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Abstract: Integration of renewable energy sources (RES) in a distribution network facilities the
establishment of sustainable power systems. Concurrently, the incorporation of energy storage system
(ESS) plays a pivotal role to maintain the economical significance as well as mitigates the technical
liabilities associated with uncontrollable and fluctuating renewable output power. Nevertheless, ESS
technologies require additional investments that imposes a techno-economic challenge of selection,
allocation and sizing to ensure a reliable power system that is operationally optimized with reduced
cost. In this paper, a deterministic cost-optimization framework is presented based on a multi-input
nonlinear programming to optimally solve the sizing and allocation problem. The optimization is
performed to obviate the demand-generation mismatch, that is violated with the introduction of
variable renewable energy sources. The proposed optimization method is tested and validated on an
IEEE 24-bus network integrated with solar and wind energy sources. The deterministic approach is
solved using GAMS optimization software considering the system data of one year. Based on the
optimization framework, the study also presents various different scenarios of renewable energy
mix in combination with advanced ESS technologies to outline an technical as well as economical
framework for ESS sizing, allocation, and selection. Based on the optimal results obtained, the optimal
sizing and allocation were obtained for lead-acid, lithium-ion, nickel-cadmium and sodium-sulfur
(NaS) battery energy storage system. While all these storage technologies mitigated the demand-
generation mismatch with optimal size and location. However, the NaS storage technology was
found to be the best among the given storage technologies for the given system minimum possible
cost. Furthermore, it was observed that the cost of hybrid wind-solar mix system results in the lowest
overall cost.

Keywords: battery energy storage system; nonlinear programming; renewable energy mix; optimal
power flow; optimization; storage technology mix

1. Introduction

The concept of smart grid is widely used and accepted in the utility power industry,
due to their benefits towards the environment conditions and economic potential as they
enable the integration of small generators to the power network. Many governmental
bodies are planning to increase the use of renewable resources at the local and regional level
of the grid to meet the highest possibility of renewable integration and consequently reduce
emission [1]. Smart grid enables the to establish a deregulated system. The interconnection
of numerous distributed renewable generators, established as a microgrids at the local or
regional level, have the potential to be coordinated and hence perform with an enhanced
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power quality and reliability [2]. Accordingly, this facilitates a guide to the system operators
to plan network expansion in accordance with the load demand increase [3], and maintain
the power quality of the power network appropriately with maximum benefits [4].

The utilization of energy storage system (ESS) is among the most widely used tech-
nique to facilitate increased renewable penetration [5]. One of ESS features is peak load
shaving, which implies power exchange between storage systems and generation units,
thus to store the power during off peak periods and discharge it during peak power peri-
ods [6,7]. Therefore, the stored power in the ESS can be charged/discharge in accordance
with the system requirements which proves to be a source of revenue for private owners.
On the other hand, power system planners should ensure power reserve allocation based
on a day ahead renewable power predictions that relies heavily on the accuracy on the
forecasted values [8]. Utilization of ESS technologies reduces the dependency of RES users
and the utility towards the need for state-of-the-art forecasting algorithms and obviate their
dependency on the degree of accuracy of the forecasted values, up to a certain extent [9].

An efficient methodology is proposed using spectral analysis of solar resources and
wind energy that is linked with the daily load profiles considering an off-grid system [10].
In this study, the calculation of storage is applied for different levels of mean load. In [11],
the incremental fluctuations of RES for various residential load scenarios are presented
for mitigation. The security constrained unit commitment is achieved using a stochastic
approach and solving the problem formulation through benders decomposition. In [12],
residential ESS is enabled to mitigate the impact of RES output power fluctuation to
facilitate sufficient system flexibility to the owners for commercialized market participation.
The study determines the “cost of use” for lithium-ion battery energy storage system.
Depending on the characteristics battery usage, that is determined based on the depth of
discharge [13], the authors presented a multi-constrained and multi-objective optimization
of the entire renewable integrated power grid with optimal allocation and size for RES as
well as ESS. This derivation of the “cost of use” can be further implemented for economic
optimization of renewable-battery coupled multi-energy [14].

