially for the
number of industrial petitions. The number of reports of discomfort due to noise pollution
decreased during the COVID-19 pandemic. However, during the first month of COVID-19,
most of industrial businesses temporarily closed. In addition, industrial noise control was
carried out to prevent industrial noise and protect workers from the harmful effects of high-
intensity noise exposure. Covering frequency components (partial or complete acoustic
enclosure), acoustic barriers, noise shielding and noise lagging are some commonly imple-
mented procedures. In addition, noise control can also be implemented administratively
by regulating work patterns. A final measure is the use of personal protective equipment to
reduce noise, such as earplugs and ear protection. All the statistical analyses proved there
was a significant difference in noise pollution before and during COVID-19. However,
during COVID-19, the Taiwan government’s policy and response was that no lockdown
would be implemented [47]. Taiwan’s COVID-19 control has been a great accomplishment,
mostly due to early moves to observe incoming travelers from Wuhan, China, and strict
regulations for lockdown and facemasks. There was no lockdown in the nation and fewer
than 1027 cases were recorded in April 2021.
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Figure 2. Linear projection before COVID-19 (0) and during COVID-19 (1).

3.3. Measuring Noise Pollution Using Bayesian MCMC

The Bayesian approach was developed by Bayes to assess a population’s initial distri-
bution type prior [37,48,49]. The whole dataset would then be associated with information
from the sample to estimate population parameters [39]. In Table 2, regarding the noise
pollution modeling, we show 10 different priors and the best prior is Bayesian-MCMC-AIC
with R2 84.70%. If we look in more detail at Table 2, the prior setting for EB-local and EB-
global has the same value. The objectives of the two priors are to find the global empirical
Bayes estimates of g in Zellner’s g-prior and model probabilities [50].

Table 2. Comparing prior selection Bayesian regression with best model *.

Prior R2 Dim LOGMARG POSTROBS

AIC * 84.70% 6 2.845605 0.0644
g-prior 30.7% 2 1.131336 0.0785
ZS-null 30.7% 2 0.062679 0.0449
ZS-full 48.2% 4 3.190674 0.0316

Hyper-g 64.6% 6 0.820071 0.0304
Hyper-g-n 30.7% 2 0.613492 0.0414

Hyper-g-Laplace 40.86% 3 0.7213114 0.0465
Hyper-g-n 30.7% 2 0.6134929 0.0307

EB-local 64.70% 6 1.520647 0.0267
EB-global 64.70% 6 1.377268 0.0200

Figure 3 explains the prior odds multiplied by the probability ratio equaling the
posterior odds, according to the odds type of Bayes’ rule. We take the log of both sides
of this equation to obtain a similar equation that uses addition rather than multiplication.
The Bayesian MCMC with a prior AIC selection model can explain 84.70% of the noise
reduction in Taiwan, which can be explained by the cases of over-standard noise per time
frame, number of industry petition cases, motorcycles, cars and density of vehicles.
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Figure 3. Log posterior odds Bayesian-MCMC-AIC.

To some objective Bayesians, the prior represents neutral knowledge and the resulting
posterior is to give the probability of a proposition arising from just the data. Various
other priors have been developed. We believe that such a goal is naturally achieved via the
likelihood approach which uses all the information in the data, as we shall discuss [51–56].
The core of Bayesian statistics is inference [37,49]. The inference is made up of three com-
ponents. The first component is the prior distribution of parameters θ, π(θ) representing
the uncertainty of parameters before seeing data D [24]. The second component is the
likelihood π(θ) which represents the probability that we might have data D given θ. The
last component is the posterior distribution θ after seeing data D. In line with this, π(θ|D)
represents the updated belief or probability of θ after seeing data D. With these three
components, we can derive inference using Bayes’ rule, such that π(θ|D) =

π(θ)π(D|θ)∫
π(θ)π(D|θ)dθ

and we provide the calculation of posterior computation in Appendix A.

