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Abstract: The increasing use of information technology (IT) in supply chain management and logistics
is connected to corporate advantages and enhanced competitiveness provided by enterprise resource
planning systems and warehouse management systems. One downside of advancing digitalization
is an increasing dependence on IT systems and the negative effects of technology disruption impacts
on firm performance, measured by logistics efficiency, e.g., with data envelopment analysis (DEA).
While the traditional DEA model cannot deconstruct production processes to find the underlying
causes of inefficiencies, network DEA (NDEA) can provide insights into resource allocation at the
individual stages of operations. We apply an NDEA approach to measure the impact of IT disruptions
on the efficiency of operational processes in retail logistics. We compare efficiency levels during IT
disruptions, as well as ripple effects throughout subsequent days. In the first stage, we evaluate the
efficiency of order picking in retail logistics. After handing over the transport units to the outgoing
goods department of a warehouse, we assess the subsequent process of truck loading as a second
stage. The obtained results underline the analytical power of NDEA models and demonstrate that
the proposed model can evaluate IT disruptions in supply chains better than traditional approaches.
Insights show that efficiency reductions after IT disruptions occur at different levels and for diverse
reasons, and successful preparation and contingency management can support improvements.

Keywords: supply chain resilience; IT disruptions; efficiency measurement; warehouse logistics;
DEA; economic sustainability

1. Introduction

Disruptions to the supply chain and transportation processes comprise an important
field of research that can help us to understand their causes and effects, as well as to de-
velop mitigation and coping strategies [1–5]. In many cases, such disruptions are identified in
connection with supply chain management and transportation, information technology, com-
puter science and process areas [6–10]. However, the COVID-19 pandemic, which has caused
multiple interruptions to production and transportation processes all over the world, has a
special impact on supply chains and provides further motivation to study disruption situations
and management [11–13]. It is of high interest within supply chain research and business
management to understand the processes and implications regarding transportation process
interruptions more in detail, as they are relevant to any form of global, digital and sustainable
supply chains [14–16].The specific case of computer system disruptions as a common cause
of problems in warehouse and transportation logistics has seldom been analyzed empirically,
though they are deemed highly relevant, even for, e.g., quantified shareholder value [17]. This
study is one of the first quantitative and efficiency-based papers dedicated to computer system
disruptions on operational processes in warehouse logistics, for example, regarding software
or hardware failures, electricity blackouts and hacking incidents, including ransomware. This
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approach relates to two perspectives regarding the effect of computer system disruptions on
warehouse logistics for retailing [18], which connects to the field of industrial ecology and
economic sustainability in closed-loop concepts for supply chain management. From a static
process point of view, the first research question (RQ1) is: What is the impact of a supply chain
computer system disruption in the first sub-process on the subsequent sub-process in a supply
chain and vice versa, and how does this affect the efficiency of the entire warehouse system?
From a dynamic longitudinal point of view, the second research question is directed at the
time-series effects of computer system disruptions (RQ2): What is the impact of a computer
system disruption on the efficiency of operational processes in warehouse logistics at the time
of occurrence and in the aftermath in subsequent periods? The relevance of this question
becomes prominent when considering the rapid and versatile advances in computer systems
and automation for warehouse logistics. This article aims to shed light on the phenomenon of
cross-sectoral effects of computer system-related supply chain disruptions.

The contributions of this paper are threefold: (1) elaborating, justifying and applying
network data envelopment analysis (NDEA) as a method of performance measurement for
intralogistics processes in retail warehouse logistics for supply chain disruptions due to
technical failure; (2) identifying and weighting key factors influencing the efficiency levels
from technical disruptions; and (3) deriving implications for supply chain management.
We used empirical data obtained from a large German food retailing company. The dataset
contains 17 days’ worth of data on five warehouses, with 9.3 million stock-keeping units
(SKUs) picked in 42,100 h. This paper is structured as follows: The second section provides
a theoretical framework regarding the impacts of supply chain and transport process
interruptions. The third section outlines the data and sample setup, while the fourth
section describes the method used, alongside its justification. The fifth section presents
the specific use of the network DEA (NDEA) approach (model formulation). The sixth
section outlines the empirical results obtained. The seventh section provides a discussion
regarding the results and their implications, as well as their limitations, and the eighth
section presents the conclusions.