Similarly, the authors in [15], posit a methodology that aims to obviate under-sizing
and/or over-sizing of ESS. By searching all the possible solutions in the given search space
they considered the forced outage rates of wind-solar hybrid energy system as well as the
utilization factor of battery energy storage (BESS), which makes it more realistic scenario
for derving the optimal ESS size. The research study in [16], presents an optimization
framework that aims to maximise utilization of wind power, while optimally minimizing
the operational and investment costs of the power network. The evaluation of microgrid
reliability indices are considered as the evaluation parameters. Based on the wind speed
modelling technique, this research calculates an optimal size and location of wind gener-
ators. Moreover, the study in [16] posits and effective optimization technique based on
mixed-integer-nonlinear programming (MINLP) to allocate wind-based DG that can mini-
mize energy losses. Conclusively, in areas that encounter high wind fluctuations the wind
output power can be effectively smoothed through utilizing the energy buffering feature of
ESS and hence maintain the integrity of the power network in terms of economical and
uninterruptible power supply with appropriate power quality standards [17].

Accordingly, the research in [18], proposed a technique based on three-stage planning
to optimally identify the size and location of distributed storage units. Firstly, the optimal
storage parameters and locations have been determined individually for the entire year.
Secondly, the optimal ratings pertaining to the energy and power is determined, and finally,
the optimal operation for the ESS is derived to mitigate the congestion. In [19], a framework
of DC-OPF for optimization for the storage portfolio is presented for a transmission-
constrained network. This proposition addresses two problems, that is, to achieve optimal
ESS allocation and also maintain optimal ESS operation. This is formulated firstly to
optimize the network integrity based on the power flow, and secondly, to suitably select
the ESS technology and derive their optimal allocation. In this study, the ESS characteristics
are optimized based on cost-efficient sizing algorithms.
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Using ESS technologies for regulation of renewable power output is highly effective,
where the storage system is applied to store renewable power and supply it appropriately
to maintain the demand-generation requirement of the electricity flow. Thus, the ESS
mitigates the impact of renewable resources integration to achieve a better load-demand
mismatch profile and voltage stability [20]. Concurrently, selection of appropriate ESS
technology govern their applicability not only towards energy management but also to
enhance the power quality of a renewable integrated power network [21,22]. Therefore,
the effectiveness of some algorithms as discussed in literature, reveals that the study
of ESS allocation have been applied to different aspects which led to their application,
in order to have a proper decision for renewable energy design and selection. In [23],
methodology used to minimize a battery energy storage system (BESS) capacity, in a
distributed configuration of wind power sources. The study in [24], address an analytical
technique for power system to size BESSs along with wind farms based on worth analysis
and reliability cost.

In this paper, we formulate a cost optimization framework of energy storage system
to achieve optimal sizing and allocation based on a deterministic multi-input non linear
programming (MINLP) technique that aims to mitigate the demand-generation mismatch.
Therefore, based on the network constraints and AC-optimal power flow, a modified IEEE
24 bus reliability test system (RTS) is examined to validate the efficacy of the proposed
methodology. Furthermore, a comparative analysis is performed to study the impact of
different ESS technologies on the overall system cost. The RTS is evaluated by integrating
renewable energy sources such as, solar and wind energy sources with advanced modern
ESS technologies, namely, lead-acid, sodium-sulfur (NaS), nickel-cadmium (Ni-Cd) and
Lithium-ion (Li-ion) batteries as shown in Figure 1. The contribution of this paper is
summarized as follows:

1. Cost optimization of energy storage system integration using the deterministic ap-
proach for optimal allocation and sizing to obviate the demand-generation mismatch.

2. Evaluate the impact of numerous combination of renewables energy mix and identify
its impact on the cost of energy storage requirement.

3. Identification and selection between various technological mix of energy storage
system in order to maximize the economical benefits as well as the technical integrity
of the power quality in the system.

Figure 1. Schematic of a typical building block of microgrid for hybrid solar-wind energy integration.

