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Abstract: The classification of vehicular crashes based on their severity is crucial since not all of
them have the same financial and injury values. In addition, avoiding crashes by identifying their
influential factors is possible via accurate prediction modeling. In crash severity analysis, accurate
and time-saving prediction models are necessary for classifying crashes based on their severity.
Moreover, statistical models are incapable of identifying the potential severity of crashes regarding
influencing factors incorporated in models. Unlike previous research efforts, which focused on the
limited class of crash severity, including property damage only (PDO), fatality, and injury by applying
data mining models, the present study sought to predict crash frequency according to five severity
levels of PDO, fatality, severe injury, other visible injuries, and complaint of pain. The multinomial
logistic regression (MLR) model and data mining approaches, including artificial neural network-
multilayer perceptron (ANN-MLP) and two decision tree techniques, (i.e., Chi-square automatic
interaction detector (CHAID) and C5.0) are utilized based on traffic crash records for State Highways
in California, USA. The comparison of the findings of the relative importance of ten qualitative and
ten quantitative independent variables incorporated in CHAID and C5.0 indicated that the cause of
the crash (X1) and the number of vehicles (X5) were known as the most influential variables involved
in the crash. However, the cause of the crash (X1) and weather (X2) were identified as the most
contributing variables by the ANN-MLP model. In addition, the MLR model showed that the driver’s
age (X11) accounts for a larger proportion of traffic crash severity. Therefore, the sensitivity analysis
demonstrated that C5.0 had the best performance for predicting road crash severity. Not only did
C5.0 take a shorter time (0.05 s) compared to CHAID, MLP, and MLR, it also represented the highest
accuracy rate for the training set. The overall prediction accuracy based on the training data was
approximately 88.09% compared to 77.21% and 70.21% for CHAID and MLP models. In general, the
findings of this study revealed that C5.0 can be a promising tool for predicting road crash severity.

Keywords: crash severity; multinomial logistic regression model; decision tree techniques; artificial
neural network

1. Introduction

More than 1.3 million people die worldwide, and as many as 50 million are annually
injured in road crashes. According to official statistics by the World Health Organization [1],
traffic crashes are projected to be the fifth leading cause of death in the world by 2030. Every
year, traffic crashes impose tremendous costs in terms of human casualties, agony, and
economic losses on the people and governments worldwide [2–4]. The HSIS claims that in
California, there were 3898 fatal crashes in 2017, which have increased 34.29% since 2012.
Most of the drivers involved were speeding at the time of the crashes, and two vehicles
were involved in the crash occurrence [5].
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Crashes vary in terms of fatality and injury levels. However, other studies focus on
introducing crash severity such as fatality and injury and property damage only (PDO).
Thus, studying further details of crash severity helps researchers to identify the most
influencing factors on crash occurrence [6,7]. The significance of road traffic crashes and
the need to curb them has compelled researchers to extensively focus on crash analysis
efforts. The capability of crash analysis is vital for reducing fatalities and injuries resulting
from vehicles on roads [6]. Thus, the reliable analysis of road crashes requires accurate
knowledge of the influential factors on crashes. However, a starting approach has mostly
been using statistical models, including logit and ordered probit models to predict crash
severity. Previous experiences reveal that these models are based on predefined functions,
which decrease the accuracy. This deficiency leads to the unintentional ignoring of missing
values in the dataset. Data mining techniques have recently shown to be non-parametric
tools capable of managing outliers and missing values [8–10].

PDO, fatality, severe injury, other visible injuries, and complaint of pain have im-
portant rules in the proportions of crashes which should be considered in crash analysis.
Accordingly, this classification provides more and better details regarding crash severity
compared to three typical levels of fatality, injury, and PDO severity. Crash prediction
models also have their unique benefits and limitations, and there is no consensus on the
best one. On the other hand, crash prediction models still encompass various limitations
and have not achieved optimal performance. Therefore, more extensive model comparisons
should be conducted to determine which data mining techniques better fit crash severity
analysis data. To facilitate this importance, this study mainly aimed to investigate five
classes of crash severity, including PDO, fatality, severe injury, other visible injuries, and
complaint of pain based on the highway safety information system (HSIS) data for all
state highways in California, the USA in 2012–2014. The study further sought to find the
most appropriate model among other models by finding the best fit on the data in crash
severity analysis using Waikato environment for knowledge analysis (WEKA) software.
Subsequently, the obtained data were from this model were compared with those of other
models such as the multinomial logistic regression (MLR) model and data mining tech-
niques such as C5.0 and Chi-square automatic interaction detector (CHAID) algorithms,
and artificial neural network-multilayer perceptron (ANN-MLP) by accuracy parameters.
The remaining sections of this study are organized as follows.

The Section 2 discusses works related to predicting crash severity via statistical and
data mining approaches. In addition, the gap of working on crash severity between previ-
ous studies and the present study is characterized regarding the five classes of crash severity.
In the Section 3, the research method is presented based on studying the HSIS database
in 2012–2014 and applying the MLR and data mining techniques (i.e., C5.0, CHAID), and
ANN-MLP models according to hyper-parameter settings using WEKA software in order to
predict crash severity. In addition, the modeling findings and discussions of the proposed
models are explained in the Section 4, followed by explaining a sensitivity analysis among
the proposed models in order to select the best predictive model. Conclusions are described
in the fifth part of this study.

2. Literature Review

Researchers have recently focused on different crash analysis types resulting from
traffic crashes, specifically the development and application of crash severity prediction
models. Crash severity models attempt to estimate the probability that a crash will fall into
various severity levels including PDO, minor injury (other visible injuries, and complaint
of pain), severe injury, and fatality based on contributing factors [11–15]. Researchers in
crash severity evaluations employ different modeling processes, the most prominent of
which are regression and data mining techniques. Regression techniques such as Logit
and Probit have been used to analyze traffic crash severity [16]. Crash severity can be
generally considered as a random event, thus statistical models, particularly regression
analysis, have been widely applied to explore the associated contributing factors [17,18].
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Compared with other types of regression models, choice and logistic regression models
have been employed more frequently. However, most regression models have their model
assumptions and predefined relationships between dependent and independent variables.
Therefore, any violation of these assumptions may lead to entirely erroneous predictions.

Rezapour et al. [19] used multinomial regression model in order to identify parameters
impacting traffic barrier crash severity. The results indicated that multinomial logistic
regression model is appropriate for both non-interstate and interstates crashes involved in
traffic barriers. Moreover, factors including road surface conditions, age, driver restraint,
and curve negotiation were found to be the most effective factors on the severity of
traffic barrier crashes in non-interstate highways. Wahab and Jiang [20] used multinomial
regression model in order to explore the factors affecting motorcycle crash severity in
Ghana and found that motorcycle crashes occurring during the daytime, in curves of
roads, and adverse weather conditions decrease the probability of fatal injury. Rezapour
and Ksaibati [21] compared the performance of injury severity prediction of truck crashes
using multinomial and ordinal logistic regression models and reported that multinomial
logistic regression could predict injury severity of truck crashes better than ordinal logistic
regression model due to not assuming normality and linearity in violation and crash data.
Pradipta et al. [22] also used multinomial logistic regression in order to identify factors
influencing crash severity in West Nusa Tenggara of Indonesia. They found that road
function, vehicle type, crash type, possession of a driving license, use of driver safety
equipment, distraction of the driver, and location of the crash have a significant correlation
with the severity of crashes. Vajari et al. [23] used a multinomial logit model for the
prediction of motorcycle crash severity at Australian intersections. The results indicated
that factors such as female motorcyclists, snowy, stormy or foggy weather, rainy weather,
evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries.
Further, some studies used multinomial logistic regression model in order to find factors
contributing to crash severity modeling. The results indicated that multinomial logistic
regression appropriately can predict crash severity level according to factors leading to
crash occurrence, appropriately [24–26]. Since crash analysis is performed based on various
variables, drawing upon multinomial logistic regression in order to investigate the effect of
various variables on crash severity. In addition, previous studies used multinomial logistic
regression properly to examine factors associated with crash severity and results indicated
that multinomial logistic regression has better capability in predicting different levels of
crash severity than other statistical methods such as the discriminant and ordered logit
models [21,24,27].