2. Theoretical Framework: Supply Chain Disruptions

The theoretical framework regarding interruptions to supply chain and transportation
processes can be structured according to Figure 1: Eight areas of management science
research can be identified regarding supply chain interruptions, making up most of the
research and practically relevant questions in relation to this subfield of supply chain
management. As the eight relevant areas found from a literature analysis as described
below, it can be recognized that the area of internal causes is under-represented and
therefore under-researched. Our research is positioned exactly within this field and research
gap and has the objective to further increase the knowledge about internal causes for supply
chain disruptions and their effects. In order to achieve this, we analyze the specific internal
case of computer system failures and the impacts on downstream supply chain processes.
Additionally, the examined disruptions with internal causes take an explorative research
perspective and do not focus on the impact of IT disruptions. Hence, we aspire to contribute
to this research stream through our quantitative explanative research design.

From the above figure, we outline the described elements and levels in detail, as follows.
Preparation (Supply Chain Resilience, SCR): Resilience refers to the ability of supply

chains to withstand disruptions and unexpected events, such as supply chain interruptions.
This is exemplified, for example, by Chen, Dui and Zhang [5], suggesting a quantitative
cost-based measure for overall supply chain resilience. This team of authors also discussed
this aspect from different customer perspectives. Specific measures, e.g., repair capacities to
increase resilience, are analyzed by Goldbeck, Angeloudis and Ochieng [19]. A dedicated
network approach is presented by Li, Zobel, Seref and Chatfield [20] regarding a holistic
supply chain resilience approach. This holistic supply chain resilience perspective is also
addressed, for example, by Jabbarzadeh, Fahimnia, Sheu and Moghadam [3].
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Preparation (internal): Wong, Lirn, Yang and Shang [4], for example, provide a vivid
example of the questions related to firm-level preparation analysis and management
approaches. They propose the application of organizational information process theory for
preparing individual firms for supply chain disruptions. Furthermore, this research shows
under which circumstances firm-level preparation and resilience pay off regarding specific
performance measures. This is also connected to the production theory of individual forms,
for example, in the work of Dormady, Roa-Henriquez and Rose [21]. Research outputs
also address specific industries and sectors, for example, the maritime business sector [22].
A specific application of this form perspective to family-owned forms is presented by
Brewton, Danes, Stafford and Haynes [23].

Causes (upstream) The upstream structure of supply chains can be the source of
many disruption potentials in global value chains, as outlined, for example, by Bode and
Wagner [24]. This is especially true for a supply chain with increased complexity, as shown
in this research based on prediction models. Many publications shed light on the reasons
for ripple effects and disruptions along the value chain, e.g., Esmaeili-Najafabadi, Fallah
Nezhad, Pourmohammadi, Honarvar and Vahdatzad [25]; Ivanov and Rozhkov [26]; and
Yavari and Zaker [27].

Causes (external): Discussions of external causes of supply chain disruptions mainly
concentrate on grave events such as natural disasters and other “force majeure” events
regarding supply chain management. This is shown, for example, by Kondo [28] for a
powerful earthquake in Japan. Similar approaches are presented, e.g., by Silva, Pereira and
Gold [29] for Brazil; Kim and Bui [30] for Puerto Rico; and Schätter, Hansen, Wiens and
Schultmann [31] with regard to a general decision management approach to unexpected
external events.

Causes (internal): Fartaj, Kabir, Eghujovbo, Ali and Paul [32] show for the automotive
industry, transportation processes and also production logistics that internal causes can
be a major source of process and supply chain disruptions. Nevertheless, disruptions
not only stem from negative process deviations, but might also be caused by positive
innovation changes, as Beltagui, Rosli and Candi [33] show for the introduction of 3D
printing processes in firms.