Therefore, the study is implemented for a combination of four different cases of
ESS types combined with four cases of renewable energy integration scenarios over a
time period of one year. The study reflects on the importance of selecting the optimal
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technological ESS type to gain the least cost along with demand satisfaction as well as, ESS
supply contribution to the microgrid.

The remainder of this paper is organized as follows. Section 2 illustrates the problem
statement and description of the formulation used for identifying the optimal size and
location of ESS. Section 3 shows the system constraint. Section 4 shows the simple case
study to test the proposed technique for the system and it discusses the simulation and
results after solving the optimization problem followed by the conclusion in Section 5.

2. Problem Formulation

The optimal operational schedule that determines optimal operational availability
of the generators, renewable resources, and the storage units that is required to meet the
entire load demand is solved using AC optimal power flow (AC-OPF) in GAMS software
(CONOPT solver) [25], as shown in Figure 2. The optimal load flow ensures to maintain
the system power quality integrity through the physical bounds and system constraints
and hence optimizes the cost function on storage system including the power exchanged
with network of utility grid. Therefore, the objective of this paper, is to optimally size the
storage system to solve OPF problem, where the optimal power flow aims to calculate the
power flow through transmission lines and the results are subjected to the constraints of
power flow limits in the transmission lines. Moreover, OPF is used to compute the optimal
selection of each generator.

Therefore, by aiming the optimal feasible solution of the total cost that includes
operational and investment of storage system, the objective function (OF) is formulated
as follows:

OF = min ∑
i,t

bgPg
i,t + ICESS (1)

Here, the active power generation by the thermal unit g situated at bus i for time
interval t is presented as Pg

i,t is active power (MW), bg is the line charging susceptance from
bus i to bus j. While the cost of investment (ICESS) that is required to establish the storage
system as computed using the following equation:

ICESS = PCESSPESS
R + ECESSEESS

R (2)

where, PCESS is the cost of the required ESS power (MW), PESS
R is the rated power of storage

energy, ECESS is cost of energy (MWh) for the ESS, and EESS
R is energy rating of the required

ESS storage system. Accordingly, the power flow (Pij,t) from bus i to j at time interval t
is formulated (3), that outlines the power generated from the conventional/renewable
generating units, energy storage systems in accordance in with the load demand.

∑
j∈Ωi

`

Pij,t = ∑
g∈Ωi

G

Pg
i,t + PS

i,t + Pw
i,t + Ppv

i,t − PL
i,t (3)

PS
i,t is the real power of storage system for charging and discharging, the active power

generation of the wind energy source at bus i time interval t is represented by Pw
i,t (MW),

the active power component of the load demand at bus i for the time instant t is represented
by PL

i,t, the active power flow at time instant t from bus i to bus j is presented using Pij,t.
The active power generated by the solar energy source situated at bus i for the time
instant t is depicted as Ppv

i,t (MW), and the number thermal generation unit situated at
bus i is defined using Ωi

G, and Ωi
` depicts the number of buses that are connected to bus

i. Furthermore, the charging/discharging of the ESS is emulated using their respective
charging/discharging coefficients (ηc/ηd) as follows:

PS
i,t = Pd

i,t/ηd − Pc
i,tηc (4)
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Figure 2. Flowchart algorithm for the proposed deterministic multi-input non-linear programming.

The reactive power flow is equal to the difference of the reactive power generated and
reactive power of the load in the system is computed using the following equation:

∑
g∈Ωi

G

Qg
i,t −QL

i,t = ∑
j∈Ωi

`

Qij,t (5)

where, the generated reactive power by the thermal unit g situated at bus i during time
interval t is represented using Qg

i,t, QL
i,t represent the reactive power component of the

load demand at bus i at at a particular time interval t, and the reactive power flow be-
tween bus i and j at time interval t is presented using Qij,t. Similarly, the circuit analysis
pertaining to the current flow and voltage profile is procured for analysis based on the
following equations:

