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Abstract: The small commercial stores opening in housing structures in Seoul have been soaring since
the beginning of this century. While commercialization generally increases urban vitality and achieves
land use mix, cafés and restaurants in low-rise residential areas may attract numerous passenger
populations, with increased noise and crimes, in the residential area. The urban commercialization
is so fast and prevalent that neither urban researchers nor policymakers can respond to it timely
without a practical prediction tool. Focusing on cafés and restaurants, we propose an XGBoost
machine learning model that can predict commercial store openings in urban residential areas and
further play the role of an early warning system. Our findings highlight a large degree of difference
in the predictor importance between the variables used in our machine learning model. The most
important predictor relates to land price, indicating that economic motivation leads to the conversion
of urban housing to small cafés and restaurants. The Mapo neighborhood is predicted to be the
most prone to the commercialization of urban housing, therefore, its urgency to be prepared against
expected commercialization deserves underscoring. Overall, our results show that the machine
learning approach can be applied to predict changes in land uses and contribute to timely policy
designs in rapidly changing urban context.

Keywords: commercialization; urban residential area; land use prediction model; machine learning;
XGBoost; random forest

1. Introduction

In South Korea, the Act of National Territorial Planning and Land Use designates
urban residential areas against commercial and industrial uses to protect the safe and
sound living environment. An exception to the scope of commercial and industrial use
includes small retail stores that can open and operate in existing residential structures (e.g.,
the first floor of a two-story multifamily structure) in order to facilitate the local residents’
easy and frequent access. Some kinds of the small stores—such as the laundry room, small
office, and kids’ afterschool program—are embedded into the residential area, while the
café and restaurant have pros and cons when opened in low-rise residential areas. Cafés
and restaurants play positive roles in cities, such as increasing urban vitality, providing
street natural surveillance, achieving land use mix, and increasing walkability and urban
sustainability. In contrast, cafés and restaurants may raise a serious policy concern derived
from the increased passenger population and noise, and further gentrification and even
crimes. Particularly in the context of South Korea, public awareness of the negative effects
on surrounding residential areas has also been rising in recent years.

The major competing explanations on the commercialization of urban housing empha-
size institutional niche and gentrification pressure. Other empirical explanations include
incidence rate, pace of the urban transition, and the changing trend over time. Furthermore,
studies by architects and urban designers suggest that because small commercial stores fit
into narrow floor areas, they can open in small housing structures compared to mid- and
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high-rise commercial buildings. Neighborhood-specific contexts also matter in explaining
the commercialization of urban housing as seen in other countries [1].

A puzzling problem for researchers and policymakers is that the change in the urban
residential context in Seoul is so fast and widespread that a timely response is challenging.
In other words, the currently existing tools are not sufficient to answer the question of
“where is next?” Although one solution would be to change the law and rewrite the local
land use regulations, a tool that can predict rapidly spreading urban events and potentially
play the role of an early warning system is still needed [1].

To fill this gap, we propose a model that predicts the commercialization of urban
housing in Seoul via the machine learning technique. We are not suggesting a new theory
or discounting existing evidence derived from traditional approaches. Rather, our con-
tribution is threefold. First, we attempt to contextualize an emerging machine learning
approach in urban research. Second, we show that the XGBoost machine learning model
outperforms the random forest machine learning model and the traditional binary logit
model, given their imbalanced data structures. Third, this study is the first that specifically
focuses on cafés and restaurants opening in urban housing structures in Seoul.

This paper proceeds as follows. Section 2 provides a trend in commercialization of
urban housing in Seoul and a review of the existing explanations. Section 3 summarizes the
data assembly, variable construction, alternative model nomination, model determination
and specification, and tunings. In Section 4, we demonstrate partial-data prediction results
and then full-data predictions. Section 5 discusses and Section 6 concludes.

2. Background
2.1. Spread of Café and Restaurant into Urban Residential Area in Seoul

In South Korea, commercial stores are generally required to receive permits and
licenses to ensure legitimate opening. Those permit and license requirements aim to protect
public health as well as to preserve the surrounding environment, particularly in and
close to residential areas, which are similar to a business license, employer identification
number, and other permit requirements in the U.S. The legal procedure has long preserved
residential areas throughout South Korea, especially in Seoul, against rapid urbanization,
which has been often accompanied with conversion of the entire or a part of the residential
structure to commercial use.

However, café and restaurant openings have been rapidly emerging in residential
areas across Seoul (see Figure 1). Around one thousand cafés and restaurants opened in
residential areas in 1990, which has nearly quadrupled in the past three decades, reaching
3896 openings in 2018. Restaurant openings have continuously increased since 1990, except
the upsurge in the years followed by the 1997 Asian financial crisis and the International
Monetary Fund (IMF) interventions.

Of note is the advent of cafés in residential areas since the beginning of this century.
Only 22 cafés opened per year back in the 1990s. During the early-2000s recovery from the
financial crisis, however, a much greater number of cafés started to open in residential areas
though sill much fewer than restaurant openings, which were largely led by individuals
who lost their job under the financial crisis. Starting in the mid-2000s, however, café
openings in residential areas rapidly increased and then plateaued in recent years recording
nearly one thousand additional openings per year. For that trend, Seoul had the most
Starbucks, 284 stores in 2014, in the world, which was even greater than 277 stores in the
city of New York, U.S.
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Figure 1. Trend in annual openings of cafés and restaurants in residential areas, 1990 to 2018, city of Seoul, South Korea.

2.2. Existing Explanations on Commercialization of Urban Housing

The following two main streams of literature dominate the explanation on the com-
mercialization of urban housing: institutional niche [2,3] and gentrification pressure [4,5].
Other empirical explanations include incidence rate, pace of the urban transition, and the
changing trend over time [6,7]. Furthermore, studies by architects and urban designers
suggest that because small commercial stores fit into narrow floor areas, they can open
in small housing structures compared to mid- and high-rise commercial buildings [8–10].
The commercialization of urban housing can also be explained by the place-specific phe-
nomenon as seen in other countries such as the U.S. and China, or European nations, who
experience similar urban commercialization in different contexts [11–14].

