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Abstract: Several studies have attempted to uncover the impact of weather parameters on the
coronavirus (COVID-19) pandemic during the initial stage of its outbreak. However, they reported
contradicting findings due to limited data available at an earlier stage of the outbreak. Therefore, in
this study, we investigate the impact of regional temperature on the pandemic in 34 different locations
of the globe by defining two main objectives. The first objective is focused on pattern analysis of
an earlier stage of the pandemic. The conducted analysis suggests that the spread of the COVID-19
outbreak during its initial stage was slower in the regions experiencing extreme temperatures. The
second objective is about understanding the impact of temperature on new cases (NC) and new
deaths (ND) of COVID-19 reported per day by using linear regression (LR) as a statistical tool. For
most of the locations, under simple LR analysis, a significant inverse relationship has been observed
between average temperature and NC or ND. However, a few locations, including Pakistan, India,
Singapore, Bahrain, and Qatar, have shown a significant positive relationship between average
temperature and NC with a 99.9% confidence level. Furthermore, Pakistan, Thailand, Bahrain, and
Qatar have shown a significant positive relationship between average temperature and ND with
a 95% confidence level. Although most of these locations experienced temperatures with a mean
greater than 22 ◦C and standard deviation greater than 5 ◦C, excluding India, the number of total
COVID-19 cases reported in these locations is small. Moreover, the results of multiple LR analysis
reveal a significant inverse relationship between average temperature and NC or ND with a 95%
confidence level.

Keywords: COVID-19; data analytics; statistical analysis; meteorological parameters; spread rate;
pandemic; local; global

1. Introduction

Our planet has been hit by a new type of severe acute respiratory syndrome (SARS),
called coronavirus disease (COVID-19). The very first case of COVID-19 was reported in
Wuhan, China in December 2019 [1]. The virus is highly contagious, and within a few
months of its outbreak, almost everywhere across the globe was hit by this virus. As a result,
the World Health Organization (WHO) declared COVID-19 a global pandemic [2]. Most
of the world enforced a lockdown state, and most local and international travel around
the globe was forced to shut down to control the spread of this pandemic. By imposing
various policies, governments tried to contain the virus. However, the unprecedented
growth of the pandemic seriously affected almost every segment of human life and the
global economy.

The historical medical records reveal that this type of SARS infection follows seasonal
trends [3,4]. However, the studies analyzing the earliest stage of the COVID-19 pandemic
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reported contradicting findings [5,6]. For example, the authors in [7] observed an inverse
relationship between the temperature and the spread rate of the pandemic. On the other
hand, the authors in [8] did not find a significant relationship between temperature and
the spread rate of the pandemic. Due to limited and under-reported data during the earlier
stage of the outbreak, it was difficult to understand the influence of temperature on the
spread and mortality rates of COVID-19. Furthermore, each published study presented
statistical analysis considering data for a selected local region i.e., China [7], India [9], and
Iran [10].

That is why, in this study, in order to further investigate the impact of regional
temperature on the spread and mortality rates of the COVID-19 pandemic, we analyzed
epidemiological and weather-related data for 34 different locations selected from around
the globe. Furthermore, we collected the data for selected locations for one complete
year, that is, from January to December 2020. Initially, we analyzed the collected data by
using an exploratory data analysis (EDA) technique. Afterwards, we performed statistical
analysis in order to understand the impact of temperature on the pandemic at a local level
by considering different locations and at a global level by concatenating data instances of
all the locations considered in this study.

Before we discuss the main contributions of this work further, a detailed state-of-the-
art review is presented in the following section.

1.1. Literature Review

After analyzing the data for 100 cities in China, from 19 to 23 January 2020, the
authors in [7] found that the transmission rate of COVID-19 decreased with an increase
in temperature and relative humidity (RH). They also analyzed the data by considering
the period when China called for a lockdown, after 23 January 2020, and reported a weak
relationship between temperature and the transmission rate of COVID-19. They justified
this variation in results by emphasizing that during a lockdown the population is mostly
indoors; therefore, the effect of weather conditions on the transmission rate of COVID-19 is
not significant.

The authors in [8] statistically analyzed the data for a number of provinces and cities
in China from 22 January to 26 February 2020. They developed three different linear models
for examining the relationship of the basic reproductive number of COVID-19 with human
mobility, temperature, and humidity. Their models revealed an inverse relationship for
both temperature and humidity with the basic reproductive number of COVID-19. As they
applied different filters for dropping some records from the data, the relationship between
variables was diminished. Therefore, they concluded that a clear relationship does not
seem to exist between the variables under investigation. Similar conclusions are drawn
in [11] by analyzing the data reported for China from 21 January to 31 March 2020. The
authors in [11] employed wavelet transform techniques for understanding the relationship
between temperature, COVID-19 cases, and China’s economy.

The authors in [12,13] predicted the regions highly likely to become new epicenters of
COVID-19 by utilizing weather information and analyzing heat maps of average tempera-
ture. They suggested that the regions already hit by the disease, during an earlier stage of
the outbreak, experienced weather conditions similar to that of Wuhan during January and
February 2020, that is, a temperature of 5–11 ◦C and RH of 47–79%. The authors supported
this claim by reporting that, after China, all epicenters of the virus were in from 30◦ N to
50◦ N latitudes. The regions in between these latitudes experienced mostly similar weather
conditions. As a result, they concluded that the weather conditions do play a role in the
overall spread rate of the pandemic.

In another study [14], besides temperature, the authors also analyzed the effect of
rainfall on spread of the COVID-19 pandemic by using data instances for 249 different
locations. However, the considered duration was short, that is, from December 2019
to March 2020. After conducting statistical analysis, the authors observed a significant
negative relationship for temperature and a significant positive relationship for rainfall
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with the transmission rate of the pandemic. However, they did not observe any significant
relationship between temperature and the mortality rate of the pandemic. It should be
noted that the authors in [14] concatenated the data instances for all the locations in order
to perform statistical analysis at a global level. They did not perform statistical analysis at
a local level, that is, by considering data instances of each location separately.

By analyzing the data instances from 25 January to 14 March 2020 for a number of
countries with different weather conditions, the authors in [15] explored the relationship
between weather parameters and the transmission rate of the COVID-19 pandemic. They
concluded that high temperatures diminished the spread rate of the pandemic during its
initial stage. However, the effect of seasonal temperature at the later stage of the pandemic
remains questionable because they analyzed the data instances reported during an earlier
stage of the outbreak.