Iij,t =
bVi,t

2
∠(δi,t +

π

2
) +

Vi,t∠δi,t −Vj,t∠δj,t

Zij∠θij
(6)

Iij,t, is the current flow of branch connecting bus i to j at time t, Vi,t is voltage magnitude
(pu) in bus i at time t, δi,t is voltage angle (rad) in bus i at time t, b represents the total line
charging susceptance from bus i to bus j, Zij is the impedance of the line between bus i
to bus j and θij is the difference between the phases of voltage and current in buses i and
j. Further, apparent power of the system is determined using (7); wherein, I∗ij,t indicates
the complex conjugate of the current phasor flow from unit i to j at time t, this derives
the calculation of the apparent power flow from bus i to bus j at a time interval t, that is
formulated as follows:

Sij,t = (Vi,t∠δi,t)I∗ij,t (7)

In addition, the determination of the real and reactive power flow of branch connecting
bus i to bus j at time t is formulated using (8) and (9) as follows:

Pij,t =
V2

i.t
Zij

cos(θij)−
Vi,tVj,t

Zij
cos(δi,t − δi,t + θij) (8)

Qij,t =
V2

i.t
Zij

sin(θij)−
Vi,tVj,t

Zij
sin(δi,t − δi,t + θij)−

bVi,t

2
(9)
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where, θij represents the angle between the real and reactive power at buses ij during time
t, and sin(θij) is the angle between the reactive and apparent power of buses ij at time t.

3. System Configuration and Network Constraints

The system under study consists of a modified IEEE 24 bus reliability test system (RTS)
that is evaluated based on the concept of hybrid renewable microgrid (Figure 3). The RTS
is integrated with hybrid renewable energy sources consisting of three solar PV and three
wind energy sources. The placement and capacity of these renewables technologies are
tabulated in Table 1. The system analysis is performed based on the one year data of the
generation and the load profile. The load demand and generation (solar and wind) profile
are depicted in Figure 4.

Figure 3. Modified IEEE 24-Bus distribution system with hybrid renewable energy sources.

Table 1. Capacity of the integrated renewables in the modified IEEE 24 bus system.

Bus Renewable Technology Capacity (MW)

3 Solar 60
8 Wind 200

10 Solar 60
14 Solar 60
19 Wind 150
21 Wind 100

Accordingly, to maintain the practical significance and the system integrity numerous
system constraints are taken under consideration. Firstly, the power balance constraint,
that posits obviation of demand-generation mismatch, that is, the total generated power
should always be equal to the load demand (PL

i,t). Moreover, the constraint is modified to
consider the operational characteristics of ESS (PS

i,t); representing their charge/discharge
operation. This is represented as:
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∑
g∈Ωi

G

Pg
i,t + PS

i,t + (Pw
i,t + Ppv

i,t ) = PL
i,t (10)

The power exchanged between the ESS and the grid is limited and depends on
transmission line capacity, which is taken to be negative when the power is discharged
from ESS and positive when the power is imported from the grid. This constraints is
formulated as:

− Smax
ij ≤ Sij,t ≤ Smax

ij (11)

Smax
ij , the maximum of transmission line capacity that limits import/export of power from

the grid. In addition, the power generation is always bounded within the operating limits
according to the capacity of unit i at time t that adhered in the computational analysis
using (12) and (13).

Pmin
g ≤ Pg

i,t ≤ Pmax
g (12)

Qmin
g ≤ Qg

i,t ≤ Qmax
g (13)

Pmin
g and Qmin

g , represents the minimum real and reactive power that can be achieved by
unit i respectively, and Pmax

g and Qmax
g states the maximum real and reactive power output

of unit i respectively [26]. In similar terms, each generation unit has a maximum increment
and minimum decrement rate during their adjustment to satisfy the load demand at each
time interval t. This is respectively defined as the ramp up and ramp down ratings of
the generation unit formulated in (14) and (15), wherein RUg and RDg, are the ramp up
and down ratings of the generator, respectively. These constraint has to be met and it is
formulated as following:

Pg
i,t − Pg

i,t−1 ≤ RUg (14)