2.2.1. Institutional Niche of Waiver from Permit Requirement

The Act of National Territorial Planning and Land Use protects residential areas
against potentially hazardous uses to secure the safe and sound living environment, similar
to zoning in the U.S. An exception by law is small stores—such as cafés, restaurants, and
supermarkets—and those stores are allowed to operate within and close to residential
structures to facilitate the local residents’ easy access. A common finding is that the
waiver provides an institutional basis for the rapid spread of small commercial stores into
residential areas [2,3].

2.2.2. Commercial Gentrification Pressure

On top of the institutional base, the gentrification explanation dominates scholarly
discussions on urban commercialization and its impact on nearby neighborhoods. Unlike
the western context of neighborhood change, gentrification in South Korea is often under-
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stood as large-scale (re)development that turns a cluster of existing lower-floor housing
structures into a new complex (or superblock) of high-rise apartment buildings [4,5,15].

Contrasting to the large-scale residential gentrification, the spread of cafés and restau-
rants into urban housing occurs in Seoul at a much smaller scale than individual structures.
Studies found that single-family housing structures, either attached or detached, are most
prone to commercialization [7,16,17]. Restaurants and cafés may also attract a large number
of passenger populations, and in turn may affect residential areas through increasing real
estate price [2,18], reducing affordable housing stock for the poorest households [6], and
displacing existing lower-income residents [17,19]. Of alarming evidence is that it is very
unlikely that a once-commercialized structure returns to the original residential use because
commercialization often involves physical changes to the structure [10].

2.2.3. Location, Extent, and Pace of Commercialization

Additional empirical studies focus on one or a few selected places for in-depth site
analyses. Studies find that café and restaurant openings are geographically concentrated in
some residential areas across the city of Seoul, mostly main commercial corridors [9,20–23]
and hot places for young adult populations such as Millennials [3,7,10,16,20,24].

Residential commercialization evolves relatively slowly in a geographically limited
area, but it expedites once the commercial demand meets supply [6]. Another research
showed that competition between the retails stores becomes fiercer, and the pace of neigh-
borhood change has also become more rapid in recent years [7,25]. The spread of cafés and
restaurants not only occurs horizontally in an urban context but also vertically in two- or
three-floor residential buildings [26].

2.3. Machine Learning Approach in Context of Urban Research

The machine learning technique, often jointly with big data and artificial intelligence
approaches, has been emerging in general urban studies, particularly among land use
modelling studies and neighborhood change research [8,12,13,27–34]. The traditional econo-
metric model is used to test hypotheses and draw inferences about the possible relation
between explanatory variables and land use changes. The traditional models are also used to
estimate the marginal effect of explanatory variables, which helps policymakers to develop
an effective land use policy and responses to neighborhood changes, especially gentrifica-
tion and displacement [27,29]. The causality-focused approach tends to simplify data to
meet multiple assumptions, such as independency of explanatory variables, normal distri-
bution of data, linearity of dependent and independent variables, among many [12,28]. The
explanatory advantage of the traditional econometric model, however, does not necessarily
provide high predictability due to its innate assumptions [13,23,31,32].

The machine learning approach fills the gap by prioritizing predictive power over
inference. A high prediction accuracy of the machine learning method arises from its
ability to model a complicated non-linear relationship, including threshold changes. This
contrasts to the existing cellular automata and agent-based models (ABMs), in that those
models operate according to variables and rules defined by the researcher. For that reason,
the progress of the machine learning technique in South Korean urban scholarship has
been mostly made to predict a continuous target (dependent) variable whose pattern
is more easily identified than its categorical counterpart. For example, the house price
prediction model has been of most interest among researchers through a variety of machine
learning and artificial intelligence approaches, such as the deep neural network (DNN),
long short-term memory network (LSTM) [35], gradient boosting model, decision tree
model [36], random forest model [37], and artificial neural network (ANN) [38]. In contrast,
the categorical target variable has been less explored by the machine learning method,
though a few recent studies were conducted to predict land use changes and land value
brackets, and to develop a land cover classification [20].

The limitations of the machine learning approach should be noted. A lack of a
standardized model is a limitation for urban researchers to adopt and utilize the machine
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learning technique [12,32]. Unlike traditional econometric models, which should result
in the same result from the same inputs, the machine learning approach may result in
different results even from the same inputs [13,29]. Furthermore, the end result is sensitive
to how the training and testing data are defined from the same universe of samples, which
requires careful data processing [13,30].

3. Data and Methods

This study predicts which residential parcel is most prone to café and restaurant
opening and to determine which conditions in those parcels may have led to the greater
commercialization probability. We built machine learning models and comparable bi-
nary logit models to predict commercial opening in urban housing and to evaluate the
importance of different predictor variables that facilitate or limit urban commercialization.

The machine learning approach involves a series of steps as diagramed in Figure 2.
First, we assemble data and build target and predictor variables. This study nominates
alternative models and determines the XGBoost model and random forest model as final
models. We divided data into train data and test data, and a cyclical process—training,
testing, and tuning—was repeated until it reached the highest prediction accuracy. Based
on the test-data analysis, we performed full-data prediction for the entire city of Seoul.

Figure 2. Workflow of machine learning approach.

3.1. Assembling Data

This study combines data from multiple sources, most of which are derived from the
national databases collected by South Korea government and local jurisdictions, to predict
café and restaurant openings in residential structures. This is an aggregate-level analysis
of parcels, rather than an individual building structure-level analysis with markers for
land parcels. Our sample comprises 278,647 residential land parcels, which are designated
for single-family housing structures and other smaller residential structures, which is
explained in the following section. The sample accounts for 74.7% of all residential parcels
in Seoul. The city consists of 25 constituent Gus for which we built dummy variables to
control Gu-specific characteristics.