In contrast to statistical models, the data mining classification technique consists of sev-
eral distinct subsets such as support vector machine (SVM), Bayesian classifier, ANN, and
decision trees. ANNs are non-parametric methods that are widely employed by researchers
in crash severity evaluations. Abdelwahab and Abdel-Aty [28] employed an ANN to
predict vehicle collisions at signalized intersections in central Florida. They compared
ANN data with those of the fuzzy approach, and the ANN classification showed relatively
better performance. Further, Shirmohammadi et al. [29] used a clustering analysis approach
to classify drivers’ behaviors regarding road crash severity. Shirmohammadi et al. [30] also
identified crash-prone road locations in the light of the wavelet theory and the multi-criteria
decision-making method and concluded that the combination of this theory based on ANN
with the mentioned method could be a new road crash severity technique. Likewise,
Alkheder et al. [31] used WEKA data mining software to build ANN classifiers in order to
predict the injury severity of traffic crashes based on 5973 traffic crash records that occurred
in Abu Dhabi during 2008–2013 and demonstrated that developed ANN classifiers can
predict crash severity with reasonable accuracy. In another study, Taamneh et al. [32] also
reported that clustering data prior to classification resulted in a higher precision compared
to no clustering. Similarly, Mokhtarimousavi et al. [33] used SVM models for work zone
crash injury severity prediction. Wahab and Jiang [34] developed algorithms to predict mo-
torcycle crash severity based on machine learning. In their study, Amiri et al. [35] focused
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on predicting the severity of fixed object crashes among elderly drivers using ANN models
and a hybrid intelligent genetic algorithm. Some studies represented that machine learning
techniques have a better performance in improving safety in transport modes, including
pedestrians and motorcycle crash severity, compared with ANN models [36–38]. Chang
and Chien [39] focused on decision trees (DTs) to study crash severity as another data min-
ing technique. Chong et al. [40] compared DTs and neural network data mining methods to
model the severity of head-on collisions. The accuracy of the neural network and DT mod-
els varied depending on the severity type for prediction. Furthermore, Beshah and Hill [41]
evaluated the performance of DTs, naive Bayes, and K-nearest neighbor classifiers in the
crash severity evaluation and found that the accuracy of these three types of data mining
techniques was 80.20%, 79.90%, and 80.82%, respectively. Other researchers preferred the
Chi-square automatic interaction detector (CHAID) algorithm due to its distinct structure
in crash analysis and concluded that the CHAID has an acceptable prediction accuracy in
fatality severity [42–46]. Behbahani et al. [47] used an extreme learning machine (ELM) as
an advanced model, which is highly fast in comparing other algorithms and can predict
precisely. In comparison with other algorithms, ELM as a feedforward neural network with
random weights was of quite noticeable benefits. It can be such an effective predictive effect
in dealing with crash data, especially when the amount of the labeled data is relatively
small. Amiri et al. [48] employed five different data mining methods, including Bayesian
network, ANN-MLP, ANN-radial basis function, SVM-polynomial and SVM-sigmoid to
determine which of these techniques better perform in predicting crash severity. Moreover,
Iranitalab and Khattak [49] compared several statistical and machine learning methods for
crash severity prediction. Singh et al. [50] applied a deep neural network-based predictive
model to quantify the effects of various variables on crash frequency and provide a ranked
list of variables based on their importance.

A review of previous studies revealed that crash severity analysis has so far been
limited only to PDO, fatality, and injury levels. To the best of our knowledge, nearly no
study has focused on investigating different classes of crash severity. In the light of the
review of the relevant literature, the novelty of the present study is two-fold. First, this
study applies different classes of crash severity, including PDO, fatality, severe injury,
other visible injuries, and complaint of pain to provide an accurate analysis of influencing
factors on crashes. Second, the present study evaluates and compares the MLR model with
different data mining techniques including the ANN-MLP model and two DT algorithms
(i.e., C5.0, and CHAID) using the HSIS dataset for all state highways in California, the
USA, and proposes the most accurate models for crash prediction purposes. The applied
data source in this study includes three years of crashes linked to system-wide roadway
characteristics, traffic volumes, and crash data. Using the HSIS data helps determine how
much different countermeasures can reduce road crash potentials.

3. Research Method

The present study considers a comprehensive classification of crash severity such as
PDO, fatality, severe injury, other visible injuries, and complaint of pain based on the HSIS
dataset in 2012–2014. It then seeks to find the most appropriate predictive model using the
MLR model and data mining techniques (i.e., C5.0, CHAID), and the ANN-MLP model
by finding the best fit on data in crash severity analysis. According to the HSIS dataset,
qualitative and quantitative independent variables are determined, and then crash severity
is examined in five severity classes. The MLR models for severity classes are proposed
based on training, validation, and correlation analysis. Data mining approaches including
C5.0, CHAID, and ANN-MLP models are applied by means of hyper-parameters settings,
the relative importance of variables, and correctly and incorrectly classified instances in
WEKA software. Additionally, accuracy, the receiver operating characteristic (ROC) curves
(AUCs), and classification time are taken into consideration within prediction crash severity.
Then, sensitivity analysis is applied based on the running time of classifying crash severity.
Figure 1 presents the overall flowchart and the process for evaluating the credibility and
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precision (performance evaluation) of the selected models in explaining the nominated five
classes of severity.

Figure 1. The flowchart and process for the prediction of crash severity in the present study. Note: ANN-MLP: Artificial
neural network- multilayer perceptron; HSIS: Highway safety information system; PDO: Property damage only; MLR:
Multinomial logistic regression; CHAID: Chi-square automatic interaction detector.

3.1. Data Description

Because of the importance of the needed comprehensive data for this study, the
crash data were obtained from the California HSIS database for all State highways and
comprising crash information for years of 2012–2014. The response variable of the model is
crash severity which is classified into five levels of PDO, fatality, severe injury, other visible
injuries, and complaint of pain.

Table 1 provides a total of 20 qualitative and quantitative explanatory (independent)
variables evaluated in this study. The qualitative variables are divided into different
categories (codes) with descriptions, including the cause of the crash, weather conditions,
road surface conditions, lighting conditions, the number of involved vehicles, median type,
facility access, design speed, surface type, and gender. Quantitative variables in the areas
of humans, environments, roads, and vehicles contributing to the occurrence of crashes are
also listed in Table 1.
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Table 1. Qualitative and Quantitative Independent Variables Employed in the Models (2012–2014).

Variables Abbreviation Variable
Symbol

Data Type Code/Unit Description
Percentage of Total Crashes (%)

2012 2013 2014

Cause of crash CAUSE X1 Qualitative

1 Driving under influence 6.7 8.7 10.6
2 Following too closely 1.9 7.41 4.9
3 Failure to yield 2.9 7.34 2.50
4 Improper turn 16.7 14.59 13.99
5 Speeding 46.9 39.79 50.82
6 Other violations (Hazardous) 19.9 17.77 11.89
7 Other improper driving 0.2 1.2 0.9
8 Alcohol/drug use 4.8 2.5 3.2
9 Fell asleep 0 0.7 1.2

Weather
condition WEATHER X2 Qualitative

1 Clear 79.4 63.80 54.32
2 Cloudy 15.9 19.89 35.88
3 Raining 3.7 9.73 5.1
4 Snowing 0.3 3.18 2.7
5 Fog 0.3 2.8 1.6
6 Wind 0 0 0
7 Other 0.1 0.6 0.3
8 Not stated 0.3 0 0.1

Road surface
condition RDSURF X3 Qualitative

1 Dry 88.7 77.89 67.21
2 Wet 10 19.45 28.14
3 Snowy or icy 0.8 2.06 3.7
4 Slippery or muddy 0.1 0.6 0.95
5 Not stated 0.4 0 0

Lighting
conditions LIGHT X4 Qualitative

1 Daylight 69 78 84.52
2 Dusk—Dawn 3.4 5.8 3.7
3 Dark—Street Lights 15 11 9.18
4 Dark—No Street Lights 12.1 2.9 1.7
5 Dark—Street Lights Not Functioning 0.3 1.9 0.9
6 Not stated 0.3 0.4 0

Number of
vehicles NUMVEHS X5 Qualitative 1–9 1 to 9 vehicles involved in a crash

22.7;
60.5;

12.9; 3;
0.7; 0.2;

0; 0.