Pg
i,t−1 − Pg

i,t ≤ RDg (15)
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Figure 4. Power profile of wind and solar energy sources based on wind speed and solar irradiance
over the span of one year.
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Accordingly, the constraints for the ESS are developed for computational accuracy.
Firstly, the total energy (EESS

i ) and power (PESS
i ) capability of the ESS is equal to the

rated energy (EESS
R ) of and power (PESS

R ) of the ESS that is emulated using (16) and (17).
The calculation of the energy stored (ES

i,t) by ESS unit i at time t with an incremental time
interval steps (∆t) in hours, is carried out using (18) [27]. The power and energy constraints
of ESS are assigned using (19) and (20), respectively. The stored energy in ESS, is limited by
its rated energy and is always taken as positive.

∑
i

EESS
i = EESS

R (16)

∑
i

PESS
i = PESS

R (17)

ES
i,t = ES

i,t−1 − PS
i,t∆t (18)

− PESS
i ≤ PS

i,t ≤ PESS
i (19)

0 ≤ ES
i,t ≤ EESS

i (20)

4. Results and Discussion

The generation and load data sets of the modified IEEE-24 bus system (Figure 1), over a
time horizon of one year is analyzed using AC-optimal load flow to maintain the power
quality as well the reliability of the power supply. The optimization problem is solved using
the proposed non linear programming, where the RTS is examined to optimally size BESS
under various DG condition and different technologies of BESS. The optimization problem
is solved to outline the efficacy of various scenarios of renewable energy mix, namely, solar
energy, wind energy, and hybrid renewable energy system. Moreover, different chemistry
mix of the ESS technologies are also calculated to evaluate their cost efficacy with the
renewable energy mix and perform a comparative analysis.The parameters of Battery ESS
technologies under consideration are tabulated in Table 2, that are based on their power
rating cost (PCESS), energy rating cost (ECESS), and efficiency (η) [28,29].

Table 2. Parameters of battery energy storage technologies under consideration.

Technology PCESS ($/kW) ECESS ($/kWh) η (%)

Lead-acid 200 200 70
NiCd 500 400 85
Li-ion 900 600 98
NaS 350 300 95

Firstly, four scenarios of energy mix are evaluated based on the renewable energy
integration. The first case consists of RTS system with only ESS integration. Accordingly,
RTS integrated with wind, solar and hybrid solar-wind are considered as the following
three test scenarios. The optimal size for each ESS technologies are determined using the
formulated MINLP technique as depicted in Tables 3 and 4. These results reflect that not
only the optimization algorithm derives and effects the optimality of ESS allocation but
also, the appropriate selection of ESS combined with the renewable energy mix significantly
influences an overall cost minimization in a long run. For instance, considering the
conventional case, lead acid type is $1,130,000 which significantly reduces to $961,000 in the
hybrid solar-wind RES case. This variation in cost is observed primarily, due the observable
difference the power and energy cost between the ESS technologies. In addition, the distinct
efficiencies between the respective technologies that signifies towards their operational
efficacy also actively contributes towards the variation in cost that is experienced.

Accordingly, the availability of the renewable output power also influences the size of
ESS. Based on the results obtained, the availability of individual wind energy throughout
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the year reduces the overall required size of ESS across each ESS technologies, in compari-
son to the individual solar energy that is highly dependent on the availability of sunlight.
Moreover, peak fluctuations are comparatively less in case of wind energy technology.
Nevertheless, these are highly mutable depending of the topographical dominancy of the
renewable resource. Therefore, the hybrid solar-wind renewable energy mix is posited to
acquire the best cost minimization of optimal ESS size that is required to maintain a reliable
and secure power network with appropriate power quality.

Table 3. Overall cost for incorporating Lead Acid and Ni-Cd type for various scenarios of energy mix.