3.2. Constructing Target and Predictor Variables

We collected physical and socioeconomic characteristics of individual residential
structures as well as land parcels and neighborhoods, including 40 independent (predictor)
variables in total. Given that the beginning year of our dependent (target) variable is 2011,
we attempted to collect 2011 data though a slightly earlier or later year is used instead
depending on data availability. Definitions of target variable and predictor variables are
summarized in Table 1.
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Table 1. Definition of target and predictor variables.

Variable Category Sub-Category Variable Description and Unit of Measure

Target Café and restaurant opening =1 if opened in 2011–2016; =0 otherwise

Predictor Building
structure

characteristics
Parcel building structure

Total floor area (square meters)
Year structure built (year)
Structure type (dummy)

Land parcel
characteristics

Economic value
Parcel price (Won per square meters)

Relative price premium

Access to transportation

Area of parcel (square meters)
Width of the major adjacent road (meter)

Number of adjacent roads
Distance to bus stop (meter)

Distance to city subway station (meter)
Distance to interregional rail station (meter)

Access to education

Distance to kindergarten (meter)
Distance to elementary school (meter)

Distance to middle school (meter)
Distance to high school (meter)
Distance to university (meter)

Access to facility

Distance to public building (meter)
Distance to public facility (meter)

Distance to franchise supermarket (meter)
Distance to large hospital (meter)

Distance to large sports center (meter)
Distance to large museum and gallery (meter)

Distance to public parking (meter)

Access to green space

Distance to park (meter)
Distance to green field (meter)

Distance to river except Han River (meter)
Distance to Han River (meter)

Land use regulation 4 zones (dummy)
25 Gus (dummy)

Neighborhood
characteristics

Land price Average parcel price in neighborhood (Won)

Population and jobs

Total population
Single-person share (%) of total households

Number of jobs
Number of average daily passenger population

Building structure
Average floor area ratio (FAR)

Old structure share (%) of building structures
Residence share (%) of building structures

Transportation
Road share (%) of neighborhood area

Number of bus stops
TOD share (%) of neighborhood area

Notes: TOD area means transit-oriented development area which is geographically identified within 500 m from city subway station.

3.2.1. Café and Restaurant Opening in Residential Structure

This study identifies café and restaurant openings at the land parcel level by using
national administrative records on commercial permits. The data collect daily counts of
permits and licenses authorized for every café and restaurant and therefore sampling error
does not occur. Other types of commercial stores—such as apparel shops and office supply
stores—that neither sell alcohol nor cook raw ingredients can be waived from permit and
license requirements as long as they meet mandated guidelines. Our sample of cafés and
restaurants is not eligible for the waiver. A binary target (dependent) variable is identified
either 1 (opening) or 0 (no-change) for individual parcels. Opening means that one or more
new cafés and restaurants opened in a given residential parcel between 2011 and 2016. We
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aggregated any of the four major constructions (new construction, structure expansion,
major repair, and use conversion) between 2011 and 2016 as well as café and restaurant
openings for the same time period for individual parcels. Due to data accuracy limitations,
we do not attempt to match the specific year of major construction to the specific year of
café and restaurant openings. Otherwise, the binary variable is coded zero, indicating no
change. Note that a parcel that is used for multiple land uses—such as both residential
and commercial—is identified as residential only if its majority use in terms of floor area
is residential.

We focus on single-family residential structures, either attached or detached, and
smaller-sized residential structures that are located on parcels zoned as an exclusive
residential area and the general residential area. We exclude the 3rd-tier general residential
area because it is often filled with high-rise apartment buildings which rarely allow café
and restaurant openings. Also excluded is the semi-residential area, which is in fact mainly
used for commercial purpose.

3.2.2. Building Structure Characteristics

Residential structures on the same land parcel may have distinct physical and socioe-
conomic characteristics. Small-sized residential structures in Seoul are generally similar in
height and volume because building-to-land ratio and floor area ratio are strictly regulated
by zoning. The physical similarity plays an important role in the prediction model because
it provides a spatially consistent urban context on which predictions are conducted. We
identified three characteristics such as year structure was built, structure type, and total
floor area.

Year structure was built specifies the age of the structure. A categorical variable
is also built to identify structure type to consider that, unlike single-family structures,
units within the same multifamily structure can be used for different uses. Single-family
structures can be either detached or attached while a multifamily structure includes 5 or
lower floors, excluding apartments that are generally 6 or higher floor buildings with an
elevator. Apartments are prevalent across the city of Seoul but especially concentrated in
Gangnam areas, which will be visually shown in the result section.

Size of building structure may affect size of potential commercial store and even its
opening decision. Floor area ratio to reflect the building size effect on café and restaurant
openings, which is derived by summed floor areas of all structures in each parcel because
we cannot exclude areas of base floor and others. Detailed uses were collapsed into eight
broader uses, including lower-density residential, higher-density residential, neighborhood
facilities, commercial use, industrial use, religious use, hotels, education and research,
restaurants, and others.

3.2.3. Land Parcel Characteristics

Many studies have characterized influences of the built environment on passenger’s
travel behavior, which should be of most importance to commercial store openings [39–42].
Given our spatial unit of analysis is land parcel, parcel characteristics should be most
critical in the model specification, which largely consist of economic value, accessibility,
and land regulation.

Economic value of land parcel is emphasized as a major leading factor of urban
commercialization and is typically specified in two ways—absolute level of land price and
relative land price premium [2,3,18]. The land price is derived from the national land price
estimate (thousand Won/m2) which is announced by the South Korea government every
year. We also considered land price premium, which is calculated as the parcel land price
divided by the average 500 m × 500 m grid land price where the parcel belongs.

Accessibility should be of most importance to opening decisions on any commercial
stores [7,9,10,17,26,43]. We used the GIS technique to measure Euclidean distance (so
called as the crow flies distance) between parcel centroid and a variety of built envi-
ronments [44–53], including transit (bus, city subway, and interregional rail) station,
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educational structure (e.g., K-12 school and university), public building (e.g., city hall,
library, fire station, and police station), franchise supermarket, large hospital, sports
center, museum, gallery, public parking, and green space (e.g., park, green field, Han
River, and other rivers). We also consider car accessibility by including area of parcel,
number of the adjacent roads, and width of the major adjacent road.

