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Abstract: The Eurasian steppe (EAS) is the largest contiguous grassland worldwide. Quantitative
evaluations of the relative impacts of climate change and human activities on grasslands are signifi-
cant for understanding grassland degradation mechanisms and controlling degraded grasslands. In
this study, we analyzed the grassland productivity based on multiple forms of net primary produc-
tivity (NPP), including climate NPP (CNPP), actual NPP (ANPP), and human-caused NPP (HNPP)
during 2000–2014. The results demonstrate that the average value of annual ANPP in the EAS was
47.36 gC/(m2·year), with a weak decrease (−0.02 gC/(m2·year)) during the study period. The area
of grassland degradation account for 48.52% of the total grassland area in EAS, while the area of
grassland recovery account for 51.48%. Restorative grassland was mainly distributed in Mongolia
and China, while worse grassland was mainly distributed in the Kazakh steppe regions. Grassland
degradation in China was mainly caused by climate change, whereas it was mainly caused by human
activities in Mongolia. Grassland recovery in Kazakh steppe regions was mainly caused by human
activities, but in Mongolia, it was mainly caused by climate change. Compared with temperature,
precipitation played a more significant role on grassland productivity.

Keywords: Eurasian steppe; grassland dynamic; grassland degradation; major ecological projects;
sustainable development of grassland

1. Introduction

Global warming by an increased CO2 concentration is the major inhibition of the
hydrological and carbon cycles [1,2]. The IPCC’s (Intergovernmental Panel on Climate
Change) report showed a 95% certainty of global climate change results from human
activities [3]. Therefore, quantitative analysis of the impacts of climate change and human
activities on terrestrial ecosystems is necessary. The Eurasian steppe (EAS) is the largest
grassland belt in the world (nearly 110 longitude lines), stretching through the eastern
European plain, the western Siberian plain, the Kazakh hills, and the Mongolian Plateau [4]
(Figure 1). This ecoregion plays an important role in the regional and global carbon cycle,
and animal husbandry is the main economic production mode [5,6]. In EAS, disturbances
induced by human activities and climate change exist widely across the landscape, and
significantly affect vegetation productivity and carbon stock conditions [7,8].

Climate change and human activities are putting an enormous strain on the grassland
ecosystems [9,10]. Due to the decrease of regional annual precipitation and surface water
loss, the drought problem is becoming more and more serious [11]. Simultaneously, with
the increasing human population and demands for animal products, animal husbandry
has become a widespread human activity in EAS [12]. There are some methods that
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utilize modeling techniques base on remote sensing to distinguish grassland degradation
caused by human activities and climate change, such as correlation analysis [13], factor
analysis [14], and principal components analysis [15]. As a proxy for grassland carrying
capacity, net primary productivity (NPP) is widely used to analysis grassland dynamic
and its driving factors [16,17]. A residual analysis method based on actual and potential
vegetation productivity for analyzing grassland degradation is very important [18]. These
studies applied a slopes combination of multiple forms of NPP to distinguish between
the contribution of climate change and human activities to grassland degradation [10].
During recent decades, EAS has experienced increasingly severe land degradation and
desert expansion [19]. However, there have been few quantitative pieces of research on
grassland degradation in the whole EA steppe.
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Figure 1. Geographical location, elevation, and subregion division of the Eurasian steppe.

Evaluations of the relative impacts of climate change and human activities on grass-
lands are significant for understanding grassland degradation mechanisms and contain-
ment of grassland degradation. It is also a key challenge for grassland ecosystem manage-
ment to anticipate grassland conditions. Based on NPP from 2000 to 2014, we characterize
the grassland degraded situation of EAS and distinguish between the relative contribution
of climate change and human activities. The present study aimed to address the insuffi-
ciency of grassland degradation research in EAS. The results are also of great importance
for pasture production and grassland management.