Category
Lead Acid Ni-Cd

ICESS ($) OF ($) ICESS ($) OF ($)

Conventional 2536.6 1.13 × 106 10226.93 1.11 × 106

Wind 6216.799 9.81 × 105 12,371.34 9.79 × 105

Solar 2702.393 1.10 × 106 9790.527 1.09 × 106

Hybrid 6617.558 9.61 × 105 15,227.79 9.49 × 105

Table 4. The overall cost for incorporating Li-ion and NaS type for various scenarios of energy mix.

Category
Li-Ion NaS

ICESS ($) OF ($) ICESS ($) OF ($)

Conventional 14,388.53 1.14 × 106 12,653.51 1.09 × 106

Wind 23,032.65 9.60 × 105 11,963.76 9.51 × 105

Solar 21,324.72 1.07 × 106 11,283.28 1.07 × 106

Hybrid 22,646.75 9.43 × 105 12,677.65 9.33 × 105

Similarly, despite the high cost associated in the investment cost of certain ESS tech-
nology. The total estimated cost might be lower. For instance, the investment cost for
Lead Acid type in hybrid system is $6617.558, whereas in Li-ion type, the investment
cost for hybrid system is observably higher at $22,646.75. However, the total cost of Lead
Acid technology was $961,000 and in Li-ion technology was $943,000. Figures 5–8 are
simulated to analyse and study the impact of NaS ESS technology on the overall system
performance based on power quality and cost. The developed results indicate that ESS
minimises the usage of thermal units and in combination with different mix of renewable
energy the minimization of thermal unit usage can be further obviated with optimization of
the total operating cost according to the running period. Therefore, NaS battery proves to
be most cost-efficient solution among the storage technologies in terms of initial investment
and operational cost. Definitely the parameters of solar or wind data vary depending on
the applied location as well as the seasons, where the system is operated. Furthermore,
a comparative stimulative study has been conducted to study the impact of their tech-
nological characteristics on the hybrid renewable energy system. The proposed MINLP
is implemented for the ESS technologies under consideration to derive their distributed
optimal allocation and size. The results obtained are depicted in Table 5.
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Figure 5. Power profile of the modified IEEE 24 RTS with conventional generation system and ESS.
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Figure 6. Power profile of the modified IEEE 24 RTS integrated with wind energy source and ESS.
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Figure 7. Power profile of the modified IEEE 24 RTS integrated with solar energy source and ESS.

So, despite a higher cost at the initial stages of capital investment for the Li-ion
batteries, it has observably minimized the total cost in comparison to Lead Acid type.
Figure 9, reflects the overall cost difference associated based on different renewable energy
mix in combination with the impact on the cost minimization with numerous different
chemistry mix of ESS technologies considered in the study. Observably, NaS based ESS
technology incorporated with hybrid renewable resources proves to be the best option.
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Figure 8. Power profile of the modified IEEE 24 RTS integrated with hybrid solar-wind energy
sources and ESS.
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Figure 9. Bar-graph representation of the overall resultant optimized cost obtained for different
renewable energy mix with different technological ESS mix.

Table 5. Allocation and size of the energy storage systems.

Lead-Acid Ni-Cd Li-Ion NaS

Bus Rating
(MW) Bus Rating

(MW) Bus Rating
(MW) Bus Rating

(MW)

3 0.397 3 0.536 1 0.033 1 0.117
4 0.062 4 0.21 2 0.034 2 0.108
5 0.015 5 0.155 3 0.65 3 0.539
6 0.438 6 0.649 4 0.248 4 0.232
7 0.237 5 0.211 5 0.215
8 1.219 7 0.347 6 0.678 6 0.68
9 0.514 8 1.263 7 0.392 7 0.342

10 0.386 9 0.596 8 1.265 8 1.326
9 0.697 9 0.581

13 0.279 10 0.416 10 0.515 10 0.384
14 0.399 13 0.402 13 0.44
15 0.419 11 0.018 14 0.576