Land use regulation should precondition whether a residential parcel can be converted
to commercial use or not. We factor in two variables, such as zoning and Gu dummy.
Zoning variable is categorical—1st and 2nd exclusive residential area and 1st and 2nd
general residential area—to reflect land use regulations. Individual parcel geographically
belongs to one of 25 Gus in Seoul, which reflects Gu-specific characteristics that may affect
commercial store opening in housing structures.

3.2.4. Neighborhood Characteristics

Opening decision on a new café and restaurant should be affected by neighborhood
characteristics. We utilized 500 m-by-500 m fishnet of the entire city of Seoul as a set of
individual neighborhoods, which are built by the South Korean government. A variety of
socioeconomic and built environment characteristics are identified at the grid level and
thus different parcels located in the same grid share the same four groups of neighborhood
characteristics—land price, population and jobs, building structure, and transportation.

Neighborhood land price represents average price per meter squared (thousand
Won/m2) of each grid. We built variables about neighborhood population and jobs,
which proxy commercial demand. We built four different commercial demand variables—
population, single-person share of households, jobs, and the average number of daily
passenger population—to fully account for different sources of commercial demand; the
population and single-person household reflect resident demand while the jobs and pas-
senger population represent non-resident demand.

Neighborhood building characteristics include physical and socioeconomic attributes
of all buildings within each 500 m × 500 m grid, such as floor area ratio, old structure (built
in 30 years or earlier) share, and residential structure share. We also created neighborhood
transportation characteristics that reflect overall transit accessibility of each grid, which
is distinct from the previously described parcel-level accessibility variables that measure
transit access to individual parcel [54–57]. We built three variables, such as road area
share, number of bus stops, and transit-oriented development area (within 500 m from city
subway station) share.

Alternative measures and potential limitations of the specified variables in this study—
such as density measure [52], mesoscale factors [34], and micro-level street network [8]—are
discussed in the conclusion section.

3.3. Nominating and Determining Machine Learning Models

In general, machine learning models are nominated and determined in terms of
data characteristics, including type of target variable, number of predictors, sample size,
and overall data structure. Basically, we predict whether a café or restaurant opens on
a given residential parcel, which leads us to nominate machine learning models that are
appropriate for binary prediction. Despite other available models such as ANN (artificial
neural network) and SVM (support vector machine), we nominate the XGBoost model as
our main model for two reasons. First, the XGBoost model allows a wide range of fine-
tunings and flexible weighting, which can lower the degree to which model predictions
are skewed towards no-change due to the imbalanced structure of our data. This ability to
reduce model overfitting in imbalanced data is the most important reason to adopt XGBoost.
Second, the XGBoost model is featured by its fast computing, which is appropriate to deal
with a large sample size (278,647 parcels) and 40 different predictors, in addition to the
exploratory model running about over 8 million combinations of parameters and weights.

For comparison purposes, we nominated two binary models—random forest model
and binary logit model—and performed test-data predictions. The decision tree model—
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preceding version of random forest model—is often used due to its intuitive display of
prediction results. However, it accounts for a single parameter at a time among multiple
parameters (i.e., hierarchy of tree structure). For that reason, the more parameters in the
model, the more likely the problem of overfitting occurs. A large number of parameters
may also entail biases because a minor change in train data would lead to major changes
in the end result. To address the limitations of the traditional decision tree, Breiman
introduced the random forest model that operates through shallow decision trees based on
randomly selected sub-samples and parameters [56]. Though individual shallow models
have relatively weak explanatory power, the sum of those numerous weak models provide
very strong and consistent predictions. An additional advantage of random forest is to
alleviate the problem of overfitting and multicollinearity by randomly selecting a small
number of parameters. Random forest is also less sensitive to outliers than traditional
models and operates efficiently with parameters of different types.

The XGBoost model, first introduced by Chen and Guestrin, is one of the most widely
used machine learning models [57]. It made significant improvements from the existing
gradient boosting model in terms of model efficiency, prediction accuracy, and computing
time. The XGBoost model creates multiple decision trees as random forest does. The key
difference between XGBoost and random forest is that random forest creates independent
trees while XGBoost creates interrelated tress. An XGBoost tree evolves and advances by
reflecting errors of the previous tree. For that reason, model accuracy often increases as the
number of trees increases in the XGBoost model, requiring efficient model specifications.
XGBoost is known to result in more accurate predictions when parameters are imbalanced
because it weighs individual trees depending on their accuracy, while random forest simply
sums up trees through a process called voting.

3.4. Specifying XGBoost Model and Random Forest Model

We divided the full sample (278,647 parcels) into a 70% data (196,053 parcels) for
the purpose of training—a similar process as repeated running of regression models to
determine best-fitted model—and the remaining 30% data (83,594 parcels) for testing
the trained model. Testing is followed by tuning in which we made adjustments to the
prediction model in order to increase prediction accuracy. We repeated the cyclical steps
until the model does not make additional improvements.

We inputted test data into the trained model to validate generalizability of the model,
specifically validity and prediction accuracy. A significantly lower prediction rate in test
data than that in train data implies overfitting. We used the k-fold cross validation test that
divides training data into k sub-data. The first sub-data (i.e., k-1 data) is used for testing
and the remaining sub-data is used for training. A parallel process is repeated k times
while improving model performance.

Random forest utilizes out-of-bag (OOB) samples that are not used for training pur-
poses because the algorithm randomly selects samples for individual trees. An advantage
is that the model can use OOB samples for test purposes to estimate OOB error. This study
uses the OOB error instead of k-fold cross validation because it is similar with k-fold cross
validation in that they both use a part of the training data for test. XGBoost also includes
the k-fold cross validation process within its algorithm.