In another study [16], the authors analyzed the effect of weather parameters on the
mortality rate of the COVID-19 pandemic by considering data instances reported for
Wuhan, China. After conducting statistical analysis by applying a generalized additive
model, they concluded that the variations in temperature and humidity may affect the
mortality rate. According to their results, an increase in both temperature and absolute
humidity decreased the mortality rate.

The authors in [17] explored the relationship of three different factors, climate, so-
cioeconomic conditions, and transport connections, on the spread rate of the COVID-19
pandemic. They reported that climate and socioeconomic factors had no significant impact
on the growth rate of the pandemic. Furthermore, they concluded that population size
and global connections played a major role in the spread rate of the pandemic during its
earlier stage.

In another study [9], researchers studied the impact of temperature and RH on the
spread rate of COVID-19 by separately analyzing the data for two different states of India
and New York. They did not find a significant impact of RH on the spread rate of the
pandemic. Moreover, their results showed that temperature inversely affected the spread
rate of COVID-19 in New York. However, for all the considered cities of India, they
observed that temperature was positively related with the spread rate of the pandemic. As
a result, they concluded that the environmental factors do play a role in overall spread of
the pandemic. However, in order to obtain a clear relationship between these parameters,
controlled laboratory experiments should be conducted.

1.2. Motivation and Contributions

As discussed in the preceding section, most of the published studies evaluated the
relationship between weather parameters and the spread rate of the COVID-19 pandemic
by considering an earlier stage of its outbreak. Therefore, depending on the data instances
selected and hypotheses formulated in these published studies, the insights extracted with
the help of statistical models differed. Furthermore, in the majority of the published papers,
the authors performed statistical analysis by considering data instances for a single region,
like China [7], India [9], Iran [10], and others. Only in a few studies, including [14,18,19]
and others, the authors analyzed the impact of weather parameters on the spread rate of
the pandemic by considering data instances of different locations. However, they did not
analyze the impact of weather parameters at a local level, that is, in different locations.
These limitations of the existing studies and the contradicting insights motivated us to
carry out a detailed analysis both at a local and a global scale.

To the best of our knowledge, this is the first study in which the impact of regional
temperature on the spread and mortality rates of the COVID-19 pandemic has been investi-
gated in 34 different locations. Furthermore, similar to [14], we also performed statistical
analysis at a global level by concatenating the data instances of the 34 locations considered
in this study. In order to understand the impact of regional temperature on the spread
and mortality rates of the pandemic, in this work, we define two main objectives, as
listed below.
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1. To understand the trend of the COVID-19 pandemic as a function of regional temper-
ature by considering an earlier stage of its outbreak.

2. To investigate the impact of regional temperature on the pandemic by taking into
account the effect of other parameters related to weather, health, population, life
expectancy, and epidemic conditions.

In order to meet the first objective, we divided the EDA process into five stages, as
described in Table 1. In each stage, we analyzed different patterns by considering various
locations and using data from January to March 2020. In order to meet the second objective,
we employed simple and multiple linear regression (LR) techniques by using data from
January to December 2020. We used F-test and t-test statistics for checking the significance
of the conducted LR analysis. To conduct simple LR analysis for different locations, we
selected in total 34 locations from around the globe. For conducting multiple LR analysis,
we concatenated the data instances of all 34 locations considered in this study.

Table 1. Description of each stage considered in this study during EDA of an earlier stage of the COVID-19 pandemic.

Stage No. Motivation Analyzed Variables

Stage I To analyze the spatial and temporal patterns of the
severity level of the pandemic.

New cases (NC), total
cases (TC), heat maps of
average temperature.

Stage II
To explore the relationship between TC and NC of
COVID-19 reported per day from the very first case
reported per location.

TC, NC, total days.

Stage III To examine the relationship between TC and average
temperature for selected locations.

TC, average temperature,
total days.

Stage IV
To analyze the trend of NC and average tempera-
ture for selected locations by keeping in view the
measures taken in the locations to contain the virus.

NC, temperature, counter
measures.

Stage V
To examine the pattern of total deaths (TD) and new
deaths (ND) of COVID-19 reported per day for se-
lected locations as a function of average temperature.

ND, TD, temperature.

The rest of the paper is organized as follows. The data collection process is covered in
Section 2. The first and second objectives are covered in Sections 3 and 4, respectively. The
insights extracted with the help of EDA and results obtained after conducting LR analysis
are reported in Section 5. Finally, the paper is concluded in Section 6.

2. Data Collection

The variables which denote the epidemic conditions of a location include new cases
(NC) and new deaths (ND) reported per day, total cases (TC) and total deaths (TD) reported
to date, TC per million, and TD per million. We collected the data for these epidemic-related
variables from Our World in Data [20], an organization aiming to make the knowledge
on big problems accessible and understandable. During the initial days of the pandemic,
Our World in Data published epidemiological data after preprocessing the daily situation
reports shared by the WHO [2]. However, after 17 March 2020, the WHO changed the
reporting duration for daily situation reports which caused some inconsistencies in the
shared data. Therefore, after 17 March 2020, Our World in Data changed its source of data to
the European Centers for Disease Control and Prevention (CDC) [21]. The European CDC
maintains a very interactive dashboard and shares daily situation reports and daily data
tables. The very first data instance is reported for 31 December 2019 by the European CDC
(in this article, the terms instance and record have been used interchangeably). Currently,
Our World in Data is maintaining data published by Johns Hopkins University [22] which
is considered the best data source for the COVID-19 pandemic.
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We collected weather data from two different resources [23,24]. For EDA of an earlier
stage of the COVID-19 outbreak, we collected average heat maps of air temperature for
the entire globe for February and March 2020 from Climate Reanalyzer [23]. Climate
Reanalyzer is a project governed by the University of Maine, USA, and it is supported by
the National Science Foundation (NSF). Furthermore, we collected average air temperature
and RH readings per day for capital cities of the locations considered in this study from a
website [24] through web scraping. Although the readings of weather parameters between
cities in a country varied greatly, similar to [25], we considered average temperature and
RH for capital cities as a reference.

Apart from epidemiological and weather-related data, we also collected data for
some other variables, described in Table 2, which include population, population density,
median age, those aged 65 and older, those aged 70 and older, gross domestic product
(GDP) per capita, cardiovascular death rate, diabetes prevalence, female smokers, male
smokers, hospital beds per thousand, life expectancy, and human development index.
These variables are constant for each location, as evident from Figure 1, but vary for
different locations. Therefore, they can only be used for conducting statistical analysis
at a global level by concatenating the data instances of all the locations. These variables
were considered in order to further analyze the impact of temperature on the pandemic by
taking into account the effect of such important factors. The data related to these variables
were collected from Our World in Data [20]. Furthermore, we also fetched the data related
to the measures taken in the locations for reducing the spread of the COVID-19 pandemic
from official websites of the different locations. The dates at which the selected locations
called for a lockdown were fetched from [26].