2. Materials and Methods
2.1. Study Area

The EAS is the largest natural steppe on the globe, located in the Europe and Asia
plate (Figure 1). It stretches more than 8000 km, spanning from the Volgograd Oblast,
Russia in the west to Mongolia and Inner Mongolia, China in the east, and the area is about
150 million hectares. The southernmost part is the Qinghai-Tibet plateau in China. The
longitudinal and latitudinal extents are 39–125◦ E and 35–55◦ N, respectively [20]. The
region is typically dominated by a temperate continental climate with different degrees
of aridity, except for in the Qinghai-Tibetan Plateau. Due to high mountain barriers and
unique environments, the Tibetan Plateau has a typical Tibetan Plateau climate that is
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cold and wet for most of the year. As a typical arid and semi-arid region, precipitation is
unstable, ranging from 150 mm to 500 mm per year, while the mean annual precipitation
is less than 400 mm. The mean annual temperature ranges from −5 ◦C to 15 ◦C with the
latitude gradient except for the Tian Shan and Altai mountain ranges [21].

The EAS’s different environmental conditions also lead to zonal changes of grassland
vegetation. The major parts of the EAS include the Black Sea-Kazakhstan grassland
sub-region, the Mongolian plateau grassland sub-region, and the Qinghai-Tibet plateau
grassland sub-region [22]. According to the regime division, this study separated the EAS
into five sub-regions: they are Kazakhstan steppe region (KAS), steppe in other countries
(KOS) in the west, the Mongolian plateau steppe region (MGS), the Qinghai-Tibet plateau
steppe region (CQS), and other steppe regions in China (CHS, Figure 2).
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2.2. Data Source and Processing

We obtained the grassland map of the year 2000 from the MODIS MCD12Q1 data
products with the International Geosphere-biosphere Program (IGBP) classification system.
The MCD12Q1 Version 6 data product comes from MODIS reflectance data obtained by
Terra and Aqua using supervised classifications. The IGBP classification system defines 17
classes of primary land cover types. In this study, according to our need, we reclassified
land cover types, and the grassland type comes from the combination of classes 6–11
(including closed shrublands, open shrublands, Woody Savannas, Savannas, Grasslands,
and Permanent Wetlands in order).

The GIMMS NDVI3g v1.0 dataset is the longest time range of NDVI data products
(https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (accessed on 9 May 2020)). The
spatial resolution is 8 km and the temporal resolution is 15 d. The dataset is the latest third
generation global vegetation index product released by NASA’s global monitoring and
modeling research group. It can improve the data quality in high latitudes, identify and
remove the orbit drift caused by the solar zenith angle, and improve the inconsistency
between different generations of sensors.

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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The global map version 3 product provides highly consistent long time series leaf area
index (LAI) data (http://www.globalmapping.org/globalLAI/ (accessed on 22 December
2020)). The spatial resolution of the data is 0.08 degrees. The product is based on a
quantitative fusion inversion of AVHRR (before the year 2000) and MODIS (after the year
2000). The global aggregation index map is used to calculate the dataset, and the vegetation
aggregation effect is considered from the pixel scale. At the same time, the cloud detection
algorithm based on time series surface reflectance inflection point is used, and the local
adjustment cubic spline interpolation method LACC is used to smooth the missing values
and noise to improve the data reliability.

Global monthly temperature and precipitation data were obtained from the British
Atmospheric Data Centre. The dataset is the gridded Climatic Research Unit (CRU) version
4.02 (http://www.cru.uea.ac.uk/ (accessed on 21 December 2019)). Global monthly surface
solar radiation data applied from the National Tibetan Plateau Data Center, Institute of
Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. The time scale
is from July 1983 to December 2018, with resolutions of 3 h and 10 km (https://data.tpdc.
ac.cn/zh-hans/data/ (accessed on 3 July 2021)). The livestock data were from 1992 to
2017 in different countries collected from the Food and Agriculture Organization of the
United Nations and Statistical Yearbook. We resampled all data mentioned above to a 0.08◦

resolution with the Albers equal-area conic projection and the World Geodetic Systerm1984
(WGS1984) coordinate system.