26.7;
59.5;
10.9;

1.7; 0.8;
0.4; 0; 0

18.87;
47.8;
19.9;
11.63;

0.9; 0.3;
0.6; 0.

10–15 10 to 15 vehicles involved in a crash 0; 0; 0;
0; 0; 0.

0; 0; 0;
0; 0; 0.

0; 0; 0; 0;
0; 0.

Median type MED_TYPE X6 Qualitative

1 Undivided, Not Separated or Striped 0.1 0.3 0.2
2 Undivided, Striped 10.4 7.97 12.6

3 Undivided, Reversible Peak Hour Lane
(S) 0 0 0

4 Divided, Two-Way Left Turn Lane 0.9 0.4 0.7
5 Divided, Continuous Left-Turn Lane 2.2 1.9 0.8
6 Divided, Paved Median 49.8 59.68 48.89
7 Divided, Unpaved Median 17.2 16.66 20.51
8 Divided, Separate Grades 3.8 1.9 2.9

9 Divided, Separate Grades with
Retaining Wall 0.1 0 0

10 Divided, Sawtooth (Paved) 0 0 0
11 Divided, Separate Structure 14.5 10.7 13.4
12 Divided, Railroad or Rapid Transit 0.3 0.5 0
13 Divided, Bus Lanes 0 0 0
14 Divided, Other 0.6 0 0

Facility access ACCESS X7 Qualitative

1 Conventional—No Access Control 20.3 29.78 20.97
2 Expressway—Partial Access Control 8.1 6.53 4.8
3 Freeway—Full Access Control 71.1 63.69 74.23

4 One-Way City Street—No Access
Control 0.4 0 0

Design speed DESG_
SPD

X8 Qualitative

1 <30 mile/h 0.2 0.1 0
2 30 mile/h 0.4 0.7 0.8
3 35 mile/h 0.7 1.3 0.9
4 40 mile/h 1.8 3.8 1.7
5 45 mile/h 3.2 2.9 1.5
6 50 mile/h 3.9 1.9 4.5
7 55 mile/h 2.7 2.01 3.90
8 60 mile/h 8.3 5.7 8.7
9 65 mile/h 8.8 10.6 9.04

10 >70 mile/h 70.1 70.99 68.96
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Table 1. Cont.

Variables Abbreviation Variable
Symbol

Data Type Code/Unit Description
Percentage of Total Crashes (%)

2012 2013 2014

Surface type SURF_TYP X9 Qualitative

1 PCC, Bridge Deck 27.9 19.91 20.89
2 PCC, Concrete 36.4 32.78 37.89
3 Unpaved-Earth 0 0 0
4 Unpaved-Undetermined 0 0 0
5 AC, Base & Surface 7” Thick 33.3 43.86 34.67
6 AC, Base & Surface < 7” Thick 1.2 2.66 3.7
7 AC, Oiled Earth-Gravel 0.1 0 0.55
8 AC, Bridge Deck (2” Or Greater) 0 0 0
9 Not stated 1 0.8 2.3

Gender DRV_SEX X10 Qualitative
1 Male 59.8 65.21 69.89
2 Female 33.8 34.79 30.11
3 Not stated 6.4 0 0

Driver’s age DRV_AGE X11 Quantitative

0 Age from 16 to 25 17.56 22.67 28.17
1 26 to 35 47.80 56.07 49.96
2 36 to 45 22.13 11.63 13.71
3 above 46 12.51 9.63 8.16

Number of
lanes

NO_
LANES X12 Quantitative -

Lane width LANEWID X13 Quantitative Ft

Median width MEDWID X14 Quantitative Ft

Annual
Average Daily

Traffic
AADT X15 Quantitative (Veh/year)

Left shoulder
width LSHLDWID X16 Quantitative Ft

Left paved
shoulder

width
PAV_WDL X17 Quantitative Ft

Surface width SURF_WID X18 Quantitative Ft

Right shoulder
width RSHLDWID X19 Quantitative Ft

Right paved
shoulder

width
PAV_WIDR X20 Quantitative Ft

There are 145,142, 131,508, and 152,908 crash records, most of which are of PDO
severity, followed by the complaint of pain and visible injuries during 2012–2014. As
shown in Figure 2, 66% of crashes belong to PDO. Meanwhile, fatality and severe injuries
constitute approximately 3% of all crashes. In addition, other visible injuries consist of 12%
of crashes, while complaint of pain accounts for 21% of crashes.

Figure 2. Crash Severity of Highways in California, USA in 2012–2014. Note: PDO: Property damage only.

Information on the percentage of each condition within which the crashes have oc-
curred is presented in Table 1. Except for the cause of the crash, the number of the involved
vehicles in the crash and design speed, and lightening and surface conditions do not reflect



Sustainability 2021, 13, 5670 8 of 23

the potential for increasing crash occurrence in comparison with others of the same variable
since the exposure of the traffic volume to these conditions is not equal. For instance, the
slippery surface is known to be an influential factor in increasing traffic crashes. However,
most crashes took place on a dry surface (Table 1). This is because the period when the
surface is slippery is far less than the period that it is dry, thus the traffic volume is less
exposed to a slippery surface, and fewer crashes are expected accordingly. Therefore,
judgments based upon these percentages are misleading, and further investigation is re-
quired in this regard. On the other hand, data reveal that speeding is the major cause
of crashes comprising nearly half of them, followed by other violations (hazardous) and
improper turns. Roads with design speeds greater than 70 miles per hour are prone to
crashes significantly greater than those with a lower design speed. Moreover, traffic crashes
are mostly due to two-vehicle involvement and single-vehicle crashes, respectively. The
statistics of quantitative variables are summarized in Table 2.

Table 2. Statistical Analysis of Quantitative Variables.

Variables Mean Median Std. Deviation Range Min. Max.

Drv_age 37.55 36 15.311 84 15 99

No_LANES 6.13 6 2.667 12 2 14

LANEWID 40.96 42 18.692 86 3 89

MEDWID 32.63 22 31.851 99 0 99

AADT 11,866.69 91,500 85,212.204 354,772 0 354,772

LSHLDWID 4.83 5 3.874 26 0 26

PAV_WID 4.53 4 3.874 26 0 26

SURF_WID 37.11 36 16.519 83 0 83

RSHLDWID 7.05 8 3.916 20 0 20

PAV_WIDR 6.81 8 4.009 20 0 20
Range = Max −Min.

3.2. MLR Model

In the present study, to apply the MLR model for predicting crash severity, dependent
variables are followed as Y, which has i degrees, sequenced with values from low to high
which include the crash severity (PDO, fatality, severe injury, other visible injuries, and
complaint of pain) when given values i = 1 to 5 and k indexes the observation (crashes).
Independent variables are considered as Xi1, Xi2,···, Xij and j is the number of predictors
based on the dataset in Table 1. Thus, the multinomial logistic regression model for the
crash k having severity level i can be expressed as Equation (1) as follows [51–53]:

Logit(Pk(Yij ≤ i
∣∣Xj )) = Ln

(
Pk(Yij≤i|Xj)

1−Pk(Yij≤i|Xj)

)
= Ln

(
Pk(Yij≤i|Xj)

Pk(Yij>i|Xj )

)
= αi + βi1Xi1 + βi2Xi2 + . . . + βijXij = αi +

J
∑

j=1
βijXij (1)

where αi, and βij, represent the constant for the crash severity level i, and the regression co-
efficient, respectively. Pk(Yij ≤ i

∣∣Xj ) is the cumulative probability Yij under the conditional
form of i

∣∣Xj regarding the crash severity level i (Y = 1 (PDO); Y = 2 (fatality); Y = 3 (severe

injury); Y = 4 (other visible injuries); Y = 5 (complain of pain)) and
I

∑
i=1

Pk(Yij ≤ i
∣∣Xj ) = 1.