Effects (downstream): A multitude of research works address the effects of interrup-
tions and outages on supply chain management from a downstream perspective. For
the 2020 COVID-19 crisis, this is exemplified by Ivanov [12] from a global perspective.
Further research outputs highlight the role of demand disruptions in the context of supply
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chain resilience, e.g., Pi, Fang and Zhang [34]; Rahmani and Yavari [35]; and Bugert and
Lasch [36].

Troubleshooting (internal): Some research contributions explore and show the benefits
of firm-level mitigation measures for process and supply chain interruptions. A typical
example is Bazan et al. (2014), who analyze the positive effects of production restoration
operations under such critical conditions. This is further detailed by other publications
such as Ambulkar, Blackhurst and Grawe [37]; Pires Ribeiro and Barbosa-Povoa [38]; and
Bevilacqua, Ciarapica and Marcucci [39].

Troubleshooting (Supply Chain Agility): Regarding mitigation efforts after supply
chain disruptions, El Saadany and Jaber [1], for example, describe how production inter-
ruptions can be managed in a two-tier setting. This aims to increase supply chain agility
for disruption cases. Similar approaches are presented by Gölgeci and Kuivalainen [40] in
the marketing domain; Nguyen, Sharkey, Wheeler, Mitchell and Wallace [41], proposing
quantitative indicators; and Chang and Lin [42], regarding lead-time.

3. Data and Sample

To investigate the impact of information technology disruptions in retail logistics, we
chose an empirical single-case study research design as one part of our field-based research.
Additionally, we wished to delimit our approach from experimental investigations, as we did
not influence variables, but rather observed their development within a real-world setting.
Herein, we examine five warehouses belonging to a large German brick-and-mortar grocery
retailer. While the retailer is operating 18 of these distribution centers, each of the observed
warehouses is responsible for supplying between 341 and 522 grocery stores per day.

Wollenburg et al. (2018) elaborate several typologies for retailers operating within
offline and online retailing channels [43]. According to their framework, we assigned the
observed retail company to the type where offline and online operations are separated on
the operational level and distribution centers solely pick and deliver orders for grocery
stores. This is also commonly referred to as traditional brick-and-mortar grocery logistics.
Therefore, we focus on the impact of information technology disruptions during the order
fulfillment of offline demand and within the context of stationary grocery retailing.

In our case study, every distribution center receives goods from suppliers, stores them
within the warehouse, picks orders that are sent to the supermarket stores and delivers
picked stock keeping units (SKU) to the assigned grocery shops using transportation
aids. Parallel to this material flow, the information flow is ensured through a warehouse
management system and a route-planning system, as well as a track-and-trace system.

Taking the perspective of Porter’s value chain, we analyze the impact of information
technology disruptions on the activity level of outbound logistics. Each of the examined
warehouses has two major steps for order fulfillment: (1) order picking and (2) transport
logistics. Although there are sub-units for each of these process steps, we choose the
aggregation level of these two inter-organizational units, referred to as (1) the order-picking
sector and (2) the transport sector, with the key processes being (1) warehouse logistical
process and (2) truck loading, respectively.

The order-picking sector is responsible for complete, on-time order compiling based on
the orders of the shops and uses a pick-by-voice technology where all order pickers wear
a headset connected to a small wearable computer. The picking system names the storage
location and the number of SKUs to pick. Successful picking operations are confirmed when
pre-defined confirmation codes on the storage locations are correctly given back to the picking
system, e.g., through linguistic input that can be identified by a speech recognition software
running on the wearable computer, or by scanning barcode labels at the storage locations.
Rolling cages and pallets are utilized as transportation aids. All data assigned to this process
can be obtained through the company’s warehouse management system.