We used a confusion matrix to compute model accuracy, sensitivity, and specificity
(see Supplemental Table S1 for summary of conceptual elements of confusion matrix). In
case of imbalanced data structure, accuracy may be skewed towards a more prevalent
incidence of data (no-opening in this study). Thus, we computed balanced accuracy to
prevent the potential skewness and draw a receiver operating characteristic curve (ROC
Curve) in combination with sensitivity and specificity. Test measures based on confusion
matrix are as follow:

Accuracy =
TP + FN

TP + FP + FN + TN
(1)

Sensitivity =
TP

TP + FP
(2)
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Speci f icity =
FP

FP + TN
(3)

Balanced accuracy =
Sensitivity + Speci f icity

2
(4)

The random forest approach creates multiple alternative prediction models which
are compared to each other in terms of precision–recall curve’s area under curve (AUC),
identifying the best random forest model. We took the same approach to the XGBoost
model and identified the best-fitted XGBoost model. Given the café and restaurant openings
account for only 3.7% of all residential parcels in Seoul—in other words, data structure is
imbalanced—common accuracy indicators may overestimate prediction of no-opening and
may lead predictions towards the 96.3% majority cases (no-opening).

Alternative indicators, such as kappa coefficient and F1-score, have proven more
appropriate for evaluating model predictions based on imbalanced data [57]. Kappa coeffi-
cient shows prediction accuracy that reflects imbalanced data structure by comparing the
common accuracy indicator with the probability accuracy indicator as shown in equations
below. P0 shows the common accuracy rate while Pe is hypothetical probability of change
agreement. Kappa coefficient measures relative accuracy by subtracting the Pe from all
probability (1 or 100%) in denominator as well as from P0 in numerator, in order to capture
net model contribution to prediction accuracy.

Kappa =
P0 − Pe

1 − Pe
(5)

P0 =
TP + TN

N
(6)

Pe =

(
TP + FN

N
× TP + FP

N

)
+

(
FP + TN

N
× FN + TN

N

)
(7)

N = TP + FP + FN + TN (8)

Separately, F1-score equals harmonic mean of precision and recall rate as shown in
equations below. The score reflects precision of predicted opening locations as well as
recall rate of data itself.

P0 =
TP + TN

N
(9)

F1 − score = 2 × Precision + Recall
Precision × Recall

(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

3.5. Tuning XGBoost Model and Random Forest Model
3.5.1. XGBoost Model Tuning

We carefully set (interchangeably tune) parameters and weights in the XGBoost model
and reached a final model that produces stable and the most accurate prediction. For
robustness check, we tested alternative tunings and confirmed largely consistent prediction
results. The alternative tuning results are described in this section and relevant tables and
figures are provided in the Supplementary Material of this study.

The XGBoost model consists of largely three types of parameters, including general
parameters, learning task parameters, and boost parameters. First, the general parameters
specify which booster we use to conduct boosting (i.e., tree or linear model). We adopted
the gbtree booster type, which is appropriate to classify binary target variable and control
for the overall functioning of our model.
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Second, the learning task parameters relate to evaluation and decision on a series
of learning scenarios. The area under the precision–recall curve (AUCPR) was adopted
as evaluation metric which can alleviate the issue of model overfitting by weighing less
frequent cases; in this study, openings of cafés or restaurants. We compute and obtain the
weight variable of 47.436, which equals to the number of more frequent cases (no-changes)
divided by the number of less frequent cases (opening), as described in the official XGBoost
model website. An alternative of 6.887—square root of 47.436—is also tested.

Third, tuning tasks in the XGBoost model are often focused on adjusting a set of
booster parameters because they control for the performance of boosters. In order to
reach the best model, we fine-tuned seven booster parameters—maximum depth of tree,
minimum sum of instance weight, minimum loss reduction, subsample ratio of columns,
subsample ratio of training instances, L1 regularization term on weights, and learning
rate—separately for each of the two weights (see Supplemental Table S2 for summary of
weights and booster parameters). We conducted a somewhat laborious fine-tuning, which
involves running 8,131,200 possible combinations of parameters and weights as parameters
change by a unit at a time for a given weight. For the example of the booster parameter on
the maximum depth of the tree, we would start with the default value of 6 and test it from
3 through 10 by a unit of 1, and eventually reach the final value of 3 (see Supplemental
Table S2 for details on range, unit, default value, and final value for booster parameters
and weights).

The best combination among the 8,131,200 results has an F1-score of 0.327 given
the weight of 6.887, which outperforms combinations based on the weight of 47.436 (see
Supplemental Figure S1 for F1-score for combinations of parameters and weights). F1-score
also appears much more stable under the weight of 6.887 than 47.436 when we cross-
validate it against the most impactful booster parameter on the maximum depth of the tree
(see Supplemental Figure S2 for F1-score for cross-validation between weight and booster
parameter on the maximum depth of the tree).

For final model validation, we computed a cross-validation error—AUCPR as discussed—
and saw if our final model could achieve convergence with whichever partial data (sub-data)
was given from the whole train data. We first randomly divided train data into five sub-data (5-
folds). Four of the five sub-data were used to train the model and the remaining sub-data was
used to test the trained model, which was repeated for each of the five sub-data in 500 iterations,
respectively. We found that the level of train error is stabilized beyond 309 iterations, indicating
that our final model reached the state of convergence rather than divergence (see Supplemental
Figure S3 for line graph that displays test error and train error by the number of iteration).
The final XGBoost model was adopted to predict the opening of cafés and restaurants, with
500 iterations, and its prediction results are shown in the following section.

3.5.2. Random Forest Model Tuning

Unlike XGBoost turning, the random forest model involves relatively simple tunings.
The key parameter in the random forest model is mtry which determines the total number
of parameters. An optimal value of mtry may alleviate model overfitting and determine
the most efficient model with the appropriate number of parameters.

We found the optimal mtry through a similar cross validation (CV) as we did in
XGBoost, adopting AUCPR as the evaluation metric and using five-folds with 3 iterations,
respectively. We started with the default mtry of 10 and tested it from 2 through 15 by a
unit of 1, and found the optimal value of 5. Thus, our final random forest model made the
tree by randomly choosing five of the total 40 variables as listed in Table 1.