Figure 1. A snapshot of the final CSV file created after collecting data from various sources as described in Section 2. This
file includes all the dependent and independent variables considered in this study for analysis.

By using the above mentioned resources, we collected data for nineteen different
independent variables, as listed in Table 2, and two dependent or response variables which
included NC and ND of COVID-19. After collection of the data, we created a single comma
separated (CSV) file, as shown in Figure 1, by concatenating all the variables considered in
this study. The CSV file was then processed by using Python [27] for EDA and LR analysis.

Table 2. List of independent variables used in multiple regression analysis and their descriptions.

No. Variable Description

1 Total cases (TC) Total cases of COVID-19 in each location.

2 Total deaths (TD) Total deaths due to COVID-19 in each location.

3 TC/million Ratio of TC and population of the location in millions.

4 TD/million Ratio of the TD and population of a location in millions.

5 Population Total population of a location.

6 Population density Ratio of total population and area of a location.

7 Median age The median age of the people in a location.

8 Aged 65 or older Proportion of population 65 years old or older in a location.

9 Aged 70 or older Proportion of population 70 years old or older in a location.

10 GDP/capita Gross domestic product per capita which is the measure of a country’s economic output.
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Table 2. Cont.

No. Variable Description

11 Cardiovascular death rate Mortality rate of cardiovascular disease in a location.

12 Diabetes prevalence The proportion of the population with diabetes.

13 Female smokers The proportion of females who smoke in a location.

14 Male smokers The proportion of males who smoke in a location.

15 Hospital beds/thousand Ratio of total hospital beds to the population of a location in thousands.

16 Life expectancy The average life expectancy in years for a person in a location.

17 Human development index A statistic composite index of life expectancy, education, and per capita income of
a location.

18 Average temperature Average of air temperature in ◦C for the past 7 days experienced in capital city of
a location.

19 Average relative humidity (RH) Average of RH in % for the past 7 days in capital city of a location.

3. COVID-19 Outbreak Analysis

The very first case of COVID-19 was reported during December 2019 in China [1]. Ini-
tially, it was expected that the neighboring countries of China may become new epicenters
of COVID-19. However, the trend manifested a different behavior. The new epicenters were
geographically distant from China yet they shared some similarities, as evident from the
heat maps of average temperature shown in Figures 2a and 3a. During February 2020, most
of China experienced temperatures in the range from 5–15 ◦C, as shown by green shading
in Figure 2a. To some extent, most of China experienced similar temperatures during
March 2020, as evident from Figure 3a. Geographically close to China, only South Korea
and Japan were affected at the initial stage of the COVID-19 outbreak, and these locations
experienced temperatures similar to China, as evident from Figures 2a and 3a. Although
many outbound flights were from China to Thailand before the lockdown of Wuhan [28],
it was not among the highly affected locations during the earlier stage of the outbreak.
Thailand experienced comparatively higher temperatures, as shown by orange shading
(>20 ◦C) in Figures 2a and 3a. This suggests that higher temperatures might have reduced
the spread rate of COVID-19 during the initial stage of its outbreak in certain locations.

In order to further explore the trend of the COVID-19 outbreak during its earlier stage,
we examined the collected data by defining five different stages, as listed in Table 1. Each
stage is discussed further in the following sections.

3.1. Stage I

In Stage I, we conducted spatial and temporal pattern analysis of the severity level
of the COVID-19 pandemic. By spatial, we mean that we conducted this analysis by
considering various locations e.g., France, Australia, and Pakistan, among others. By
temporal, we mean that we conducted this analysis by using two different periods, that
is, before March 2020 and March 2020. To understand the COVID-19 outbreak during its
earlier stage (January–March 2020), we divided the collected epidemiological data into
two segments. Since most of the locations experienced the disease during March 2020,
the first segment includes all the records before March 2020, and the second includes
all the records from 1–26 March 2020. Figures 2b and 3b depict the average number of
NC reported in different locations per day. For visual clarity, we did not annotate all the
locations. Figures 2c and 3c depict the number of TC reported in different locations by the
end of the mentioned period.

After a careful analysis of Figures 2 and 3, it is interesting to note that all the regions
with temperatures shown by green shading (5–15 ◦C) were hit by the pandemic at a higher
rate as compared to other regions. All the new epicenters (see Figure 3b,c) experienced
almost the same average temperatures. Moreover, the regions of the globe highly affected
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by this virus during its earlier stage were between the Tropic of Cancer (23.5◦ N) and the
Arctic Circle (67.5◦ N). In regions below the Tropic of Cancer, the average temperature was
higher, and the disease spread at a slower rate. Thailand and Singapore are good examples
to consider in support of this pattern [28]. As it is clear from Figures 2b and 3b, the average
number of NC reported per day in these regions was small as compared to the regions
above the Tropic of Cancer. Furthermore, the regions around and above the Arctic Circle
experienced lower temperatures, as shown with blue shading (<0 ◦C), and the average
number of NC reported per day in these regions was also small.

This pattern suggests that at either higher or lower temperatures, the disease spread
at a slower rate. Furthermore, in a few published studies [10,29], it has been found that
the spread rate of the pandemic was positively correlated with the population density of
locations. Therefore, besides lower temperature in regions around the Arctic Circle, another
possible reason for slower transmission of the virus could be their low population density.

3.2. Stage II

In Stage II, we examined the patterns of TC, mean of NC reported per day, and the
number of days since the very first case reported per location. In order to examine these
patterns, the epidemiological data were collected for approximately a three-month period,
that is, from January to March 2020. Since most of the locations were hit by the pandemic
during March, as it is clear from Figure 3b, we divided the collected data into two segments,
as depicted by the patterns reported in Figure 4. The first segment includes the locations
having a maximum of 30 records and the second segment includes the locations with
more than 30 records within the mentioned period of time. According to the collected
epidemiological data, most of the locations fell in the first segment since they recorded
fewer than 30 records. Therefore, Figure 4a,c,e show the results for the top 40 locations
with the largest number of TC. Only a few locations fell in the second segment since
they recorded more than 30 records during the initial stage of the outbreak (as shown in
Figure 4b,d,f).