2.3. Calculating Actual NPP (ANPP)

The CASA (Carnegie-Ames-Stanford Approach) model is a process model based on
the principle of light energy utilization [23–25]. The main input factors of the model are
photosynthetic active radiation (APAR) and light energy utilization (ε). Among them, the
photosynthetic effective radiation (APAR) is estimated by the vegetation index extracted
from remote sensing data, and the light energy utilization rate (ε) is the utilization efficiency
of the vegetation for the photosynthetic effective radiation reaching the surface. The
estimation formula is as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where APAR(x, t) is the photosynthetically active radiation absorbed by pixel x in month t
(g C·m−2·month−1), and ε(x,t) is the actual light energy utilization rate of pixel x in month
t (g C·MJ−1):

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

where SOL(x, t) is the total solar radiation (gC·m−2·month−1) at pixel x in month t,
FPAR(x, t) is the absorption ratio of the vegetation layer to the incident photosynthetically
active radiation, and constant 0.5 is the ratio of the solar effective radiation (wavelength
0.4–0.7 µm) that the vegetation can use to the total solar radiation:

FPAR(x, t) =
(NDVI(x, t)− NDVIi,min)

(NDVIi,max − NDVIi,min)
× (FPARmax − FPARmin) + FPARmin (3)

where NDVIi,max and NDVIi,min correspond to the maximum and minimum of NDVI of the
ith vegetation type, respectively.

ε(x, t) = Tz1(x, t)× Tz2(x, t)×Wz(x, t)× εmax (4)

In the formula, Tε1(x, t) and Tε2(x, t) are the stress effects of low and high temperature
on light utilization efficiency; Wz(x, t) is the influence coefficient of water stress, reflecting
the influence of water conditions; εmax is the maximum light utilization efficiency (g C/MJ)
under ideal conditions

Tz1(x, t) = 0.8 + 0.02× Topt(x)− 0.0005×
[
Topt(x)

]2 (5)

http://www.globalmapping.org/globalLAI/
http://www.cru.uea.ac.uk/
https://data.tpdc.ac.cn/zh-hans/data/
https://data.tpdc.ac.cn/zh-hans/data/
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Tz2(x, t) = 1.184/
{

1 + exp
[
0.2×

(
Topt(x)− 10− T(x, t)

)]}
×1/

{
1 + exp

[
0.3×

(
−Topt(x)− 10 + T(x, t)

)]} (6)

where, Topt(x) is the optimum temperature for plant growth, defined as the average temper-
ature of the month when the NDVI value of a certain area reaches the highest in a year;
when the average temperature of a certain month is less than or equal to −10 ◦C, the value
is 0. The estimation of Tε2(x, t) indicates that when the environmental temperature changes
from the optimal temperature Topt(x) to high or low temperature, the light utilization rate
of plants will gradually decrease. When the average temperature Topt(x) in a month is 10
◦C higher or 13 ◦C lower than the optimal temperature top (x), the Tε2(x, t) value of that
month is equal to half of the Tε2(x, t) value when the average temperature T(x, t) is the
optimal temperature Topt(x)

Wz(x, t) = 0.5 + 0.5× EET(x, t)/EPT(x, t) (7)

where: EET is the actual regional evapotranspiration (mm); EPT is the potential regional
evapotranspiration (mm). The value of monthly maximum light use efficiency (εmax) varies
with different vegetation types. In this study, we chose 0.542 gC/MJ as the maximum light
use efficiency of grassland [26].

2.4. Calculating Climate NPP (CNPP)

In addition to the FPAR calculation, we also used the CASA model to estimate grass-
land CNPP. In this study, the leaf area index (LAI) was used to calculate the FPAR, since it
can reduce a lot of uncertainty compared with the climate-driven model. The algorithm
can be expressed as follows:

FPAR = 1− e−kLAI (8)

LAI = LAImin + f SW × f st× (LAImax − LAImin) (9)

fSt =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)−
(
T − Topt

) (10)

f SW =
1 + LSWI

1 + LSWImax
(11)

LSWI =
ρNIR − ρMIR
ρNIR + ρMIR

(12)

where k = 0.5; LAImax and LAImin are the maximum and minimum values of LAI in a
month; fSW is usually used to estimate the dynamic changes of water-based on remote
sensing data; fSt represents the water and temperature stress. Tmax and Tmin represent the
maximum and minimum air temperature in a month, respectively, Topt is the optimum air
temperature when the vegetation biomass reaches the maximum value. LSWI can be where
ρNIR and ρMIR are the albedo of the near-infrared and mid-infrared band of the MODIS
product (MOD13A2).