We used R software (version 3.6.0) to build the random forest model and XGBoost
model, respectively. Our models are replicable by following the footnote that details model
tunings. Based on these model specifications, the following section describes prediction
results with test data and full data.
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4. Results

We first show the prediction results based on the test data, 30% of the full data (83,594
of 278,647 parcels). The test prediction was performed by three models—random forest,
XBGoost, and binary logit—and the comparison of the model performance shows the
highest prediction accuracy for the XGBoost model. Focusing on the XGBoost model, we
show which predictor is most important to the model and whether the effect is positive or
negative in attracting new cafés and restaurants. Then we perform a full-data prediction,
which shows a consistent result with the test prediction but with a greater difference in the
predicted opening rates across the entire city of Seoul.

4.1. Test-Data Prediction on Café and Restaurant Opening in Housing Structure
4.1.1. Prediction Accuracy

Overall, we found that XGBoost outperforms the random forest model and binary
logit model, across accuracy indicators. Table 2 presents the sample size and accuracy
measurements by model.

Table 2. Test-prediction accuracy of binary logit, random forest, and XGBoost model.

Sample Category and Accuracy
Indicator

Binary
Logit

Model

Machine Learning
Models

Random Forest XGBoost

Test-data Observations (n) 83,594 83,594 83,594
(a) Opening (Positive) 169 149 2770
(a-1) TP (True-Positive) 45 65 730
(a-2) FP (False-Positive) 124 84 2040

(b) No Change (Negative) 83,425 83,445 80,824
(b-1) FN (False-Negative) 1740 1720 1055
(b-2) TN (True-Negative) 81,685 81,725 79,769

Accuracy Indicators (Max. = 1.000)
(c) Accuracy 0.978 0.978 0.963

(d) Balanced Accuracy 0.512 0.518 0.692
(e) Precision 0.266 0.436 0.264

(f) Recall 0.025 0.036 0.409
(g) Kappa 0.043 0.064 0.302

(h) F1 0.046 0.067 0.321
(i) AUC of PR curve 0.154 0.197 0.213

(j) AUC of ROC curve 0.858 0.884 0.898
Notes: AUC = area under curve; PR = precision recall; ROC = receiver operating characteristic.

A residential land parcel is identified to be predicted opening—or positive (P)—when
the model reports a 50% or greater opening probability. The XGBoost model predicts
2770 openings of cafés and restaurants across 83,594 residential structures, resulting in
the opening rate of 3.3%, while random forest and binary logit models predict clearly
lower opening rates of 0.2 (149 and 169 parcels, respectively). These much lower opening
rates (and absolute counts) among the logit and random forest methods indicate that their
predictions were skewed towards majority cases, here no-change or negative (N).

The basic accuracy indicator (Table 2 (c)) shows that the logit and random forest
models (both 0.978) slightly outperform XGBoost (0.963), while the balanced accuracy
indicator (Table 2 (d)) reports a higher accuracy of XGBoost (0.692) than random forest
(0.518) and logit (0.512), confirming that random forest and logit predictions are likely to
be biased by the imbalanced data structure as we discussed in the earlier section.

Kappa coefficient and F1-score—indicators of our focus—are higher in XGBoost (0.302
and 0.321, respectively) than logit and random forest, supporting that random forest and
logit are skewed towards no-change. Other accuracy indicators for the binary classification
model—AUC of PR curve and AUC of ROC curve—are consistent with other indicators,
showing a higher accuracy of XGBoost than random forest and logit (see Supplemental
Figure S4 for graphs about precision and sensitivity of the XGBoost model). Based on the
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model comparisons, we determine XGBoost as our final model and thus the remainder of
this article focuses on XGBoost prediction results in more detail.

4.1.2. Predictor Importance

We describe which predictor variables the XGBoost model were found to be most
important for predicting commercial store openings in residential structures. Gain score,
a common feature importance measure, is considered as the relative contribution to the
model, similarly to the marginal effects of one variable conditioned on the others. This score
is measured out of a maximum value of 1—so higher values indicate a greater importance.
Figure 3 ranks the most important features for store opening at the top and the least at
the bottom.

Figure 3. Predictor importance to machine learning model, based on test data.
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The most important two features are both related with parcel-level economic values—
land price premium and level of land price. Demand-side factors are also found important
to the model, such as the number of jobs, single-person share of households, and population,
all of which may imply potential benefit from potential commercial demands. The floor
area of the residential structure also appears important, showing development potential of
the land parcel.

Transportation variables also appear to be important to the model, including the
distances to the nearest local bus stop and local subway station, but rather less expected
is the fact that the distance to the metropolitan rail station also does feature strongly,
assumedly because many Seoul citizens commute a long distance from the metropolitan
station to outside the city.

4.1.3. Positive and Negative Effects of Predictor

The predictor importance result tells which variables are the strongest association with
café and restaurant openings in residential structures, but it does not show whether the
relation is positive or negative. Thus, we examine whether variables that were identified
important for predictions have positive or negative effects on café and restaurant openings.

The Figure 4 panel (a) shows a positive relation between land price premium and
predicted opening probability, implying a residential structure on land with a relatively
higher price than the surrounding areas is more likely to have a new café and restaurant
on the parcel. In contrast, distance to bus stop has a negative association with café and
restaurant opening. Panel (b) shows that the longer the distance to the local bus stop is, the
less likely a commercial store opens on the parcel. Given that around 65% of commuters in
Seoul relied on public transit in 2017, the negative association makes sense and implies
that residential structures nearby a major transit node are more likely to be converted to
commercial use in the future.

Figure 4. Relations between predicted opening probability (x-axis) and (a) and price premium and (b) distance to bus stop,
based on test data.

Though a building’s floor area and year the structure was built were found relatively
important (fourth and tenth, respectively, as shown in Figure 3), its relational direction
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(either positive or negative) appears weak. It is likely due to the physical similarity among
the residential structures in Seoul. In other words, the physical characteristics of urban
housing structures have a mixed effect on their commercialization.