(a)

Figure 2. Cont.
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(c)
Figure 2. Analysis of COVID-19 pandemic with heat maps of average temperature for the entire globe before March 2020:
(a) heat map of average 2m temperature for February 2020 [23], (b) average new cases (NC) and (c) total cases (TC).
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Figure 3. Analysis of COVID-19 pandemic with heat maps of average temperature for the entire globe during March 2020:
(a) heat map of average 2m temperature for March 2020 [23], (b) average new cases (NC) and (c) total cases (TC).

Figure 4a,b depict the number of TC reported in each location on 26 March 2020,
while Figure 4c,d show the mean of NC reported per day in each location. Note that the
vertical lines are used to denote twice of the standard deviations around the mean. In
Figure 4e,f, we report the number of days since the first case was reported in each location.
The locations along the horizontal axis in Figure 4 are sorted in descending order as a
function of TC. Thus, in Figure 4, the locations listed on the left and right side of each plot
recorded the larger and smaller numbers of TC, respectively.

A few locations, including Turkey, reported their first case during March 2020. Al-
though the total number of days is small for these locations (see Figure 4e), the growth rate
of the virus is quite fast as it is clear from TC reported in Figure 4a. It is interesting to note
from Figure 4a that a month after the first COVID-19 case was reported in Switzerland,
the Netherlands, Austria, and Portugal, the number of TC exceeded 3000 in each of these
locations. However, for Nepal, Sri Lanka, United Arab Emirates, and Taiwan, among
others, the number of TC did not exceed 1000 (see Figure 4b). Moreover, the mean of NC
reported per day for each of these locations was in the order of tens during the earlier stage
of the outbreak, as evident from Figure 4d. However, for the Netherlands, Switzerland,
and Portugal, the same value was in the order of hundreds (see Figure 4c).

From the results reported in Figure 4, it is evident that in some locations, the virus had
spread at a faster rate compared to others. For example, although the total number of days
for Sri Lanka, Cambodia, Nepal, the Philippines, Finland, Italy, and Spain is approximately
the same, the number of TC reported in Italy and Spain is in the order of thousands.
However, for the rest of the mentioned locations, the number of TC is in the order of
hundreds. Similarly, the total number of days for Iran is small although the number of TC
is in the order of thousands.
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Figure 4. Pattern analysis of COVID-19 pandemic from January to March 2020 by comparing TC, mean of NC reported per
day, and the number of total days since the first case reported in each location. (a,b) The TC reported per location. (c,d) The
mean and twice of the standard deviation of NC reported per day in each location. (e,f) The number of days.

3.3. Stage III

In Stage III, we investigated the pattern of TC, mean of the temperature reported per
day, and the number of days since the very first case reported per location. For conducting
this analysis, we selected a few locations from around the globe. Moreover, for visual
clarity, by following a similar procedure to that described in Stage II, we divided the data
for selected locations into two segments, as evident from Figure 5. In the first segment,
the locations having records for fewer than 30 days are grouped together. In the second
segment, the locations having records for more than 30 days are grouped together.

In Figure 5a,b, we report the number of TC for selected locations. In Figure 5c,d,
we report the mean of the temperature reported per day in each location. Furthermore,
the vertical lines are used to denote twice of the standard deviation around the mean.
Figure 5e,f show the number of days since the very first case reported in each location
during the considered period.

After comparing Figure 5a,c, it is evident that the locations with a larger number
of TC, which include Switzerland, the Netherlands, Austria, and Turkey, all experienced
temperatures with a mean around 10 ◦C. A similar pattern is evident from Figure 5b,d for
China, Italy, the United States, Spain, Iran, France, the United Kingdom, and South Korea.
These reported a larger number of TC and experienced temperatures with a mean around
10 ◦C. Furthermore, a few locations with very low temperatures i.e., Canada, Sweden, and
Finland, reported a smaller number of TC. Although the temperatures of Japan, Iran, Italy,
and Spain were almost in the same range, Japan reported significantly fewer accumulated
cases. According to one of the published reports [30], the use of masks in Japan is very
common which could be a reason for the slower growth of the disease in this region.
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Figure 5. Pattern analysis of COVID-19 pandemic from January to March 2020 for selected locations by comparing TC,
mean of temperature, and the number of total days since the very first case reported in each location. (a,b) The TC reported
per location. (c,d) The mean and twice of standard deviation of temperature per location. (e,f) The number of total days.

3.4. Stage IV

In Stage IV, we analyzed the trends of NC reported per day and average temperature
for the past 7 days, for selected locations, by bearing in mind the measures taken in the
locations to contain the virus. The trends are depicted in Figures 6 and 7 separately for
each location wherein the bar plot denotes the number of NC reported per day and the
line plot denotes the average temperature for the past 7 days. It should be noted that the
locations in Figures 6 and 7 are organized in ascending order according to the maximum
average temperature. For example, the maximum average temperature for Finland was
around 4 ◦C and, for Sweden, it was around 6 ◦C. Starting from Russia in Figure 6 up to
Spain in Figure 7, excluding Japan and Ecuador, the rest of the locations reported more
than 1000 NC per day. On the other hand, excluding Brazil, the locations before Russia
in Figure 6 and after Spain in Figure 7 reported fewer than 1000 NC per day. Thus, the
pattern is suggesting that the rate of spread of the virus was slower in the regions that
experienced either higher or lower temperatures. Furthermore, since the locations around
the globe opted for different measures in order to reduce the spread of COVID-19, a clear
relationship between average temperature and NC reported per day may not be evident
from Figures 6 and 7.

During an earlier stage of the COVID-19 outbreak, most of the locations either took
necessary measures or opted for a lockdown to reduce the spread of the virus. However,
the extent of the lockdown varied between local regions of a location and between different
locations. For example, South Korea and Singapore, although being hit at an earlier stage
of the outbreak, did not call for a complete lockdown. Instead, they followed a different
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approach based on testing, tracking, and isolation. Furthermore, both locations are densely
populated, were hit by the disease at an earlier stage, and took mostly similar measures to
reduce the spread of disease. In the considered scenario, they mainly differed in weather
conditions i.e., the average temperature in Singapore was higher as compared to South
Korea. Both the locations successfully kept the rate of the spread of the virus under control,
as evident from Figures 6 and 7. However, the maximum number of NC reported per day
for Singapore was smaller than South Korea. This implies that the variations in regional
temperatures might have played a role in the rate of spread of the virus during the initial
stage of the outbreak.