2.5. Estimation of Human-Caused NPP (HNPP)

HNPP represents NPP that is caused by human activities. Previous studies showed
that the proportion of HNPP can be calculated by comparing the difference between the
PNPP and the ANPP [10]. Thus, it is expressed as follows:

HNPP = CNPP− ANPP (13)

2.6. Quantitative Assessment Method

In order to distinguish between the contribution of climate change and human activ-
ities to grassland degradation and recovery, three types of NPP were calculated. Actual
NPP (ANPP) represents the real state of grassland productivity determined by climate and
human factors. The positive changing trend of the ANPP means the recovery of grassland,
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while the negative trend of the ANPP means the degradation expansion. Climate NPP
(CNPP) represent the grassland productivity only determined by climate condition, which
is a hypothetical state. The positive value of CNPP indicates that climate change in this
period is conducive to the growth of grassland, while negative values demonstrate that
climate factors are not helpful in grassland growth. A positive value of CNPP indicates
the climate change during this period is beneficial to grass growth, whereas a negative
value demonstrates that climate change is harmful to grass growth. Human-caused NPP
(HNPP) is estimated by the difference between CNPP and ANPP. A negative value of
HNPP indicates the human activities are beneficial to grass growth, whereas a positive
value demonstrates decline in grass and the occurrence of human-dominated degradation.
Accordingly, there are six possible scenarios by the slopes of the ANPP, CNPP, and HNPP
(Table 1). Some reported studies demonstrated the utility of this approach [10,27].

Table 1. Scenarios to assess the role of factors about climate and human activities in grassland healthy conditions.

Scenario SlopeANPP SlopeCNPP SlopeHNPP
Grassland
Condition Roles of Factors about Climate and Human Activities

S1
+

+ +
Recovery

Climate-caused recovery (CDR)
S2 − − Human activities-caused recovery (HDR)
S3 + − Both two factors caused recovery (BDR)

S4
−

− −
Degradation

Climate-caused degradation (CDD)
S5 + + Human activities-caused degradation (HDD)
S6 − + Both two factors caused degradation (BDD)

3. Results
3.1. Validation of NPP Model

The grassland ANPP simulated by the CASA model in this study was verified based
on field survey data collected in August 2015. The detailed geographical information of
field observation sites is displayed in Figure 3. The field survey data mainly included
open grassland sample data and fenced grassland sample NPP data. The correlation
analysis between grassland sample data and modeled ANPP data exhibited a satisfactory
estimation (R2 = 0.7553, p < 0.001). The PNPP was validated using the fenced sample NPP
data. The fenced observation data were collected from the grazing enclosure sites where
grassland ecosystems were undisturbed and have barely been interfered with by humans.
Comparisons of the results between simulated PNPP and observed fenced NPP indicated
that the PNPP derived from the CASA model showed good agreements with field fenced
NPP data (R2 = 0.7219, p < 0.001). This implies that the CASA model has high accuracy
and reliability in a simulation of the grassland PNPP.
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3.2. The Spatiotemporal Distribution of ANPP