4. Conclusions

The main conclusion from this analysis is that there were differences before and during
COVID-19 in Taiwan as evidenced by the Wilcoxon test and the Fisher test. The Bayesian
model that provides high accuracy is the Bayesian-MCMC-AIC prior with R2 84.70%.
The Environmental Protection Administration (EPA), Executive Yuan, Taiwan declared
on 21 January 2010 the Environmental Sound Level Standard to preserve adequate noise
levels. In compliance with Article 20(3) of the Noise Control Act, the EPA has proposed the
Environmental Noise Measurement Methods. At the moment, large-scale noise manage-
ment activities, including local councils, event promoters and local suppliers, are expected
to take responsibility for noise reduction and regulation prior to and after activities to
maintain a safe atmosphere. Preventive steps include the elimination of noise at the sound
source, the modification of the sound propagation route and the preservation of levels of
the reception of noise. Any individual in violation of noise reduction requirements will
be liable to a fine of NTD 3000–30,000. Several city councils also advised activity planners
and local suppliers that they would cooperate with the regulations. City municipalities
have already adopted these guidelines into their autonomous rules on the protection of
large-scale activities. In a nutshell, as in Taiwan’s pre-COVID-19 pandemic strategy, the
Taiwan CDC, in coordination with the Central Epidemic Command Center (CECC), held
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the responsibility of controlling the pandemic. Taiwanese officials were alerted to the
outbreak in China by established action networks, triggering an urgent response, including
screening of all airline passengers. We do not know when COVID-19 will end, but between
the dynamics that occur, we see a positive impact, especially concerning reducing noise pol-
lution. COVID-19 has had a positive impact on the environment, and this paper has proven
that reductions in the amount of noise pollution in Taiwan were related to the number of
petition cases. Future research should examine types of emissions and GHG reduction.
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Nomenclature

CNS Chinese National Standard
COVID-19 Coronavirus disease
DNL day–night level
EPA Environmental Protection Administration
EU European Union
Fisher Test statistical significance test
IEC International Electrotechnical Commission
LOGMARG values of the log of the marginal likelihood for the models
MCMC Markov chain Monte Carlo
POSTROBS posterior of Bayesian
Wilcoxon Test non-parametric statistical hypothesis test used to compare two related samples

Appendix A. Posterior Computation

Given xm+1,nm+1 , we wish to know the distribution of ym+1,nm+1 given D = D1:m ∪
Dm+1 where D1:m = {y1, . . . , ym}. We can derive

[
ym+1,nm+1

∣∣D] as follows.

[
ym+1,nm+1

∣∣D] = ∫ [
ym+1,nm+1

∣∣∣βm+1,σ
2
m+1, D

]
×
[

βm+1,σ
2
m+1, D

]
dβm+1,dσ2

m+1

=
∫

N
(

ym+1,nm+1

∣∣∣xT
m+1,nm+1

·βm+1,σ
2
m+1

)
×
[

βm+1,σ
2
m+1, D

]
dβm+1,dσ2

m+1∫
N
(

ym+1,nm+1

∣∣∣xT
m+1,nm+1

·βm+1,σ
2
m+1

)
× [θm+1|D] dβm+1,dσ2

m+1

(A1)
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In order to calculate the equation above, we have to know [θm+1|D]. It can be derived
as below.

[θm+1|D] =
∫
[θm+1|θ0, D1:mDm+1][θ0|D1:mDm+1]dθ0

=
∫
[θm+1|θ0, Dm+1]·[θ0|D1:mDm+1]dθ0

≈
∫
[θm+1|θ0, Dm+1]·[θ0|D1:m]dθ0

(A2)

There is an approximation from [θ0|D1:m, Dm+1] to [θ0|D1:m]. It is reasonable when
m is very large because the information of the m + 1 th object is very small compared to
previous information. Moreover, it makes the computation speed fast. In line with this,
[θm+1|θ0, Dm+1] is derived directly because of conjugacy and we draw posterior samples of
θ0 in advance.
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