Japan reported a smaller number of NC during the earlier stage of the outbreak
because the population routinely makes use of masks which reduced the rate of the spread
of the virus. Furthermore, New Zealand reported its first case during the first week of
March 2020, and experienced temperatures above 20 ◦C, as evident from Figure 6. However,
New Zealand called for a lockdown at an earlier stage of the outbreak, on 25 March 2020, by
predicting the rapid growth of the virus in the region. This explains why the rate of spread
of the disease came under control in New Zealand. Moreover, the trends of Argentina and
South Africa (see Figure 7) are also similar to that of New Zealand (see Figure 6) since South
Africa and Argentina also called for a lockdown at an earlier stage of the outbreak, i.e.,
around 20 March 2020. Although Chile and Brazil also reported their first case in the same
period as South Africa and Argentina, the NC reported per day started increasing in these
locations since proper measures were not put in place at an earlier stage of the outbreak.

After observing the reported trends for 34 different locations, it can be said that
the variations in regional temperatures affected the rate of the spread of the COVID-19
pandemic during the earlier stage of the outbreak. However, due to different measures
taken in the locations in order to reduce the spread of the pandemic, the patterns observed
for each location differ. This could be a reason behind the contradicting findings reported
in the existing literature regarding the impact of temperature on the spread rate of the
pandemic [4]. Therefore, for further clarity, in Figure 8, we present the scatter plot of
NC reported per day in each location against the average temperature. It is evident from
Figure 8 that some of the locations experiencing average temperatures in the moderate
range (5–20 ◦C) reported more than 10,000 NC per day. On the other hand, most of the
locations with average temperatures above 20 ◦C or below 5 ◦C reported fewer than
1000 NC per day. Hence, there is a consistency in the results reported in this section, that
is, the locations experiencing temperatures in the moderate range reported, on average, a
larger number of cases.
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Figure 6. Trend analysis of average temperature and NC reported per day for selected locations. The red lines show the
average temperature for the past 7 days, and the bar plot represents the number of NC reported per day.
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Figure 7. Trend analysis of average temperature and NC reported per day for selected locations. The line plot denotes the
average temperature for the past 7 days, and the bar plot represents the number of NC reported per day.
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Figure 8. Scatter plot of NC reported per day in each location against the average temperature for
the past 7 days.

3.5. Stage V

In Stage V, we analyzed two different patterns for the mortality rate of COVID-19
for the selected locations considered in Stage IV. The first pattern was obtained by taking
the ratio of TD and TC reported by each location and the results are depicted in Figure 9a.
This pattern gives insight into the mortality rate of COVID-19 in each location. The second
pattern was obtained by taking the ratio of TD per location to TD reported around the globe,
and the results are depicted in Figure 9b. This pattern gives a global view of mortality due
to the pandemic. Figure 9a,b show the two patterns for selected locations for March and
April 2020. Since most of the locations called for a lockdown during the third and fourth
week of March 2020, it was important to analyze the mortality patterns after two to three
weeks of the lockdown.

In order to analyze the patterns of mortality rate as a function of average temperature
experienced per location, the horizontal axis in Figure 9 is sorted in ascending order
according to the maximum average temperature reported per location. This implies that
Finland and Malaysia experienced the smallest and largest maximum average temperatures
during the considered period of time, respectively. It is interesting to note from Figure 9a,b
that the locations with maximum and minimum average temperatures reported lower
mortality rates.

For almost all the locations in Figure 9a, other than China, Iran, Japan, and Bahrain,
the mortality rates were high during the first week of April 2020 as compared to the month
of March 2020. The locations with mortality rates above 10% during April include Sweden,
the United Kingdom, the Netherlands, France, Italy, and Spain. If we look at the global
pattern depicted in Figure 9, Italy reported the largest number of deaths during March
2020, and the United States reported the largest number of deaths during the first week of
April 2020.
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Figure 9. Comparative analysis for mortality rate as a function of (a) TC reported in each location and (b) total global deaths
due to COVID-19. The horizontal axis is sorted in ascending order according to the maximum average temperature for the
past 7 days experienced per location.

4. Statistical Analysis Using Linear Regression

In the preceding section, with the help of EDA, we found that the regional tempera-
tures played a role in the spread and mortality rates of COVID-19 during the earlier stage
of its outbreak. In order to further verify this observation, we employed regression as a
statistical analysis technique which is used in situations wherein the relationship between
variables under consideration is not deterministic. This means that there is some random
component by which the variables are related.

Linear regression (LR) attempts to identify the relationship between dependent and
independent variables by obtaining a linear fit to the data. If it is known that there exists
a certain linear relationship among the variables, then we can employ LR techniques to
obtain a linear fit to the data. By using a dependent variable Y and an independent variable
X, the simple linear model is given as

Y = βo + β1X + ε, (1)

where X, Y, ε are column vectors, β1 denotes the slope, βo denotes the intercept of the line,
and ε denotes a random error. If the relationship between dependent and independent
variables is exact, then ε = 0 and the above equation becomes deterministic. However, if
the relationship between dependent and independent variables is not exact, it means there
is some randomness and ε 6= 0. In such situations, with the help of a simple LR model, the
dependent variable Y is approximated (Ŷ) by fitting a line that best describes the given
data. According to a simple LR model, the relationship between the dependent (Ŷ) and
the independent variable (X) can be approximated through a linear equation, as follows:

Ŷ = βo + β1X, (2)

where coefficients βo and β1 are unknown and need to be estimated with the help of a given
dataset such that the residual error between true (Y) and fitted (Ŷ) values is minimized.

Assume that we are given a dataset in the form of tuples (xi, yi) where the superscript
i ∈ {1, 2, . . . , N} represents the ith instance or observation, xi denotes the value of an
independent variable and yi denotes the true value of the dependent variable. With the
help of LR, if we obtain a fitted model ŷi = βo + β1xi for approximating the true value of
dependent variable yi, then the residual error between true and fitted values for the ith
instance can be given as

ei = yi − ŷi, i = 1, 2, . . . , N. (3)
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Thus, the unknown coefficients can be obtained, by minimizing the sum of the squares
of residuals between true and fitted values, which is also called as sum of squares of the
errors (SSE). This minimization procedure for estimating the coefficients is known as the
ordinary least square (OLS) method, where the SSE is defined as

SSE =
N

∑
i=1

(ei)2. (4)

By differentiating the above equation with respect to coefficients βo, β1 and setting
these to zero, we get the following expressions:

β1 =
∑N

i=1(xi − x̄)(yi − ȳ)

∑N
i=1(xi − x̄)2

, (5)

βo =
∑N

i=1 yi − β1 ∑N
i=1 xi

N
= ȳ− β1 x̄. (6)

In order to assess the fitted model’s adequacy, we use R2, also called the coefficient of
determination. This quantity measures the proportion of variability captured by the fitted
model. It is defined as

R2 = 1− SSE
SST

, (7)

SST =
N

∑
i=1

(yi − ȳ)2, (8)

where SST is the total corrected sum of squares.