After the order-picking process, the rolling cages with SKUs are buffered at a shipping
area and ready for distribution to the grocery stores. The transport sector is responsible
for delivering the full amount of transport units within a given time window. All truck
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drivers use a mobile device to receive their work tasks, e.g., to load a certain number of
containers for a grocery store and deliver them within a predefined time window. In order
to fulfill the task, truck drivers have to scan all relevant 1D barcodes, which are attached to
the containers, load them into the trucks, and record differences between the data provided
by the mobile device and the condition of transported goods. All data assigned to this
process can be obtained through the company’s track-and-trace system.

Due to the high level of digitalization and automation, the IT department is perma-
nently measuring the functionality of the logistics systems. Errors that affect the operational
logistics processes are reported by users or IT specialists through a management infor-
mation system, which documents the strength of the computer system disruption, the
number of affected employees and the duration of the disruption. Thus, computer system
disruptions can be matched with the efficient progression of the warehouse processes
during these outages.

In this paper, we investigate computer system disruptions related to the order picking
sector, as well as disruptions related to the transport sector. The order picking sector
is referred to as the warehouse logistics process and is understood as the first node in
the network of relevant retail logistics operations. After this step, the transport logistics
processes of truck loading represent the second node as an equivalent process step.

Our observations include the evaluation of efficiency for computer system disruptions
regarding (1) the network as a whole and (2) the two nodes as isolated processes. The object of
investigation is a computer system disruption within node 1 in the context of case 1 (C1) and
a computer system disruption within node 2 in the context of C2. In each case, the computer
system disruptions affect the core information system of the main process for one hour.

In C1, the picking system broke down for one hour, while, in C2, the track-and-trace
system broke down for the same duration. During the breakdown, the employees tried
to fulfill their work tasks without digital work equipment and fell back on paper-based
picking and truck loading. The following chapter introduces and justifies the application
of DEA as a key research method for measuring the efficiency impact of computer system
disruptions in retail logistics.

4. Methodology
4.1. Method Selection

In general, DEA is a non-parametric optimization method of mathematical program-
ming for measuring the relative efficiency of decision-making units (DMUs) that have
multiple inputs and outputs. A basic model was introduced by Charnes, Cooper and
Rhodes (1978) and is based on Pareto’s definition of economic efficiency [44] and Koop-
mans’ activity analysis concept [45], together with the publications of Debreu and Farrell,
which deal with radial efficiency measurement [46,47].

Four characteristics of computer system disruptions justify the application of DEA as
a key research method: (1) The impact is not predictable and is not yet examined from an
efficiency-based point of view. As a result, there is no a priori knowledge about the func-
tional relationships of new technologies towards humans. (2) Because computer system
disruptions influence the human workforce, the theory of work systems is applied as a
theoretical framework within the case analyses. As the achievement of work objectives
requires inputs and produces outputs, a method that enables the integration of several in-
and output factors along with the possibility of factor enhancement is needed. (3) Without
the existence of a benchmark value for the level of efficiency in computer system disruption
scenarios, the analysis has to compare the performance of the different empirical observa-
tions. (4) As it is unclear whether computer system disruptions spawn an immediate or
gradual development of efficiency, the progress of efficiency in retail logistics is illustrated
with an empirical curve progression.

Therefore, the results of the analysis have to be comparable between several periods.
As DEA does not require a priori information (requirement 1), considers multiple measures
(requirement 2) [48,49], compares only the different empirical observations (requirement 3) [50]
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and has comparable results when factors are constant (requirement 4) [48,49], it is the method
of choice.

4.2. CCR and BCC Model

The optimization method can be based on constant returns to scale (CRS) in the CCR
model named by its authors Charnes, Cooper and Rhodes [50] or variable returns to scale
(VRS) in the BCC model named by its authors Banker, Charnes and Cooper [51], as well as
each case with an input or output orientation. The mathematical formulation of the CCR
model is [50]:

maximize e f f iciency score =
∑t

r=1 uryrj

∑m
i=1 vixij

(1)

subject to =
∑t

r=1 uryrj

∑m
i=1 vixij

≤ 1, j = 1, . . . , n (2)

ur, vi ≥∀r and i (3)

where:
ur = the weight given to the output r;
yrj = amount of output r produced by DMU j;
vi = the weight given to input i;
xij = amount of input i used by DMU j;
n = the number of DMUs;
t = the number of outputs; m = the number of inputs;
ε = a small positive number.