18 0.463 14 0.593 13 0.382 15 0.6
15 0.443 14 0.648 18 0.105

19 0.591 19 0.368 19 0.231 19 0.452

Total 5.419 Total 5.978 Total 6.002 Total 6.697

5. Conclusions

In this paper, a cost optimization technique using a deterministic approach based on
multi-input non linear programming is proposed to optimize the sizing and allocation of
energy storage systems. The optimization aims to achieve an optimal allocation as well
as sizing of the energy storage system (ESS) to minimize the ESS cost in accordance with
the operational dynamics of a power network. This study comprehensively articulates the
impact of the renewable energy mix on the cost optimization problem for various energy
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storage system that is pertinent at planning phase during the initial stages of sustainable
energy development in the electricity sector. Numerous renewable generation scenarios
are considered in this study and the optimization problem is solved using GAMS software.
Furthermore, a meticulous study is presented to outline the impact of the renewable energy
mix on the various technologies of energy storage system. A combination of four renewable
energy integration scenarios (conventional, wind, solar, hybrid) has been presented across
four technologies of energy storage (nickel-cadmium, sodium sulfur, lead-acid, and lithium-
ion) based on the proposed optimization technique to evaluate and formulate the most
cost efficient energy mix to establish a sustainable power network. The test system under
consideration is a modified IEEE 24 bus system that is analyzed over a time period of
one year. Among the scenarios of renewable energy mix it has been observed that the
uniformity in the availability of renewable power significantly governs the storage sizing
and implementation cost as the degree as well as the intensity of the generation fluctuations
predominantly governs the storage rating. Therefore, hybrid renewable energy system is
identified as the most suitable solution. Accordingly, in case of the storage technologies it
has been observed that, irrespective of the initial investment cost the overall operational
cost based on energy transference and storage efficiency governs its power availability
and usage, that inherently justifies its cost effectivity. Based on the results obtained,
sodium-sulfur battery proves to facilitate the most cost-efficient solution among other ESS
technologies considering load, system dynamics, thermal generation cost, and storage cost.
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Abbreviations
The following abbreviations are used in this manuscript:

bg Line susceptance from bus i to bus j
BESS Battery energy storage system
δ Voltage angle (radian)
∆t Time step in hours
Dt Demand at time t
ESS Energy storage system
ηc Charging efficiency
ηd Discharging efficiency
ES

i,t Energy storage of the unit i at time t
EESS

R Rated energy of ESS
EESS

i Total energy produced by ESS of unit i
ES

i,t Energy stored in ESS at bus i at hour t
ECESS Energy cost of ESS per MWh
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Iij,t Current flow at branch from bus i to j
ICESS Investment cost of ESS
Li− ion Lithium-ion
MINLP Mixed-integer-nonlinear programming
NaS Sodium sulfur
NiCd Nickel Cadmium
Ωi

` Ramp down of the unit i
OF Objective function
Pc

i,t Power charged by ESS of unit i at time t
Pd

i,t Power discharged by ESS of unit i at time t
PESS

i Total power produced by ESS of unit i
PESS

R Rated power of ESS
Pg

i,t Power generation of unit i at time t
Pij,t Power flow from bus i to bus j at time t
PL

i,t Active power component of demand in bus i at time t
Pmax

g Maximum limits of real power generation of thermal unit g connected to bus i
Pmin

g Minimum limits of real power generation of thermal unit g connected to bus i
Ppv

i,t Solar energy power output of unit i at time t
PS

i,t Real power difference between charging and discharging
Pw

i,t Wind power output of unit i at time t
PCESS Cost of ESS power per MW
RES Renewable energy sources
RTS Reliability test system
Qij,t Reactive power flow from bus i to bus j at time t
Qg

i,t Reactive power of unit i at time t
QL

i,t Reactive power component of demand in bus i at time t
Qmax

g Maximum limits of reactive power generation of thermal unit g connected to bus i
Qmin

g Minimum limits of reactive power generation of thermal unit g connected to bus i
QS

i,t Reactive power difference between charging and discharging
RUi Ramp up of the unit i
t Hour index
Smax

ij Maximum apparent power output in the transmission line
Smin

ij Minimum apparent power output in the transmission line
Sij,t Apparent power flow of branch connecting buses ij during time interval t
Vi,t Voltage magnitude (p.u.) of bus i during a time interval t
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