4.1. Simple Linear Regression Models

For examining the relationship between the NC of COVID-19 reported per day and
the average temperature for the past 7 days, we initially conducted a simple LR analysis.
We considered data instances for 34 different locations and performed LR analysis for each
location separately in order to understand the relationship between the variables under
consideration based on the local context. Furthermore, we also performed LR analysis
by concatenating all the data instances of locations considered in this study in order to
examine the relationship between variables at a global scale.

We obtained simple LR models by using NC as a dependent variable and the average
temperature for the past 7 days as an independent variable. Therefore, given data instances
in the form of a tuple (Tr, NCr) for location r ∈ {Argentina, Australia, Austria, . . . , United
States}, the simple LR model for fitting N̂C is given as

N̂Cr = βc
ro + βc

r1
Tr. (9)

Moreover, we also obtain another LR model by using ND as a dependent variable and
the average temperature for the past 7 days as an independent variable. Thus, given data
instances in the form of a tuple (Tr, NDr), the simple LR model for fitting N̂D reported per
day is given as

N̂Dr = βd
ro + βd

r1
Tr. (10)

Apart from these location-based models, we also obtained one cumulative model by
concatenating data instances of all the locations considered in this study.

4.2. Multiple Linear Regression Models

In order to further examine the effect of temperature on the overall spread and
mortality rates of COVID-19, we also performed multiple regression analysis by considering
nineteen independent variables, as listed in Table 2. We performed this analysis at a global
level only, that is, we concatenated all the data instances of the locations considered in this
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study. Hence, given the dataset in the form of a tuple (X1, X2, . . . , Xj, . . . , X19, NC) where
Xj denotes the independent variable and NC is a dependent variable, then the multiple LR
model is given as

N̂C = βc
o + βc

1X1 + βc
2X2, . . . , βc

19X19. (11)

Similarly, given the dataset in the form of a tuple (X1, X2, . . . , X19, ND) where ND is a
dependent variable, then the multiple LR model is given as

N̂D = βd
o + βd

1X1 + βd
2X2, . . . , βd

19X19. (12)

4.3. F-Test Statistic

We employed the F-test statistic for checking the significance of the conducted regres-
sion analysis. The F-test statistic indicates whether the LR model provides a better fit to
the data than a model that contains no independent variables. It is used to test the null
hypothesis against an alternate hypothesis, as defined below:

Ho :β1 = β2 = β3 = . . . βk = 0,

H1 :β j 6= 0.
(13)

Here, the null hypothesis (Ho) suggests that there is no relation between dependent
and independent variables since the coefficients are zero. The alternate hypothesis (H1)
suggests that there is a relationship between the dependent variable and at least one
independent variable. The F-test statistic is defined as

F =
SSR/k

SSE/(N − k− 1)
, (14)

SSR =
N

∑
i=1

(ŷi − ȳ)2, (15)

here, k denotes the total number of independent variables, and SSR stands for the sum of
squares regression.

In null hypothesis significance testing, the p-value denotes the lowest level of signifi-
cance at which the observed value of a test is significant. If the p-value obtained through
the F-test statistic is smaller than the defined significance level α, then the null hypothesis
is rejected. Generally, α is set to the 0.05 level which implies a 95% confidence level.

4.4. t-Test Statistic

In the case of multiple LR analysis, we also employed a t-test which is used to check the
significance of individual regression coefficients. The t-test statistic for the jth independent
variable can be obtained as

t =
β̂ j

SE(β j)
, (16)

where SE is the standard error. If the p-value obtained through the t-test statistic for the jth
coefficient is less than the defined significance level α, it implies that the jth independent
variable significantly contributes in the multiple regression model.

5. Results and Discussion

All the results reported in this section were obtained by using Python [27]. Here,
we summarize the insights extracted after performing the EDA in Section 3, and we also
discuss the results obtained after performing simple and multiple LR analysis defined in
Sections 4.1 and 4.2, respectively. For clarity and readability, the results of each conducted
analysis are discussed separately in the following subsections. Moreover, for further
verification, we also performed some additional experiments by assuming different time
scales, and the details can be found in the Supplementary Material.
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5.1. Data Analysis Findings

The insights extracted after conducting a detailed EDA of an earlier stage of the
COVID-19 outbreak, in Section 3, are summarized as follows.

• The spread and mortality rates of COVID-19 were slower in the regions experiencing
extreme temperatures, that is, greater than 20 ◦C or less than 5 ◦C.

• Due to different policies adopted by locations around the globe in order to contain the
spread of the pandemic, a clear relationship between temperature and the spread or
mortality rates of COVID-19 may not be observable.

• As opposed to other locations, instead of a lockdown, South Korea and Singapore
opted for a different strategy based on testing, tracking, and isolation. As a result,
compared to other locations, they reported a smaller number of COVID-19 cases.
However, as compared to South Korea, Singapore reported a smaller number of cases.
It should be noted that the average temperature in Singapore during the earliest stage
of the COVID-19 outbreak was high compared to South Korea.

• Although Spain, Italy, Japan, and Iran experienced temperatures almost in the same
range, Japan reported a considerably smaller number of COVID-19 cases. According
to a published report [30], the use of masks is common in Japan. That is why the
spread of pandemic in Japan was comparatively slower.

• New Zealand took strict measures during the earliest stage of the outbreak. Although
New Zealand experienced temperatures in a range similar to Spain, Iran, and Italy, it
reported a very small number of COVID-19 cases.

From the above insights, it is evident that temperature impacted the spread rate of
COVID-19 during its earlier stage. However, these insights were extracted by analyzing
data from January to March 2020. Due to different seasons, the weather conditions of a
location change during the year. Therefore, in order to further investigate the impact of
temperature on the spread and mortality rates of the COVID-19 pandemic, in the following
sections, we discuss the results obtained after applying statistical analysis by using data
for one complete year (2020).

5.2. Simple Linear Regression Analysis

In this section, we report the results obtained after performing simple LR analysis
discussed in Section 4.1. For each location, two simple linear models were obtained after
applying (9) and (10), that is, one for fitting the NC and another for fitting the ND reported
per day. Moreover, the temperature average for the past 7 days was used as an independent
variable in order to approximate the value for dependent variables NC or ND. In Table 3,
βc

ro and βc
r1

denote the bias and coefficient of average temperature, respectively, obtained
after applying simple LR for estimating NC in each location. Similarly, βd

ro and βd
r1

denote
the bias and coefficient of average temperature, respectively, obtained after applying simple
LR for estimating ND in each location.