The grassland ANPP of EAS maintain distinct regionalized expression due to its wide
range of longitudes (Figure 4). For MGS, the grassland ANPP values was monotonically
decreasing from north to south. The high-value areas of grassland ANPP in CHS were
mainly distributed in the northeast and south, while the low-value areas were mainly
distributed in the northwest and east regions. For CQS, the grassland ANPP values were
decreasing gradually from southeast to northwest. In the Kazakh steppe region, the high-
value areas of grassland ANPP were mainly distributed in the north and east border area
of Kazakhstan, southern Mount Elbrus, and eastern Uzbekistan, while the low-value areas
were mainly distributed in the North-Central of Uzbekistan in KOS regions. Histogram
analysis was conducted for average annual grassland ANPP in EAS and five sub-regions
(Figure 5). The annual ANPP ranged from 43.62 to 50.87 gC/(m2·year) during 2000–2014,
with an annual average of 47.36 gC/(m2·year) in the whole EAS. The ANPP of EAS
was decreasing, and the decreased ratio was −0.02 gC/(m2·year). Different subregions
did not behave comparably. In terms of the overall Kazakh steppe, both KAS and KOS
showed a downward trend, with values of −1.14 gC/(m2·year) and −0.26 gC/(m2·year),
respectively. Conversely, the grassland in Mongolia China showed an increasing trend.
The increasing value of the MGS was the highest (0.73 gC/(m2·year)), followed by CQS
(0.33 gC/(m2·year)), and CHS is the lowest, with the value of (0.20 gC/(m2·year)).
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3.3. Analysis of Grassland Degradation and Recovery

The spatial distribution of grassland recovery and degradation in the EAS was as-
sessed (Figure 6). Our findings show that grassland degradation remains a widespread
environmental issue in the study area. Generally, restored grassland was extensively
distributed in Mongolia and China, while degraded grassland was mainly distributed in
Kazakh steppe regions. Degradation caused by human activities dominated distributed
areas among north-western MGS, northern and central KAS, and eastern KOS. Degradation
caused by climate change distribution was widespread in Kazakh steppe regions. In addi-
tion, there was a small grassland degradation section that was caused by human activities
in western MGS, and both eastern and western CHS. Recovery grassland regions domi-
nated by human activities were mainly located in central-southern CQS, central-eastern
and western CHS, and western MGS. Recovery areas caused by climate change were con-
centrated in northeastern CQS, northeastern CHS, and eastern MGS. For grassland recovery
in the EAS, climate change, human activities, and the combination of two factors accounted
for 37.86%, 33.20%, and 28.95% in decreasing order. The grassland recovery in KAS, KOS,
and CQS caused by major human activities accounted for 58.60%, 48.61%, and 52.76%,
respectively. For MGS, climate change was the main factor that caused grassland recovery,
with a value of 56.92%. The grassland recovery in CHS was caused by the combined factors
of human and climate major and accounted for 39.37%. For grassland degradation in the
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EAS, combination, climate change, and human activities accounted for 47.71%, 36.79%, and
15.51% in decreasing order. The grassland degradation in CHS and CQS caused by climate
change major accounted for 45.98% and 59.37%, respectively. For MGS, human activities
were the main factor that caused grassland degradation, with the value of 51.04%. The
grassland degradation in KAS and KOS was caused by the combined factors of human and
climate major and accounted for 53.67% and 49.81%, respectively.
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3.4. Effects of Climate Variation on Grassland NPP

To explore the effects of climate variables, we analyzed the average annual value of
temperature and precipitation in EAS and its sub-regions (Figure 7). Temperature in the
EAS showed a weak downward trend, with the value of −0.005 ◦C/per year. Precipita-
tion has shown a declining trend (−0.373 mm/per year), too. The temporal change of
temperature and precipitation in Monglia steppe and Kazakh steppe were less consistent.
Specifically, the change trend of climate factors in KAS and KOS were consistent with
that in EAS. However, MGS and CHS were experiencing decreasing trend in temperature
while rising trend in precipitation. Since the annual average value may not reflect the real
situation of the whole region, we perform the correlation analysis between ANPP to meteo-
rological factors on a pixel scale (Figure 8). The results showed the effect of precipitation
on productivity is greater than that of temperature (0.37 vs. −0.01). Areas with a positive
correlation area between ANPP and temperature valued 11.69%, concentrated on CQS,
northern Hovsgol in MGS, central and eastern KAS. Furthermore, areas with a positive
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correlation between ANPP and precipitation were about 91.24%. There were 12.02% and
8.14% of the grassland regions that showed a significant and extremely significant positive
correlation between ANPP and precipitation.
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4. Discussion

Natural climate variability and anthropogenic activities are affecting grassland ecosys-
tems worldwide, which basically change regional biogeochemical cycles and ecosystem
productivities [28]. This study investigated a general description of grassland degradation
in EAS by using satellite, meteorology, and statistic data. Furthermore, we also quantita-
tively assessed the respective contributions of climate change and human activities. Since
the loss of NPP is considered detrimental to the function and carbon sinks of terrestrial
ecosystem, it has been widely used to represent the impact of climate change and human
activities [10,29,30].