The basic idea is to calculate an efficiency frontier that is used as a best practice input–
output combination for the underlying production scenario. A score of 1.0 indicates that
a DMU is efficient and positioned on the efficiency frontier, whereas the relative ineffi-
ciency of other DMUs can be determined by measuring the distance between individual
DMU performance and the efficiency frontier. Measuring efficiency under the assumption
of CRS is known as overall technical efficiency (OTE). This includes the determination
of (in)efficiency based on (1) the input/output transformation, meaning pure technical
efficiency (PTE), as well as (2) the size of operations, meaning scale efficiency (SE). This
decomposition is possible under VRS [51–53].

OTE = PTE × SE (4)

SE =
e f f CCR
e f f BCC

(5)

As SE is a number without a unit between 0 and 1, an SE value of 1 means that the
DMU is operating with the optimal operation size, and a difference of 1-SE determines the
extent of the inefficiency arising from the non-optimal size of operations for a single DMU.
A DMU that is efficient under CRS and VRS operates under the most productive scale size
(MPSS), which is also used as a measure for the optimal size of the operation for all other
DMUs. The BCC model can be mathematically expressed as:

maximize e f f iciency score =
t

∑
r=1

uryrj + ω (6)

subject to =
m

∑
i=1

vixij = 1, j = 1, . . . , n (7)

t

∑
r=1

uryrj −
m

∑
i=1

vixij + ω ≤ 0 (8)

ur, vi ≥ε, ∀r and i (9)
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ω = free (unconstrained in sign) (10)

4.3. NDEA and Multi-Stage NDEA

Conventional DEA models like those explained in the previous section, as well as
methodological advancements, e.g., super efficiency to rank DMUs in DEA [54], DEA
window analysis [55–57] and the DEA Malmquist index [58] for time series analysis, and
fuzzy DEA for imprecise or vague input and output measures [59–61], use the black box
assumption for describing DMUs. Therein, the internal structure of DMUs is ignored,
and their performance is explained as a function resulting from the transformation of
its input and output measures. This paradigm was dissolved by Färe and Primont [62],
who presented a DEA model for multi-plant firms and applied it to a dataset of nineteen
production plants from four firms operating coal-fired steam electric generating plants.
For the first time, the internal structure of the company was not ignored, but was decon-
structed into several plants. Over the years, Färe worked on several extensions for DEA
models, evaluating the efficiency of DMUs with their known internal structure [63–67].
Thereby, Färe [64] was the first approach to deal with intermediate input variables that
are used in several nodes of a network. Based on these approaches, NDEA was applied
to measure the efficiency of banks, as a frequently used object of research in the DEA
literature, by separating services and sales as two components of a banking system [68].
As the above-presented introduction of intermediate variables to the DEA methodology
cannot be equated with establishing the logic of sequential nodes within one network, the
development of two-stage DEA models is understood as a parallel stream of research and
is of central interest in the course of this paper. Wang, Gopal and Zionts [69] developed a
DEA model to assess the impact of IT on firm performance using two inputs, x1 and x2, for
node 1. Connected with intermediate variable I, which acts as an output for node 1 and
an input for node 2, the second stage has one output measure, y. Figure 2 illustrates the
structure of the two-stage network DEA model applied in this paper.
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A similar approach was presented by Seiford and Zhu [70], examining the performance
of the top 55 U.S. commercial banks via a two-stage production process that separates
profitability and marketability. NDEA and multi-stage NDEA is often applied in cur-
rent research approaches for performance evaluation in supply chain management and
logistics [71–76].