Apart from location-based simple LR models, at the end of Table 3, we also report
a cumulative LR model which was obtained after concatenating the data instances of all
the locations considered in this study. Moreover, we report the mean (µr) and standard
deviation (σr) of the temperature experienced in a location during the mentioned period of
time, and the locations in Table 3 are sorted in ascending order according to µr. Furthermore,
we also report in Table 3 the numbers of TC and TD, in millions, reported per location by the
end of December 2020. After analyzing the impact of average regional temperatures on NC
or ND of COVID-19 from the results given in Table 3, the following insights were extracted.

• Excluding Ecuador, Argentina, Thailand, and Malaysia, the p-value for the rest of the
locations is much smaller than the defined significance level α = 0.05. This implies that
the null hypothesis is rejected and the results reveal a significant relationship between
NC and average temperature for most of the locations with a 95% confidence level.

• The linear models obtained for a few locations, which include New Zealand, Pakistan,
India, Singapore, Bahrain, and Qatar, show a significant positive relationship between
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average temperature and NC reported per day with a confidence level of 99.9%. This
implies that when the average temperature in these locations increases, the number of
NC increases. However, excluding India, the rest of the mentioned locations reported
a smaller number of TC.

• The linear models obtained for Ecuador, New Zealand, Argentina, the United States,
Singapore, and Malaysia depict an insignificant relationship between average temper-
ature and ND reported per day.

• The linear models obtained for Pakistan, Thailand, and Qatar depict a significant
positive relationship between average temperature and ND with a confidence level
of 95%. This implies that when the average temperature in these location increases,
the number of ND increases. However, the number of TD is much smaller in the
mentioned locations.

• It is evident from Table 3 that the locations showing an insignificant relationship be-
tween average temperature and NC or ND experienced temperatures with a standard
deviation σr of less than 5 ◦C.

• Other than Singapore, the locations showing a significant positive relationship be-
tween average temperature and NC or ND experienced temperatures with mean
µr > 22 ◦C and standard deviation σr > 6 ◦C. Although the mentioned locations
experienced temperatures in a higher range and showed a positive relationship with
NC or ND, excluding India, the rest of the locations reported a smaller number of TC.
For example, Thailand, Malaysia, Qatar, Bahrain, and Singapore reported a smaller
number of COVID-19 cases.

It is evident from the reported results that, for most of the locations, a significant
inverse relationship has been observed between NC or ND and average temperature.
Although some locations have shown a significant positive relationship between average
temperature and NC or ND, most of them reported a smaller number of total COVID-19
cases and deaths. Moreover, the cumulative model developed for fitting NC revealed
a significant inverse relationship with average temperature. However, the cumulative
model developed for fitting ND has not revealed a significant relationship with average
temperature since its p-value is greater than the defined significance level, that is, α = 0.05.

5.3. Multiple Linear Regression Analysis

In this section, we report the results obtained after performing the multiple LR analysis
discussed in Section 4.2. By using nineteen independent variables defined in Table 2, we
obtained two multiple LR models. The first model was obtained for fitting NC by using (11),
and its results are reported in Figure 10a. The second model was obtained for fitting ND by
using (12), and its results are reported in Figure 10b. The p-value of the F-test statistic, that
is, Prob (F-statistic) in Figure 10, provides the overall significance of the developed multiple
LR models. Moreover, the p-value of the t-statistic (p > |t|) provides the significance of
each independent variable by considering the rest of the independent variables as constants.
The values fitted by the multiple LR models are close to the true values, as evident from
Figure 10, since the coefficient of determination R2 is above 0.5. After analyzing the results
reported in Figure 10a, the following insights were extracted.
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Table 3. Results of simple LR analysis by using new cases (NC) or new deaths (ND) of COVID-19 per day and average
temperature as a dependent and independent variable, respectively. For further analysis, the temperature mean and
standard deviation experienced in each location are also mentioned. The number of total cases (TC) and total deaths (TD)
per one million recorded in each location by the end of December 2020 is also reported.

Location (r) (TC,TD) in Millions Temp.(◦C) (µr , σr)
N̂C = βc

ro
+ βc

r1
Tr N̂D = βd

ro
+ βd

r1
Tr

(βc
ro

, βc
r1
) p-Value (βd

ro
, βd

r1
) p-Value

Finland (0.034,0.0005) (10.39,7.36) (198,−9.03) 0.00 (2.2,−0.11) 0.00

Russia (3.02,0.054) (10.86,9.02) (13,720,−393) 0.00 (248,−7) 0.00

Canada (0.54,0.015) (11.68,11.19) (2499,−75.87) 0.00 (46,−0.693) 0.007

Sweden (0.396,0.008) (11.7,6.88) (2377,−96.9) 0.0004 (34.2,−1.17) 0.00

United
Kingdom (2.26,0.0705) (11.95,4.16) (18,260,−942) 0.00 (407,−20) 0.00

Ecuador (0.21,0.014) (13.86,2.58) (1067,−27.97) 0.242 (71.35,−1.69) 0.82

Germany (1.65,0.0303) (14.17,7.33) (13,900,−620) 0.00 (261,−12.61) 0.00

Switzerland (0.428,0.007) (14.23,7.5) (4022,−178.4) 0.00 (73.15,−3.58) 0.00

New Zealand (0.002,0.00003) (14.38,2.79) (−12.5,1.32) 0.002 (0.042,−0.0012) 0.801