Thus, the multinomial logistic probability model can be expressed as Equation (2):

Pk(Yij ≤ i
∣∣Xj ) =

exp(αi +
I

∑
i=1

βijXij)

1 + exp(αi +
I

∑
i=1

βijXij)

i = 1, 2, . . . , 5; j = 1, 2, . . . , J (2)
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Pearson’s χ2 is obtained by comparing the model prediction of the crash, and the
actual observation of the severity of the crash has a negligible difference to the model test
of the goodness of fit [54]. The calculation formula is expressed by Equation (3):

χ2 =
K

∑
k

(Ok−Ek)
2

Ek
(3)

where K, Ok, and Ek denote the number of the covariant type, the observed frequency in
j covariant type, and the predicted frequency in j covariant type. The smaller statistic of
Pearson χ2 indicates the predicted values between the model and the actual of no significant
difference, the model fitting effect is highly good. On the other hand, the means model
fitting effect is poor [55].

3.3. ANN-MLP Model

ANN-MLP is a supervised learning technique applied for the classification and re-
gression of datasets in different applications [56,57]. In addition, this technique creates a
feed-forward artificial neural network that consists of multiple nodes organized in three or
more layers (i.e., the input layer, the output layer, and one or more hidden layer/layers in
between). The input variables are mapped onto the output variables using one or more
hidden layer/layers [58,59]. ANN-MLP has been successfully used to solve many difficult
problems by utilizing a backpropagation algorithm in training the generated networks.
MLP has the capability of separating data that are not linearly separable [56,57,60]. In this
study, the ANN-MLP technique was employed to generate a classifier to accurately predict
crash severity. It is noteworthy that this method is capable of approximating any finite
nonlinear function with extremely high accuracy, thus it can be practical in the present
study. In training, ANN-MLP is the inputs of the first layer multiplied in weight coefficients
that could be any randomly selected number and then is entered into the neurons in the
second layer. Therefore, to predict crash severity in the present study based on WEKA
software, the initial setting of hyper-parameters about ANN-MLP (e.g., hidden layers,
learning rates, momentum, and normalizing attributes) is summarized in Table 3.

3.4. DT Techniques

The DT technique is a decision support means in which tree-like graphs and their
feasible outcomes are used to visually display the data [61]. These outcomes are made
of internal nodes and diverse branches and leaf nodes. Each internal node expresses a
“test” of an attribute, each branch represents the outcome of the test, and each leaf node
describes a class label. The paths from the root to the leaf express classification rules [62].
The DT algorithm is a new tool for analyzing the existing crash dataset and predicting crash
severity [63]. In the DT, the value of a particular criterion is generally used to specify each
internal node. More details about the hyper-parameter setting were selected according to
Table 3 to yield the best performance for DTs based on WEKA software. Therefore, each
applied algorithm in the present paper has been provided as follows:

3.4.1. C5.0 DT Technique

The C5.0 algorithm is the generalized form of the Iterative Dichotomiser 3 algorithm
which uses the gain ratio for selecting the most important attributes [61]. C5.0 can generate
classifiers displayed either as DTs or rulesets. Many studies prefer rulesets over DTs since
they are easier to understand compared to DTs. The process of C5.0 algorithm is that, in
the first step, it makes a large tree based on all of the attribute values. Then, it finalizes the
decision rule by pruning. In the second step, a heuristic approach is applied for pruning
by considering statistical significance of splits. In the third step, the branch nodes are
proceeded and sent after fixing the best rule. Finally, the final class value in the last node is
made which is called the leaf node [64,65]. Thus, to predict crash severity based on WEKA
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software in the present study, the initial setting of hyper-parameters about the C5.0 DT
technique is provided in Table 3.

3.4.2. CHAID DT Technique

A CHAID tree is a DT that is formed by repeatedly splitting the subsets of the space
into two or more child nodes, beginning with the entire data set [66]. To determine the
best split at any node, any permissible pair of the categories of predictor variables is
merged until there is no statistically significant difference within the pair with respect to
the objective variable [63,66,67]. Chi-square tests are applied at each stage in building the
CHAID tree to ensure that each branch is associated with a statistically significant predictor
of the response variable [68,69]. The process of the CHAID algorithm is that in the first
step, the best partition for each predictor is selected. Then, data are subgrouped based
on the selected predictor. In the second step, each of these subgroups is analyzed again
for producing further subgroups for analysis. In the third step, for each selected pair, the
CHAID algorithm is examined for p-values greater than the certain threshold in order to
merge the values and search for an additional potential pair to be merged. Finally, this
procedure is continued until no significant pairs are found [65,70].

Therefore, to predict crash severity in the present study, the initial setting of hyper-
parameters regarding the CHAID DT technique based on WEKA software is presented in
Table 3.

Table 3. Hyper-parameter Settings for All Classifiers in the Present Study.

Classifier Parameter Description Values

C5.0

Binary splits Whether to use binary splits on nominal
attributes when building the trees False

Min Num Obj Minimum number of instance per leaf 2

Num folds Determination of the amount of data
used for reduced-error pruning 3

Confidence factor The confidence factor used for pruning 0.25

Unpruned Whether pruning is performable False

CHAID

Binary splits Whether to use binary splits on nominal
attributes when building the trees False

Min Num Obj Minimum number of instance per leaf 2

Num folds Determination of the amount of data
used for reduced error pruning 3

Confidence factor The confidence factor used for pruning 0.25

Unpruned Whether pruning is performable False

ANN-MLP

Hidden layers The number of hidden layers a (i.e., one hidden layer with
10 nodes)

Learning rate The amount of the weights is updated 0.3

Momentum Momentum applied to the weights
during updating 0.2

Normalize attributes This will normalize the attributes True

Reset This will allow the network to reset with
a lower learning rate True

Note: ANN-MLP: Artificial neural network-multilayer perceptron; CHAID: Chi-square automatic interaction detector.

Table 4 provides only the most significant rules identified in the present study because
of space constraints. The frequency of each input attribute in the PDO, fatality, severe
injury, other visible injuries, and complaint of pain is illustrated in Figures 3 and 4. Based
on data in Figure 3, the number of generated rules based on C5.0 for PDO, fatality, severe
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injury, other visible injuries, and complaint of pain is 12, 25, 96, 135, and 189, respectively.
As shown, CAUSE (X1), the number of involved vehicles (NUMVEHS (X5)) in the crash,
road surface conditions (RDSURF (X3)), design speed (DESG_SPD (X8)), and WEATHER
(X2) are the primary splitters in the C5.0 model. This implies that these variables are critical
in classifying PDO, fatality, severe injury, other visible injuries, and complaint of pain in
traffic crashes regarding the C5.0 model. The number of generated rules based on the
CHAID model for PDO, fatality, severe injury, other visible injuries, and complaint of pain
is 23, 35, 110, 145, and 198, respectively (Figure 4). According to the CHAID model, four
variables are the primary splitters in the CHAID model, including the CAUSE (X1), the
number of vehicles (NUMVEHS (X5)), WEATHER (X2), and AADT (X15). This indicates
that these variables are essential in categorizing PDO, fatality, severe injury, other visible
injuries, and complaint of pain in traffic crashes regarding the CHAID model.

Figure 3. Distribution of Five Severity Classes Regarding the C5.0 Model; Note: PDO: Property damage only.

Figure 4. Distribution of Five Severity Classes Regarding the CHAID Model; Note: PDO: Property damage only; Note.
CHAID: Chi-square automatic interaction detector.
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Table 4. Partial Output of the Decision Tree (C5.0 and CHAID) Rules.