4.2. Full-Data Prediction and Heatmap Visualization

The opening rates of cafés and restaurants could vary across Seoul, in close relation
to the characteristics of urban landscape as considered in this paper. Unlike the separate
use of train data and test data in the machine learning studies, we attempted to use the
full sample of 278,647 parcels (train data plus test data) in our final model of XGBoost.
Mapping the predicted rates at the parcel level may be neither readable nor effective to
display the overall picture of Seoul. Rather, we take full advantage of heatmapping to
show the areas of higher or lower attraction to new cafés and restaurants, highlighting any
spatial patterns. They are colored in dark red representing hot or heated areas.

4.2.1. Distribution of the Predicted Opening Rates across the Entire Seoul

As displayed in Figure 5, north of Han River—called Gangbuk in Korean—shows a
prevalent and higher probability of café and restaurant openings in residential structures,
saving mountainous areas in the far northern area of Seoul. In contrast, south-east of Han
River—called Gangnam in Korean—shows a lower probability of commercial opening.

Figure 5. Heat island map of predicted opening probability in Seoul, based on full data, 2010 to 2016.

The most attractive area for new cafés and restaurants is Mapo-gu. The Mapo area,
particularly nearby Hongik university, generally has a very high land price premium
compared to the rest of Seoul. Mapo is also geographically close to Han River as well as
Yongsan where the major metropolitan transit stations are concentrated.

In contrast, the most unattractive areas for openings were concentrated in Gangnam.
The three major Gus of Gangnam—Seocho, Gangnam, and Songpa—clearly show a very
low probability, presumably due to three reasons. Commercialization expanded in those
Gangnam-Gus in advance of our study period of 2011 to 2016, which led to a lower
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probability of openings. Historically, the Gangnam had also been developed in large scales
and was re-developed in recent years again in large scales, which is often called a Korean
version of gentrification leaving a smaller number of single-family and smaller multifamily
structures than Gangbuk. In addition, even single-family and smaller residential structures
are much less likely to be converted to cafés and restaurants because these three Gus are
the most affluent neighborhoods in Seoul and even across the entire South Korea, which
means potential rent in the three Gus should be high.

4.2.2. Closer Look into the Selected Hot Areas

Although Figure 5 has an advantage of overviewing the entire city of Seoul, it is
limited to show specific areas with fuller details. In Figure 6, we take a closer look at three
distinct areas—Mapo as potentially the hottest place for café and restaurant openings,
Seochon as another hot place due to its historical unique context, and Gangnam as the most
affluent neighborhood in Seoul but the least likely area for commercial store openings.

Panel (a) presents the Mapo neighborhood, and especially the Hongik university area
appears to include parcels that are most likely to be converted from housing to cafés and
restaurants. The major universities—Hongik, Seogang, Yonsei, and Iwha—attract college
students and other young Millennials. In addition, Hongik subway station directly links to
Incheon national airport (the largest airport in South Korea), which brings many foreign
visitors directly from the airport into the area, contributing to one of the places that has the
greatest number of passenger populations in Seoul.

Particularly along the corridors with the large number of passenger populations, café
and restaurant openings are predicted with a probability of 0.8 (80%) and higher. We find
that the southern and northern areas of Hongik station are the most likely to be converted
to cafés and restaurants. This finding implies that the boundaries between the residential
and commercial areas are where café and restaurant openings are most likely to occur and
potentially expand into residential areas.

Figure 6. Cont.
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Figure 6. Heat island map of predicted opening probability in selected areas in (a) Mapo, (b) Seochon, and (c) Gangnam in
Seoul, based on full data, 2010 to 2016.

Panel (b) shows the Seochon area in Jongro-gu—often called Hanok Village—where
historic residential structures and deprived lower-story residential structures are concen-
trated. For example, Gyeongbokgung Palace—the royal palace of the Joseon dynasty that
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was built in 1935—and Sajik Park are historical sites that have long been preserved by the
government. The uniqueness of the historic structures, however, turned into the greatest
attraction resulting in a rapid conversion of residential areas to unique cafés and restau-
rants. In contrast to the university and accessibility-based Hongik area, the Seochon area
gains its popularity without good transit access but through social network services (SNS)
where visitors posted photos and video clips to attract more young Millennials—often
called the hot place. Indeed, the Seochon area has been experiencing rapid changes where
commercialization expands while existing residents have difficulties, which is often called
gentrification in South Korea. The policy concern is that the Seochon area is one of a few
places where historic buildings exist and have been preserved, but it is unclear how these
historic building can survive through the emerging openings of cafés and restaurants.

Lastly, we look into the Gangnam area (panel c) where large-scale (re)development
has been prevalent. For that reason, the size of parcel is generally much bigger in Gangnam
than Mapo and Seochon areas. Unlike Mapo and Seochon, where cafés and restaurants are
predicted to open along the road, it is predicted in Gangnam that most commercial stores
are to open in parcels that are distant from major corridors. This finding is understandable
because many high-rise office buildings dominate in major commercial roads in Gangnam,
similarly to Manhattan in New York and downtown Los Angeles in California. Gangnam
is also renowned for luxury boutiques and wedding shops, or other high-end commercial
stores. This implies that cafés and restaurants that are expected to open in Gangnam
would differ from its counterparts in Mapo and Seochon, in terms of product type and
socioeconomic profiles of potential visitors, which is beyond the scope of this study.

5. Discussion and Urban Policy Implications

The empirical evidence supports several important implications for the policy re-
sponses to the commercialization of urban residential areas, in both the South Korean
context and international background. These include (1) conducting full-data predictions
to identify areas in most urgent policy need, and (2) incorporating recent data to develop an
early warning system. Taken together, these findings may substantially narrow the arena
for policy responses to urban commercialization, and limit the key factors that should be
considered for urban policy.

5.1. Conducting Full-Data Prediction to Identify Areas in Most Urgent Policy Need

One important finding of the preceding analysis is that the XGBoost model predicts
an opening rate of 3.3%, which is much closer to the actual opening rate of 3.7% than other
comparison models—predicted opening rate of 0.2% in both the random forest model
and the binary logit model, as shown in Table 2. The accuracy in the XGBoost model is
achieved mainly by resolving the imbalanced data structure through fine-tunings and
careful weightings across over eight million possible combinations. This high level of
prediction accuracy is also consistently found in the test-data predictions and full-data
predictions. What is altered by using the full data is the identification of any spatial patterns
about higher or lower attractions to new cafés and restaurants, and, by implication, the
specific geographic location to which the policy responses called for to prepare the expected
commercialization. The use of partial data (either train data or test data), however, would
fail to give priority for policy response to areas in most urgent need.