5. Formulation of a Multi-Stage NDEA Model
5.1. Specifications of Input-Output Measures

The specification of the DEA model begins with the selection of appropriate input
and output measures that are used to calculate aggregated efficiency values per DMU and
period, as well as per node in the network and for the network as a whole. Within the
efficiency analysis, we evaluated the performance of five distribution centers that are used
as DMUs. Since the efficiency analysis aspires to measure the impact of computer system
disruptions on the operational processes in warehouse logistics, we treated the two key
processes—order picking and transportation—as two separate nodes. As a first step, we
define the input and output values for the order-picking process. The following input
measures are applied to the order-picking efficiency model:

• Total picking time, I1: As order picking is a laborious and time-intensive warehouse
process, the sum of total picking hours represents the human resources invested in
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the picking process. Focusing exclusively on the core process picking, this measurand
indicates how well human resources utilize their work equipment. For the DEA model,
the period of time between (a) receiving general order data from a picking system
and (b) finishing a batch through transfer to the next workstation is considered. The
data were extracted from the warehouse management system. Process delays through
computer system disruptions could possibly occur and result in an extension of the
total picking time and, as a consequence, be quantified by this input factor.

• Total number of batches, I2: Orders from the grocery stores are aggregated into batches
through the warehouse management system, which is primarily premised on product
groups and the assigned transportation aid. Hence, the total number of batches is
an input factor that expresses the work amount for the picking department. On the
other hand, computer system disruptions can lead to problems in replenishing storage
locations through forklifts. This, in turn, generates a high number of additional batches
that will significantly lower the key SKU figure per batch. Problems that may occur in
relation to storage replenishment can therefore be quantified with this input measure.

• Total number of incoming pallets, I3: Supplies to the warehouse are measured as
incoming pallets and can be understood as the primary resource for order picking. The
total number of pallets is an input factor that expresses the workload for a warehouse
and is independent of computer system disruptions. It is used as a control variable to
ensure that the volatile demands of grocery stores can be considered when measuring
the efficiency of a warehouse in retail logistics.

On the output side, the individual performance of order pickers can be measured by
one indicator.

• Total SKUs picked, O1: Because the most important output of the order-picking
process is the physically compiled orders, the units picked by the individual order
picker are used as an output. However, as the total amount of picked units correlates
with the first input (total picking time of order picker), which is inadmissible when
applying DEA, the number of targeted storage locations is used.

Within the NDEA model, the intralogistics processes of order picking and truck
loading are divided into two parts: the first with the objective of transforming picking time,
batches, as well as incoming pallets into picked SKUs as an intermediate variable, and the
second with the objective of transforming these intermediate variables into outputs of the
truck loading process. Thus, the intermediate total SKUs picked connect the order picking
and the truck loading process by process by acting as O1 in the upstream and as I1 in the
downstream process. Furthermore, the following input and output measures are applied
to the loading process efficiency model:

• Total loading time, I2: After registering at the responsible dispatcher in the logistics
center, the professional truck drivers receive their route with the grocery stores to
deliver to, as well as the loading gate, loading lane, time window, and the number
of transportation aids on a mobile device. A handheld scanner is directly connected
to the retailer’s track-and-trace system and is mainly used to digitally document the
loading process by scanning all 1D barcodes on the assigned load carriers. The total
loading time includes the period of time between scanning the first (t0) and the last
(t1) load carrier.

• Total on-time deliveries to stores, O1: As one main goal of the transport unit is the
on-time delivery to all customers, the total amount of stores that receive their goods
punctually is a vital variable to monitor the success of the process. Furthermore,
obstructions through computer system disruptions can extend process times in ware-
house logistics, which can result in delayed deliveries. This makes O1 an important
measurand for the network itself, as well as for the impacts of any computer system
disruptions that may occur.

• Lost transport units, O2: The second goal of the transport unit is the complete delivery
of all assigned transport units for the defined order date. As transportation aids are
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labeled with a 1D barcode and scanned at every relevant node of the warehouse
material flow, lost transport units are rare in ordinary business. However, several
kinds of operational distortions can interrupt the information flow of the warehouse.
This leads, e.g., to transport units without information about the gate and lane at
the end of the order-picking process, transport units sent to the wrong gates, or
transport units that cannot be scanned during the loading process. The results of these
exceptional cases are that the units cannot be found, are recorded as lost transportation
units, and are delivered on the next delivery date. As DEA would consider a large
number of lost transport units as a large output and, therefore, as highly efficient, O2
is integrated as an undesirable output.