Decision Tree
Techniques

Class
Attribute Number of Rules Generated Rules Total Number of

Instances/Misclassified Instances

C5.0

PDO 12

CAUSE (X1) = Other Violations (Hazardous) AND
NUMVEHS (X5) = Two vehicles involved in a crash
AND RDSURF (X3) = Dry AND DESG_SPD (X8) =

60 mile/h AND WEATHER (X2) = Clear AND
Drv_age (X11) = 36 to 45

10

Fatal 25

CAUSE (X1) = Speeding AND NUMVEHS (X5) =
Two vehicles involved in a crash AND RDSURF

(X3) = Dry
25.0/3.0

CAUSE (X1) = Speeding AND NUMVEHS (X5) =
Two vehicles involved in a crash AND DESG_SPD

(X8) = >70 mile/h AND WEATHER (X2) = Clear
AND Drv_age (X11) = 26 to 35

23.0/8.0

Severe injury 96

CAUSE (X1) = Speeding AND NUMVEHS (X5) =
Two vehicles involved in a crash AND RDSURF
(X3) = Dry AND DESG_SPD (X8) = >70 mile/h

AND Drv_age (X11) = 26 to 35 And LIGHT (X4) =
Daylight And DRV_SEX (X10) = Male

18.0/5.0

CAUSE (X1) = Speeding AND NUMVEHS (X5) =
Two vehicles involved in a crash AND WEATHER

(X2) = Clear AND DRV_SEX (X10) = Female
15.0/4.0

CAUSE (X1) = Speeding AND NUMVEHS (X5) =
Two vehicles involved in a crash AND WEATHER
(X2) = Cloudy AND Drv_age (X11) = 26 to 35 AND

DRV_SEX (X10) = Male

11.0/3.0

Other visible
injuries 135

CAUSE (X1) = Other Violations (Hazardous) AND
NUMVEHS (X5) = Two vehicles involved in a
crash AND DESG_SPD (X8) >65 mile/h AND

Drv_age (X11) = 26 to 35

87.0/12.0

DESG_SPD (X8) = >65 mile/h AND LIGHT (X4) =
Dark − Street Lights AND ACCESS (X7) =

Conventional − No Access Control
66.0/11.0

NUMVEHS (X5) = Two vehicles involved in a
crash AND DESG_SPD (X8) = >65 mile/h AND

DRV_SEX (X10) = Male
43.0

DESG_SPD (X8) = >65 mile/h AND Drv_age (X11)
= 26 to 35

AND RDSURF (X3) = Dry
37.0/7.0

CAUSE (X1) = Other Violations (Hazardous) AND
NUMVEHS (X5) = Two vehicles involved in a

crash AND DESG_SPD (X8) = >65 mile/h
55.0/9.0

Complain of
pain 189

CAUSE (X1) = Other Violations (Hazardous) AND
Drv_age (X11) = 36 to 45 45.0/6.0

NUMVEHS (X5) = Two vehicles involved in a
crash AND DESG_SPD (X8) = >65 mile/h AND

AADT (X15) AND DRV_SEX (X10) = Male
78.0/21.0

NUMVEHS (X5) = Three vehicles involved in a
crash AND SURF_TYP = PCC, Bridge Deck AND

Drv_age (X11) =36 to 45
123.0/34.0

CAUSE (X1) = Improper turn AND NUMVEHS
(X5) = Two vehicles involved in a crash AND

LIGHT (X4) = Daylight
98.0/33.0

CHAID

PDO 23
CAUSE (X1) = Other Violations (Hazardous) AND

NUMVEHS (X5) = Two vehicles involved in a
crash WEATHER(X2) = Dry

20.0/2.0

Fatal 35

CAUSE (X1) = Speeding AND NUMVEHS(X5) =
Two vehicles involved in a crash WEATHER(X2) =

Dry AND AADT (X15)
30.0/3.0

CAUSE (X1) = Speeding AND NUMVEHS(X5) =
Two vehicles involved in a crash AND DRV_SEX

(X10) = Male
19.0/2.0
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Table 4. Cont.

Decision Tree
Techniques

Class
Attribute Number of Rules Generated Rules Total Number of

Instances/Misclassified Instances

Severe injury 110

CAUSE (X1) = Speeding AND NUMVEHS(X5) =
Two vehicles involved in a crash WEATHER(X2) =

Dry AND Drv_age (X11) = 26 to 35
88.0/7.0

CAUSE (X1) = Speeding AND NUMVEHS (X5) =
Two vehicles involved in a crash AND DESG_SPD

(X8) = >65 mile/h AND DRV_SEX (X10) = Male
65.0/12.0

DESG_SPD (X8) = >70 mile/h AND WEATHER
(X2) = Clear AND LIGHT(X4) = Daylight 40.0/9.0

Other visible
injuries 145

CAUSE (X1) = Other Violations (Hazardous) AND
NUMVEHS (X5) = Two vehicles involved in a

crash AND DRV_SEX (X10) = Male
121.0/13.0

CAUSE (X1) = Other Violations (Hazardous) AND
NUMVEHS (X5) = Two vehicles involved in a

crash AND WEATHER (X2) = Raining
76.0/15.0

SURF_TYP = PCC, Concrete AND Drv_age (X11) =
26 to 35 AND RDSURF (X3) = Wet 59.0/13.0

DRV_SEX = Male AND LIGHT (X4) = Dark −
Street Lights

AND Drv_age (X11) = 26 to 35
33.0/4.0

Complain of
pain 198

CAUSE (X1) = Other Violations (Hazardous) AND
Drv_age (X11) = 36 to 45 134.0/22.0

NUMVEHS (X5) = Two vehicles involved in a
crash AND AADT (X15)And LIGHT (X4) =

Daylight AND DRV_SEX (X10) = Male
89.0/13.0

NUMVEHS (X5) = One vehicle involved in a crash
AND SURF_TYP (X9) = PCC, Concrete AND
Drv_age (X11) = 36 to 45 AND AADT (X15)

64.0/18.0

CAUSE (X1) = Other Violations (Hazardous) AND
NUMVEHS (X5) = Three vehicles involved in a

crash AND Drv_age (X11) = 36 to 45
46.0/11.0

CAUSE (X1) = Improper turn AND NUMVEHS
(X5) = Two vehicles involved in a crash AND

DESG_SPD (X8) = >65 mile/h
38.0

Note. PDO: Property damage only; CHAID: Chi-square automatic interaction detector.

3.5. Performance Evaluation of Classifier Accuracy

To determine which algorithm yields the most accurate outcome, comparing and evalu-
ating the findings of the modeling techniques are essential. Several most effective measures
are considered in performance evaluations. However, the performance of classification al-
gorithms is usually checked by evaluating the correctness of the classification. Accuracy is
a fraction that represents the overall success of the classification [71]. Equation (4) presents
the general form of the applied accuracy in the comparison process. Table 5 provides the
2 × 2 confusion matrix for a binary classifier that has only positive and negative classes (in
our case, it becomes 4 × 4 as we have 4 classes). TP, TN, FP, and FN can be described as
follows [65,66,70]:

Table 5. Confusion Matrix.

True Class
Predicted Class

Positive Negative

Positive TP FN

Negative FP TN
Note: TP: True positive; FP: False positive; FN: False negative; TN; True negative.

TPi = True positive, namely, instances observed to be from class i are classified (pre-
dicted) correctly as belonging to class i
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FNi = False negative, namely, instances observed to be from class i are classified
incorrectly as belonging to a class other than i

FPi = False positive, namely, instances not observed to be from class i are classified
incorrectly as belonging to class i

TNi = True negative, namely, instances not observed to be from class i are classified
correctly as belonging to a class other than i

Other evaluation measures commonly used to evaluate the effectiveness of a classifier
for each class are the true positive rate (TPR), the false positive rate (FPR), and the ROC
curve. Equations (4) and (5) explain how to calculate these measures for class Positive in
Table 5.

Recall =
TP

TP + FN
(4)

Recall is the proportion of instances classified as Positive, among all instances belong-
ing to the class Positive. Note that the overall accuracy of a classifier can also be calculated
by taking the weighted average of all recall values.