The present study demonstrated that nearly half (48.52 %) of grassland in EAS ex-
perienced degenerative processes, joint effects of climate change and human activities
contributes most (47.70%), followed by climate change (36.79%), and human activities
had the least contributions, with the value of 15.51%. Climate change causes important
changes in weather patterns, precipitation distribution, and temperature changes [31].
There have been numerous studies demonstrating that temperature and precipitation are
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the major climatic factors that drive grassland dynamic change [10,32,33]. Changing of
precipitation and temperature will affect distribution of water resources and nutrients,
which in turn affect plant photosynthesis, soil respiration, growing status, and even plant
distribution [34]. The most significant grassland degradation induced by climate change
widely occurred in the Kazakh steppe area. The Kazakh steppe region is a typical arid
area, which is sensitive and vulnerable towards climate changes. Because of westerlies
and global warming, these regions become more arid with more intense rainfall [35]. In
contrast, human activities are relegated in a dominant status of grassland degradation in
south Turgay Basin, northwestern Shyghys Kazakhstan, and southeastern Kyzylorda of
Kazakhstan. It has been shown that the extraction of mineral resources is the main cause of
grassland degradation in south Turgay Basin [36]. Furthermore, grassland degradation in
western and southern Kazakhstan was mainly affected by social institutional transforma-
tion, abandonment of large state-owned pastures, centralized restriction of grazing, and so
on [37,38].

The grassland that presented recovery amounted to 51.48% of total grassland ecosys-
tems in the EAS, mainly distributed in Asia. Climate change is the most important driving
factor. Restored grassland was mainly distributed in northeastern Qinghai Tibet Plateau,
eastern Mongolia, and northeastern China. It has been reported that grassland has re-
covered under the redistributed rainfall pattern in the Qinghai-Tibet Plateau and north
China [27,30]. Human activities also contributed to grassland recovery in EAS. The effects
of human modification in Inner Mongolia, Qinghai–Tibet Plateau in China. and western
Mongolia were highlighted. Both Mongolia and China have implemented several effective
projects since the beginning of the century to reverse the grassland degradation situa-
tion [39]. The primary measures of Mongolia are the Greenbelt Project, the Pastureland
Law, and the National Desertification Control Plan. Similarly, China has been implementing
the Grain for Green Program and the Returning Grazing Land to Grassland Project [10,40].
There is also a small part of grassland in Kazakh steppe region which shows the trend of
human dominated recovery. This is primarily due to the reuse of abandoned state-owned
pastures under the recovery of the local economy [41]. Simultaneously, effective ecological
recovery measures by incessant effort of the scientific researchers in order to ameliorate the
degraded land [42].

5. Conclusions

The relative effects of climate change and human activities on grassland degradation
and recovery in EAS were evaluated from 2000 to 2014. Grassland recovery area is larger
than that of degradation (51.48% vs. 48.52%). The overall recovery trend is dominated by
far. Restored grassland was extensively distributed in Mongolia and China, while degraded
grassland was mainly distributed in Kazakh steppe regions. Human activities positively
contributed to NPP increases in Mongolia and China, while intensive management regimes
and infrastructure development in in Kazakh steppe regions also contributed to grassland
degradation. Simultaneously, climate factors positively contributed to NPP increases
in Mongolia steppe regions, while it also had a negative influence in Kazakh steppe
regions. Our results also showed that precipitation was much more influential on grassland
productivity than annual temperature. This study investigated grassland health conditions
by using satellite data and meteorology data. The results help provide a scientific basis for
the development and modification of prevention and control strategies for climate change
and the rational use of grassland.
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