Netherlands (0.774,0.011) (14.55,5.83) (7191,−310.3) 0.00 (86.5,−3.9) 0.00

Austria (0.351,0.0059) (15.06,7.79) (3446,−147) 0.00 (72.4,−3.5) 0.00

Australia (0.028,0.0009) (15.12,5.86) (239,−10) 0.036 (9.26,−0.43) 0.00

France (2.616,0.063) (15.38,6.61) (14,660,−440) 0.0009 (412,−16.7) 0.00

China (0.095,0.0048) (15.68,10.94) (845,−35.1) 0.00 (31.3,−1.30) 0.00

South Korea (0.057,0.0008) (16.28,9.25) (420,−14.7) 0.00 (5.73,−0.2) 0.00

South Africa (1.00,0.0267) (17.9,3.41) (8310,−261) 0.0012 (227,−7.3) 0.0001

Argentina (1.57,0.0425) (18.05,4.99) (7647,−106.3) 0.097 (157,−0.18) 0.95

Chile (0.598,0.0164) (18.13,5.79) (5389,−183.5) 0.00 (181,−6.8) 0.00

Turkey (2.147, 0.0198) (18.29,8.51) (30,620,−1254) 0.0012 (169,−5.7) 0.00

United States (18.98,0.332) (18.6,8.33) (91,530,−1811) 0.00 (1022,−7.26) 0.170

Japan (0.221,0.0031) (19.48,7.22) (1111.5,−23) 0.0009 (16,−0.38) 0.00

Spain (1.854,0.0498) (20.55,8.07) (10,430,−226) 0.0008 (381.7,−0.2) 0.00

Mexico (1.377,0.122) (20.88,2.3) (26,900,−1055) 0.00 (1605,−56.2) 0.00

Italy (2.038,0.716) (21.49,7.51) (17,400,−512) 0.00 (629,−20.1) 0.00

Pakistan (0.471,0.0098) (22.45,11.14) (538,48) 0.00 (14.18,0.87) 0.0008

Iran (1.20,0.0547) (22.64,9.6) (8281,−188) 0.00 (257,−3.36) 0.00

Brazil (7.465,0.19) (25.16,2.41) (54,730,−1130) 0.035 (2334,−66.6) 0.00

India (10.21,0.148) (26.81,6.76) (−7189,1493) 0.00 (27.2,−255.6) 0.00

Singapore (0.058,0.00003) (29.31,3.28) (−181,10.9) 0.0009 (−0.12,0.0064) 0.139

Thailand (0.006,0.00006) (29.44,3.67) (3.28,0.47) 0.597 (−0.298,0.014) 0.044

Malaysia (0.105,0.00045) (29.66,2.98) (302,0.85) 0.927 (−0.24,0.05) 0.174

Indonesia (0.713, 0.0212) (29.83,0.98) (23,880,−716) 0.00 (464,−13) 0.004

Bahrain (0.092,0.00035) (31.65,6.12) (−558,27.5) 0.00 (−2.49,0.12) 0.00

Qatar (0.143,0.00024) (32.96,6.28) (−708,35.8) 0.00 (−2.4,0.098) 0.00

Cumulative NA NA (7074,−53.8) 0.011 (132.59,−0.43) 0.169
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• It is evident from the F-test statistic that the developed multiple LR model is significant
since the p-value (Prob (F-statistic) in Figure 10) is approximately zero. This implies
that the independent variables considered in this analysis play a significant role in the
spread rate of COVID-19.

• The t-test statistic reveals that the variables which significantly affected the NC in-
clude TC, TD, TC per million, TD per million, population, human development
index, cardiovascular death rate, diabetes prevalence, hospital beds per thousand, life
expectancy, and average temperature.

• The variables which have not significantly affected the dependent variable include
population density, those aged 65 and older, those aged 70 and older, GDP per capita,
female smokers, and average RH.

• The variables TC, TD, TC per million, population, diabetes prevalence, male smokers,
and human development index show a significant positive relationship with NC
reported per day. This implies that a location with larger values of the mentioned
variables will show a larger number of NC.

• The variables TD per million, median age, cardiovascular death rate, hospital beds
per thousand, life expectancy, and average temperature show a significant inverse
relationship with NC reported per day. This implies that a location with larger values
of the mentioned variables will show a smaller number of NC.

From above details, it is evident that even in the presence of multiple other factors,
the effect of average temperature is significant on the spread rate of COVID-19.

In order to analyze the impact of average temperature on ND in the presence of other
important variables, the results obtained after performing multiple LR analysis using (12)
are reported in Figure 10b and discussed below.

• It is evident from the F-test statistic that the developed multiple LR model is significant
since the p-value is approximately zero. This implies that the considered variables
played a role in overall ND reported per day due to COVID-19.

• The variables which have not significantly affected the dependent variable include
median age, those aged 65 and older, those aged 70 and older, cardiovascular death
rate, hospital beds per thousand, human development index, and average RH.

• The variables TD, TC per million, population, population density, diabetes prevalence,
and female smokers show a significant positive relationship with ND. This implies
that a location with larger values of the mentioned variables will show a larger number
of ND.

• The variables TC, TD per million, GDP per capita, male smokers, life expectancy, and
average temperature show a significant inverse relationship with ND reported per
day. This implies that a location with larger values of the mentioned variables will
report a smaller number of ND.

From above details, it is evident that even in the presence of multiple other factors,
the effect of temperature is significant on the mortality rate of COVID-19.
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(a)

(b)
Figure 10. Results of multiple LR analysis by using: (a) NC (new_cases) and (b) ND (new_deaths) of
COVID-19 reported per day as dependent variables. Here, the independent variables are considered
to significantly affect the NC reported per day if the corresponding p-value (p > |t|) is smaller than
α = 0.05.
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6. Conclusions

In this work, initially by employing the EDA technique, we examined the impact of
regional temperature on spread and mortality rates of the COVID-19 pandemic during an
earlier stage of its outbreak. We observed that the spread and mortality rates of COVID-19
were slower in the regions with extreme temperatures. In order to further investigate the
impact of regional temperature on the pandemic, we extended the analysis by using simple
and multiple LR techniques and using data for one year, that is, from January to December
2020. Under simple LR analysis, for most of the locations, the results revealed a signifi-
cant inverse relationship between NC or ND reported per day and average temperature.
Similarly, the results obtained after conducting multiple LR analysis revealed a signifi-
cant inverse relationship between average temperature and NC or ND. Although a few
locations, which include India, Pakistan, Singapore, Qatar, and Bahrain, experienced high
temperatures, the pandemic in these locations showed a significant positive relationship
with average temperature. However, excluding India, the rest of the locations reported
a smaller number of total COVID-19 cases. Although the pandemic showed an inverse
relationship between average temperature and NC or ND in some locations with moderate
temperatures (i.e., the United Kingdom, South Africa, Argentina, Ecuador, Chile, Mexico,
among others), they reported a larger number of total COVID-19 cases.

Thus, it can be concluded that average temperature has significantly impacted the
COVID-19 pandemic, although the exact relationship depends on the range of temperature
experienced by a location. That is why some locations have shown a significant positive
and others a significant inverse relationship with NC or ND. However, due to different
policies adopted in the locations in order to reduce the spread of the pandemic, it is hard
to define the range of temperatures wherein a negative relationship is observed between
average temperature and NC or ND. Nonetheless, the overall patterns of the pandemic and
the results of statistical analysis reveal a significant impact of temperature on the spread
and mortality rates of COVID-19.
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