The FPR or (1-specificity) is the proportion of instances classified as class Positive
while belonging to a different class, among all instances which are not of class Positive as
shown in Equation (5):

FPS =
TP

TP + FN
(5)

Finally, the ROC curve is a plot of the TPR (i.e., recall) against the FPR at various
threshold settings showing the trade-offs between true positive (benefits) and false posi-
tive (costs).

4. Results

After initializing the MLR model, the data of MLR equations were compared with
each other by means of training and validation, correlation analysis between independent
variables and crash severity, and the significant level of independent variables in order
to find the most appropriate MLR equation for crash severity predictions. The findings
of DT techniques (i.e., C5.0, and CHAID), and the ANN-MLP model in WEKA software
for predicting crash severity are presented throughout correctly and incorrectly classified
instances, accuracy, AUCs, and the classification time of crash severity. The process of DT
techniques (i.e., C5.0 and CHAID) and the ANN-MLP model includes using the entire
dataset because of the need regarding the training set for the algorithm, followed by finding
the precision of the classifier which is normally based on the level of accuracy in predicting
the class of every crash. As the second stage, the cross-validation technique was employed
with 10-folds to evaluate accuracy. To this end, the entire dataset was randomly placed
into 10 subsets. Out of the 10 subsets, a single subset was selected and applied as the
testing data and the remaining subsets were used in the process as the training data and
then repeated 10 times. Each of the 10 subsets was precisely employed once as the testing
data. As a result, the entire dataset was used for validation. In the third step, the overall
performance was determined by averaging the 10 data from the folds. As the final step and
for controlling any problem resulting from the imbalanced distribution of crash severity
in the dataset, the dataset was resampled to bias the crash severity distribution toward a
uniform distribution. The cross-validation with a 10-fold cross-validation was then re-used
to evaluate its performance. Hence, a sensitivity analysis is taken into consideration based
on the running time of classifying crash severity and 10-fold cross-validation, training
set, and resampled training set to find the best model. Thus, the findings of the proposed
models are presented as follows:

4.1. Correlation Analysis of Independent Variables

To examine the correlation analysis of independent variables on the dependent vari-
able, seven types of logistic regression model were run, namely, MLR Main, MLR Inter,
MLR Poly, MLR Main Inter, MLR Main Poly, MLR Inter Poly, and MLR Main Inter Poly.
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Based on the obtained data (Table 6), MLR Inter, MLR Main Inter, MLR Inter Poly, and MLR
Main Inter Poly had the greatest over fit since all of them showed a considerable rate on
the training set but poorly performed on the validation set. This is actually resulting from a
large gap between the training and validation sets. Thus, these four models are unsuitable
as a predictive model for this set of data. Therefore, MLR Main was found to be the best
model for logistic regression since it had the highest percentage of accuracy as compared to
MLR Poly and MLR Main Poly, even though there was slightly overfitting on that particular
model. Based on the correlation analysis between independent variables and severity crash,
seven independent variables demonstrated significant correlations (p < 0.05), including
the cause of the crash (X1), weather conditions (X2), road surface conditions (X3), lighting
conditions (X4), the number of vehicles (X5), design speed (X8), and from the driver’s
aspect, driver’s age (X11). The significance levels are shown in Table 7. According to lower
values of the Akaike information criterion (AIC), Bayesian information criterion (BIC), and
Pearson’s Chi-squared test (χ2) in comparison with other variables in Table 7, driver’s
age (X11) accounts for a larger proportion of traffic crash severity among the independent
variables. Thus, traffic crashes are closely related to human factors.

Table 6. Different Proposed Types of Logistic Regression Equations.

Model Type Description Simulating Performance Accuracy Rate (%)

MLR Main

In the proposed models, all sets of the variable are applied.

Training 68.21%
Validation 59.37%

MLR Inter
Training 82.34%

Validation 44.27%

MLR Poly Training 55.10%
Validation 38.61%

MLR Main Inter

In the proposed models, considering two factors interaction for class
variable sets used are included.

Training 91.56%
Validation 34.77%

MLR Main Poly Training 74.29%
Validation 54.44%

MLR Inter Poly Training 66.10%
Validation 44.89%

MLR Main Inter Poly
Poly Term is in the model polynomial which terms up to the degree

specified for all interval variables used. Poly Degree specifies the
polynomial degree when the term is included in the proposed model

Training 77.22%
Validation 51.98%

Note: MLR: Multinomial logistic regression.

Table 7. Significance Level of Independent Variables.

Variable AIC * BIC * Simplified Model Negative Twice
Logarithmic Likelihood Values χ2 Df * Significance Level

Effect of the intercept 1.20 × 104 1.43 × 104 1.03 × 104 0 0 —

X1 1.23 × 104 1.40 × 104 1.08 × 104 18 3 0.018

X2 1.24 × 104 1.42 × 104 1.12 × 104 15 6 0.001

X3 1.25 × 104 1.44 × 104 1.16 × 104 26 9 0.004

X4 1.28 × 104 1.47 × 104 1.13 × 104 37 5 0.011

X5 1.32 × 104 1.52 × 104 1.24 × 104 28 2 0.026

X6 1.36 × 104 1.58 × 104 1.29 × 104 17 8 0.189

X7 1.28 × 104 1.66 × 104 1.22 × 104 18 7 0.870

X8 1.21 × 104 1.55 × 104 1.14 × 104 45 10 0.005

X9 1.24 × 104 1.45 × 104 1.17 × 104 34 4 0.086

X10 1.26 × 104 1.61 × 104 1.18 × 104 22 6 0.177

X11 1.12 × 104 1.22 × 104 1.16 × 104 14 5 0.031

X12 1.29 × 104 1.68 × 104 1.21 × 104 23 3 0.121

X13 1.20 × 104 1.38 × 104 1.13 × 104 54 7 0.091

X14 1.19 × 104 1.37 × 104 1.12 × 104 31 11 0.220
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Table 7. Cont.

Variable AIC * BIC * Simplified Model Negative Twice
Logarithmic Likelihood Values χ2 Df * Significance Level

X15 1.30 × 104 1.50 × 104 1.23 × 104 25 17 0.178

X16 1.18 × 104 1.36 × 104 1.11 × 104 27 12 0.101

X17 1.17 × 104 1.34 × 104 1.09 × 104 21 1 0.231

X18 1.20 × 104 1.35 × 104 1.10 × 104 17 3 0.183

X19 1.15 × 104 1.32 × 104 1.05 × 104 19 2 0.224

X20 1.22 × 104 1.39 × 104 1.14 × 104 16 2 0.351

* Note: AIC: Akaike information criterion of the simplified model; BIC: Bayesian information criterion of the simplified model. Lower
values of AIC, BIC, and χ2 value indicate lower penalty terms, hence, an important variable is selected in the model. df: Degree of freedom.

4.2. Results of the MLR Model

The data related to the MLR model for the crash severity of PDO (1), fatality (2), severe
injury (3), other visible injuries (4), and complain of pain (5) are summarized in Table 8.
According to Table 8, for each crash severity, the proposed MLR models with their variables
are indicated.

Table 8. MLR model for crash severity.