An additional notable in Table 2 is that the number of true positive cases in the
XGBoost model (730 cases, 0.87 percent of the entire sample) is 11 to 16 times greater than
those in the other comparison models (45 cases in logit and 65 cases in random forest),
implying a substantially improved prediction accuracy. The heightened accuracy, however,
was accompanied by an increased number of false-positive cases in the XGBoost model
(2040 cases, 2.4 percent of the entire sample) compared to other models (124 cases in logit
and 84 cases in random forest). The increased number of false-positive cases may be seen
as inaccurate predictions but those false-positive parcels in fact may indicate places with a
high probability of openings in the near future. Thus, the false-positive parcels and adjacent
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areas are the most amenable to policy influence, and so their importance for responding
to the potential impact of café and restaurant openings deserves emphasis. When our
preliminary prediction model was presented at the annual Seoul Big Data Forum, public
servants from the Seoul city government were intrigued by a higher predictability relative
to traditional economic models, as well as the simplicity of our model to be applied to
public services.

5.2. Incorporating Recent Data to Develop Early Warning System

The second overall finding is that the predicted hot areas in 2011—Mapo, Seochon,
and Gangnam as shown in Figure 6—see a continued commercialization even today in 2020.
For those who reside in Seoul, most of these following predictions may seem obvious: these
areas attract many Seoulians on a daily basis, especially over the weekend, and might even
be seen to be places where commercialization has long been and even gone. Nevertheless,
it is worthwhile acknowledging that the contextual factors of the commercialization must
have been in place by 2011 for our predictions to be made and that, had we had access to
the data in 2011, then we could have made these predictions at that time. A similar policy
implication was drawn from a London study in which urban gentrification was predicted
through the machine learning approach [13]. Thus, it would be feasible to incorporate
more recent data into our machine model and develop a tool that predicts rapidly evolving
urban events—commercialization of urban housing in this study—and plays the role of
an early warning system [1]. The early warning system may lead to significant insights
as to which residential areas of a given city would attract new cafés and restaurants more
strongly than others. The system would also have the advantage of helping city planners
and policymakers identify and design policy responses to any disproportionate spatial
patterns of the over-attraction.

6. Conclusions

This study was motivated by the fact that small café and restaurant openings have
been rapidly spreading into residential areas across Seoul, the capital of South Korea. This
urban commercialization is so fast and prevalent that neither policymakers nor residents
can respond to it timely without a handy prediction tool. In contrast to previous studies,
our work focused on developing a machine learning model that predicts café and restaurant
openings at the land parcel level across the entire city of Seoul.

We found a large degree of difference in predictor importance to our machine learning
model. The most important predictors are related with land prices, both the absolute level
of price and relative price premium, suggesting that economic motivation leads to the
conversion of urban housing to small cafés and restaurants. The importance of accessibility
to the bus stop and city subway station, or interregional rail station, as a predictor of
commercialization shows that transit accessibility, and subsequently greater passenger
demand, may lead to commercial store openings in the near future.

Our machine learning model generated the probability of commercialization at the
individual parcel level, demonstrating a clear difference in areas that are very likely versus
less likely to be commercialized. Of all the 25 Gus that consist of Seoul, Mapo-gu was
predicted as the most prone to commercialization of urban housing, and so its urgency
to be prepared against the expected conversion deserves underscoring. Our finding that
the Mapo-gu is expected to undergo commercialization along the major corridors nearby
the cluster of universities and the interregional rail station emphasizes the special need of
urban policy responses to be focused on those areas.

A major limitation of this study is that we predicted somewhat rarely occurring
phenomenon—only 3.7% of all small-sized housing structures were in fact commercialized
in Seoul—which has long been tricky in prediction modelling. The more algorithms that
are advanced to increase prediction accuracy, the more tuning is needed to predict rare
events. For that reason, we suspect that our final machine learning model (XGBoost) was
able to outperform other alternative models (random forest model and binary logit model),
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simply because it allows more tuning options. The machine learning approach also has its
innate limitation that standardized modelling does not exist, and so researchers have to
make their own decision depending on their data characteristics. Further, the prediction
accuracy was not much stronger than alternative models despite multiple tunings, which
is mainly due to the small-target problem.

Also noteworthy is the possibility of a sequential model that may predict today
and tomorrow in relation to past trends, but we built a static model which aggregated
opening data for an analysis period because the administrative records on existing cafés
and restaurants are not publicly available. Even if we built a time-series opening database
across the entire city of Seoul, it would be difficult to build corresponding parameters that
were observed as frequently as the opening database. The limited count of commercial
openings in residential areas also constrained the time-series approach. If we accumulated
a temporal database for opening and predictor parameters, however, sequential machine
learning models such as RNNs (recurrent neural networks) and LSTM (long short-term
memory) would be feasible for not only the entire city of Seoul but also selected areas in
policy needs.

The predictors of this study may also be improved by alternative specifications. The
land parcel characteristics that measured accessibility to specific facilities and locations
can be substituted by density measures, such as the number of transit stations and pub-
lic facilities per area (or population). Between neighborhood and parcel characteristics,
mesoscale factors, such as street design quality and socio-symbolic characteristics, may play
an important role in predicting the opening of new cafés and restaurants. Also possible
upon micro-level street network data would be replacing distance-based predictors with
network-based variables to reflect the actual walkability.

Overall, our results show that the machine learning approach can be applied to predict
changing land uses and potentially contribute to timely urban policy designs in rapidly
changing urban context. At the same, we expect machine learning models and tuning
techniques would continue to advance to better predict rare but stimulating urban changes,
including café and restaurant openings in urban housing.
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