Crash Severity MLR Model Variable

PDO p(y ≤ 1) = exp(1.45+0.543(x1)−0.344(x2)−0.32(x3)+0.42(x4)+0.67(x5)+0.71(x8)−0.25(x11))
1+exp(1.45+0.543(x1)−0.344(x2)−0.32(x3)+0.42(x4)+0.67(x5)+0.71(x8)−0.25(x11))

X1 = 5; X2 = 1; X3 = 1; X4 = 1; X5 = 5; X8 = 9;
X11 = 1;

Fatality (y ≤ 2) = exp(2.08+0.52(x1)−0.44(x2)−0.31(x3)+0.22(x4)+0.47(x5)+0.51(x8)−0.27(x11))
1+exp(2.08+0.52(x1)−0.44(x2)−0.31(x3)+0.22(x4)+0.47(x5)+0.51(x8)−0.27(x11))

X1 = 5; X2 = 1; X3 = 1; X4 = 1; X5 = 2; X8 = 10;
X11 = 0;

Severe injuries (y ≤ 3) = exp(3.21+0.42(x1)−0.21(x2)−0.12(x3)+0.56(x4)+0.43(x5)+0.61(x8)−0.33(x11))
1+exp(3.21+0.42(x1)−0.21(x2)−0.12(x3)+0.56(x4)+0.43(x5)+0.61(x8)−0.33(x11))

X1 = 4; X2 = 1; X3 = 2; X4 = 1; X5 = 1; X8 = 9;
X11 = 0;

Other visible injuries (y ≤ 4) = exp(4.21+0.22(x1)−0.11(x2)−0.37(x3)+0.55(x4)+0.23(x5)+0.11(x8)−0.47(x11))
1+exp(4.21+0.22(x1)−0.11(x2)−0.37(x3)+0.55(x4)+0.23(x5)+0.11(x8)−0.47(x11))

X1 = 6; X2 = 2; X3 = 2; X4 = 2; X5 = 3; X8 = 10;
X11 = 0;

Complaint of pain (y ≤ 5) = exp(5.12+0.17(x1)−0.49(x2)−0.61(x3)+0.15(x4)+0.39(x5)+0.57(x8)−0.38(x11))
1+exp(5.12+0.17(x1)−0.49(x2)−0.61(x3)+0.15(x4)+0.39(x5)+0.57(x8)−0.38(x11))

X1 = 5; X2 = 1; X3 = 1; X4 = 1; X5 = 4; X8 = 9;
X11 = 1;

4.3. Testing Goodness of Fit on the Models

Table 9 presents the result of Pearson χ2 and deviance statistics fitting goodness test.
As shown, the p-value of Pearson χ2 and deviance statistics are both >0.05, thus at the
significance level α = 0.05 conditions, establish that the model fitting effect is acceptable.

Table 9. Goodness of Fit.

Statistical Parameter χ2 df Significance Level

Pearson 13,764.64 12,948.01 0.076

Deviation 12,100.38 12,948.01 0.083

4.4. DT Techniques and the ANN-MLP Model

Graphical representation in Figure 5 is presented for a more comfortable grasp of
the relative importance of independent variables when employing C5.0, CHAID, and
ANN-MLP models. Based on data in Figure 5, C5.0 has one-quarter of the relative im-
portance to CAUSE (X1), another one-quarter to the number of vehicles (NUMVEHS(X5))
involved in the crash, and the remaining cases related to other variables. According to C5.0,
CAUSE (X1), the number of vehicles (NUMVEHS(X5)), road surface conditions (RDSURF
(X3)), design speed (DESG_SPD (X8)), and WEATHER (X2) were categorized as the most
influential variables in the occurrence of crashes.

On the other hand, CHAID attributes one-third of the weight of the crash frequency
model to CAUSE (X1) and a quarter to the number of vehicles (NUMVEHS (X5)) involved
in the crash and the remaining cases to other variables. Based on CHAID, the CAUSE (X1),
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number of vehicles (NUMVEHS(X5)), WEATHER(X2), and AADT (X15) were classified as
the most influential variables in the occurrence of crashes. Unlike DT models, ANN-MLP
has a reasonably homogeneous distribution of relative importance, thus variations are less
palpable compared to DT models. However, two variables, including the CAUSE (X1) and
WEATHER (X2), are significantly important in the occurrence of crashes.

Generally, based upon C5.0 and CHAID, CAUSE (X1) and NUMVEHS (X5) were
identified as the most influential variables on the occurrence of crashes. On the other hand,
CAUSE (X1) and WEATHER (X2) were reported as the most contributing variables in the
ANN-MLP model.

In order to show the performance of each decision tree technique for crash severity,
the accuracy was taken into consideration for each sample dataset including training set,
cross-validation, and resampled training set based on the correctly classified instances,
incorrectly classified instances, Equation (4), and Tables 10–12. Thus, the accuracy results
were calculated and shown in Table 10 for C5.0 model. Regarding Table 10, it was found
that, for C5.0 prediction accuracy based on the training dataset, crash severity such as
PDO, fatality, severe injury, other visible injuries, and complaint of pain was 86.72%,
23.67%, 39.65%, 55.78%, and 69.80%, respectively. Therefore, for the C5 model, the overall
prediction accuracy based on the training data was approximately 88.09%. Moreover,
based on the 10-fold cross-validation in Table 10, the prediction accuracy for PDO, fatality,
severe injury, other visible injuries, and complaint of pain was 78.56%, 10.82%, 17.45%,
25.11%, and 45.78%, respectively. The overall prediction accuracy for the 10-fold cross-
validation was nearly 72.08%. However, after resampling for PDO, fatality, severe injury,
other visible injuries, and complaint of pain was 94.53%, 76.87%, 83.26%, 89.10%, and
90.33%, respectively. For C5.0 models after resampling, the overall prediction accuracy of
the training data was approximately 89.45%. Based on these data, an enhancement was
observed in the prediction accuracy after resampling the training set.

In addition, the CHAID classifier is shown according to the correctly classified in-
stances, incorrectly classified instances in Equation (4) and Table 11 in order to represent
accuracy. According to Table 11, it was found that, for CHAID prediction accuracy based
on the training dataset crash severity such as PDO, fatality, severe injury, other visible
injuries, and complaint of pain was calculated and shown to be as 86.73%, 23.67%, 36.78%,
68.95%, and 10.99%, respectively. The overall prediction accuracy based on the training
data was nearly 77.21%. According to the 10-fold cross-validation, the correctly classified
instances, incorrectly classified instances, and Equation (4), the prediction accuracy for
PDO, fatality, severe injury, and other visible injuries, and complaints of pain was 67.99%,
17.31%, 22.71%, 35.76%, and 8.89%, respectively. The overall prediction accuracy was
approximately 51.55%. However, the prediction accuracy after resampling the training
dataset for PDO, fatality, severe injury, other visible injuries, and complaints of pain was
reported to be 88.61%, 76.60%, 45.78%, 65.90%, and 76.89%, respectively. Accordingly, the
overall prediction accuracy was nearly 80.49% after resampling. Thus, an increase was
found in the prediction accuracy after resampling the training data.

The prediction findings for the ANN-MLP classifier are presented in Table 12. The
MPL classifier prediction accuracy based on the training data set for PDO, fatality, severe
injury, other visible injuries, and complaints of pain was 63.67%, 45.89%, 65.81%, 28.90%,
and 16.54%, respectively. The overall prediction accuracy based on the training data was
approximately 70.21%. Based on 10-fold cross-validation in Table 12, the prediction accuracy
for PDO, fatality, severe injury, other visible injuries, and complaints of pain was 64.22%,
30.89%, 25.10%, 19.23%, and 9.26%, respectively, and the overall prediction accuracy was
around 53.80%. The findings further revealed that prediction accuracy after resampling the
training dataset was 88.61%, 85.67%, 78.90%, 82.38%, and 85.57% for PDO, fatality, severe
injury, other visible injuries, and complaints of pain, respectively. The overall prediction
accuracy after resampling was nearly 76.24%. Thus, an enhancement was observed regarding
the prediction accuracy after resampling the training data (Table 12).
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Figure 5. Relative Importance of Variables Based on the Proposed Models; Note: ANN-MLP: Artificial neural network-
multilayer perceptron; CHAID: Chi-square automatic interaction detector.

4.5. Sensitivity Analysis

Sensitivity analysis was performed on prediction crash severity for DT techniques,
and the MLP model. The obtained data in Tables 10–12 indicated that building the MLP
classifier takes a longer time compared to other classifiers (approximately 179 s) whereas
that of the C5.0 and CHAID classifiers take 0.05 and 0.76 s, respectively. Figure 6 shows that
the overall accuracy of DTs for the C5.0 classifier is more than that of the CHAID classifier
and the ANN-MLP classifier in predicting crash severity in 10-fold cross-validation, the
training set, and the resampled training set. The high accuracy of C5.0 in predicting
crash severity indicates that C5.0 is the best predictive model in comparison with other
models. Additionally, the prediction accuracy of the classifiers increased after resampling
the training set, indicating an increase in the performance of prediction crash severity for
proposed models.

Table 10. Data of Prediction Crash Severity Regarding the C5.0 Model.

Algorithm Sample Crash Severity
Correctly
Classified
Instances

Incorrectly
Classified
Instances

Accuracy
(Recall) AUCs Time

(Seconds)

C5.0

Using training set

PDO = 1 93,099 14,257 86.72% 0.923

0.05

Fatal = 2 32 103 23.67% 0.912
Severe injury = 3 83 126 39.65% 0.907

Other visible injury = 4 384 304 55.78% 0.915
Complaint of pain = 5 1690 731 69.80% 0.956

Overall 95,288 12,883 88.09% 0.950

Cross validation
(10-fold)

PDO = 1 70,620 19,273 78.56% 0.782

0.03

Fatal = 2 182 1500 10.82% 0.678
Severe injury = 3 210 993 17.45% 0.699

Other visible injury = 4 631 1882 25.11% 0.641
Complaint of pain = 5 885 1048 45.78% 0.781

Overall 89,761 34,767 72.08% 0.832

Resampled training
set

PDO = 1 89,920 5203 94.53% 0.967

0.87

Fatal = 2 378 114 76.87% 0.954
Severe injury = 3 529 106 83.26% 0.938

Other visible injury = 4 841 103 89.10% 0.977
Complaint of pain = 5 1434 154 90.33% 0.981

Overall 93,102 10,981 89.45% 0.985

Note: PDO: Property damage only; AUC: Area under the curve.
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Table 11. Data of Prediction Crash Severity Regarding the CHAID Model.

Algorithm Sample Crash Severity
Correctly
Classified
Instances

Incorrectly
Classified
Instances

Accuracy
(Recall) AUCs Time

(Seconds)

CHAID

Using training set

PDO = 1 85,502 13,082 86.73% 0.953

0.76

Fatal = 2 901 2906 23.67% 0.932
Severe injury = 3 2930 5036 36.78% 0.920

Other visible injury = 4 3841 576 68.95% 0.921
Complaint of pain = 5 35 284 10.99% 0.928

Overall 93,209 27,512 77.21% 0.945

Cross validation
(10-fold)

PDO = 1 82,032 38,621 67.99% 0.621

1.59

Fatal = 2 3456 16,509 17.31% 0.634
Severe injury = 3 4897 16,666 22.71% 0.678

Other visible injury = 4 1230 2413 35.76% 0.731
Complaint of pain = 5 89 912 8.89% 0.760

Overall 91,704 86,189 51.55% 0.794

Resampled training
set

PDO = 1 86,134 11,072 88.61% 0.983

0.78

Fatal = 2 2409 736 76.60% 0.985
Severe injury = 3 3080 3648 45.78% 0.871

Other visible injury = 4 897 464 65.90% 0.890
Complaint of pain = 5 128 39 76.89% 0.850

Overall 92,648 22,457 80.49% 0.961

Note: PDO: Property damage only; AUC: Area under the curve; CHAID: Chi-square automatic interaction detector.

Table 12. Data of Prediction Crash Severity Regarding the ANN-MLP Model.

Algorithm Sample Crash Severity
Correctly
Classified
Instances

Incorrectly
Classified
Instances

Accuracy
(Recall) AUCs Time

(Seconds)

ANN-MLP

Using training set

PDO = 1 90,971 51,907 63.67% 0.763

179.0

Fatal= 2 761 897 45.89% 0.785
Severe injury = 3 158 82 65.81% 0.943

Other visible injury = 4 303 745 28.90% 0.952
Complaint of pain = 5 922 4652 16.54% 0.955

Overall 93,115 39,509 70.21 0.876

Cross validation
(10-fold)

PDO = 1 87,591 48,801 64.22% 0.567

379

Fatal = 2 83 186 30.89% 0.618
Severe injury = 3 34 101 25.10% 0.721

Other visible injury = 4 199 836 19.23% 0.745
Complaint of pain = 5 784 7682 9.26% 0.789

Overall 88,691 76,162 53.80% 0.804

Resampled training
set

PDO = 1 79,210 101,182 88.61% 0.921

384

Fatal = 2 2634 440 85.67% 0.935
Severe injury = 3 1289 345 78.90% 0.956

Other visible injury = 4 3140 672 82.38% 0.867
Complaint of pain = 5 4320 728 85.57% 0.892

Overall 90,593 28,233 76.24% 0.926

Note: ANN-MLP: Artificial neural network-multilayer perceptron; AUC: Area under the curve; PDO: Property damage only.

Figure 6. Overall Prediction Performance Using Different Techniques; Note: ANN-MLP: Artificial neural network-multilayer
perceptron; AUC: Area under the curve; CHAID: Chi-square automatic interaction detector.
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Figure 7 illustrates the findings of the comparison analysis among the proposed
models via identified variables contributing to the crash occurrence. As shown, C5.0 was
chosen as the best predictive model with five variables for predicting the types of road
crash severity since it represented the highest accuracy rate for training and the validation
set compared to CHAID, ANN-MLP, and MLR models.

Figure 7. Prediction data Using Different Proposed Models Based on Accuracy and the Number of
Variables; Note: ANN-MLP: Artificial neural network-multilayer perceptron; CHAID: Chi-square
automatic interaction detector.

5. Conclusions

The classification of crashes based on their severity is crucial since not all crashes are
have the same financial and injury values. Further, in crash severity analysis, accurate
and time-saving prediction models are necessary for classifying crashes based on their
severity. The crash frequencies of different levels of severity such as PDO, fatality, severe
injury, other visible injuries, and complaint of pain were predicted using the MLR model,
DT algorithms such as C5.0 and CHAID, and the ANN-MLP model for all state highways
in California, USA during 2012–2014 were undertaken in the present study. Influential
independent qualitative and quantitative variables (10 variables for each of them) were
used for modeling purposes. The following conclusions could be drawn based on the
obtained data:

(1) Using MLR models, it was observed that independent variables of the cause of the
crash (X1), weather conditions (X2), road surface conditions (X3), lighting conditions
(X4), the number of vehicles (X5), design speed (X8), and from the driver’s aspect and
age (X11) showed significant correlations in crash severity. In addition, regarding the
lower values of the AIC, BIC, and χ2 in comparison with other variables, it was found
that driver’s age (X11) accounts for a larger proportion of traffic crash severity among
the independent variables.

(2) The use of C5.0 and CHAID models indicated that the cause of the crash (CAUSE(X1))
and the number of vehicles (NUMVEHS(X5)) were the most important variables
involved in the occurrence of crashes.

(3) The ANN-MLP model indicated that CAUSE (X1) and WEATHER (X2) were as the
most influential variables in crash severity.

(4) When using the DT model (C5.0), the prediction accuracy was 94.53%, 76.87%, 83.26%,
89.10%, and 90.33% for the entire applied dataset as a training set with 10-fold cross-
validation and after resampling for PDO, fatal, severe injury, other visible injuries,
and complaint of pain, respectively. For the CHAID classifier, the prediction accuracy
was reported 88.61%, 76.60%, 45.78%, 65.90%, and 76.89% for the entire used dataset
as the training set, with 10-fold cross-validation and after resampling for PDO, fatality,
severe injury, other visible injuries, and complaint of pain, respectively. For the ANN-
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MLP classifier, the prediction accuracy for the entire applied dataset as a training set,
with 10-fold cross-validation and after resampling for PDO, fatality, severe injury,
other visible injuries, and complaint of pain was 88.61%, 85.67%, 78.90%, 82.38%, and
85.57%, respectively. Finally, sensitivity analysis showed that the C5.0 model was
selected as the best predictive model with five variables regarding predicting road
crash severity since it demonstrated the highest accuracy rate for training and the
validation set compared to CHAID, ANN-MLP, and MLR models.
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