The statistically equal distribution of these data attributes is essential, as significant
inequalities could affect the quantitative analysis. Furthermore, the size of the warehouses,
expressed through the number of batches, the number of picking hours, the total number
of SKUs picked and loaded, and the total number of delivered customers, is of central
importance. Table 1 summarizes the key attributes of the dataset by applying descriptive
statistics. Furthermore, as the measures can only be applied if they are not highly correlated,
a correlation matrix was calculated. The results indicate that there is no linear statistical
relationship between the applied input and output measures.

Table 1. Attributes of the dataset and correlation matrix for applied input and output measures.

N1, I1 N1, I2 N1, I3 O1, I1 N2, I2 N2, O1 N2, O2

Min. 697.60 422.00 1633.00 87,397.00 2125.35 255.00 0

Max 986.72 651.02 2749.51 130,959.70 7669.39 288.20 55.27

Mean 801.94 516.34 2059.80 105,608.95 3683.24 272.53 11.73

Std. Dev 59.30 52.68 256.04 12,408.72 1173.22 7.72 12.49

r: N1, I1 1.00 0.38 0.13 0.09 0.50 −0.09 0.39

r: N1, I2 1.00 0.45 0.01 0.39 −0.17 0.28

r: N1, I3 1.00 0.01 0.51 0.26 0.37

r: O1, I1 1.00 0.31 0.13 0.05

r: N2, I2 1.00 −0.06 0.70

r: N2, O1 1.00 −0.13

r: N2, O2 1.00

5.2. Model Orientation, Type of Intermediate Variable, and Window Width

For an efficiency-oriented analysis of supply chain disruptions, we use the previously
elaborated factors, whereby the DEA model aspires to (1) maximize desirable outputs,
(2) minimize undesirable outputs, (3) maximize desirable inputs, or (4) minimize normal
inputs [77]. In the course of this paper, reducing inputs is suitable for I1 and I2 in node 1, but
not for I3. As we use the retailer’s warehouses as DMUs, it is doubtful that the warehouses
can reduce the number of incoming pallets (I3) through warehouse optimization. Incoming
goods result from the retailer’s orders to suppliers and, hence, are not reducible through
operational warehouse processes. Maximizing the outputs, on the other hand, is suitable
for node 1, as well as for node 2. Figure 3 illustrates the formulated NDEA model.
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Regarding the warehouse processes in node 1, it is important to mention that the
warehouse can operate on day n with batches assigned to day n and day n + 1. As a result,
the total number of SKUs to pick is controllable and can be influenced by operational
logistical processes. For node 2, the number of stores delivered to on time, O1, as well
as the lost transport units, O2 (treated as an undesirable output), can be maximized by
internal optimizations of the operational transport logistics processes. We chose an output-
oriented DEA model. A third possibility would be a non-oriented model that allows input-
increasing and output-decreasing options for a DMU to reach the constructed efficiency
frontier. However, as we already excluded the input orientation, a non-oriented DEA is
not applicable. Furthermore, an NDEA model can apply several assumptions regarding
the orientation of the intermediate variable. It can operate as a free, fixed, non-increasing,
non-decreasing, or item-specific variable. These settings can also be found in MaxDEA Pro.
As the number of total SKUs picked changes during the transition from node 1 to node 2,
we assume that the intermediate variable has a fixed orientation. Since we are aspiring to
evaluate the impact of computer system disruptions based on panel data, we combined the
formulated NDEA model with a DEA window analysis. Hence, the question of a suitable
window width arises. As the analysis includes 17 days, which are treated as 17 periods
within the panel dataset, whereby the computer system disruptions take place on day 5,
we chose a window width of w = 4. The first window (W1–4) includes periods 1 to 4 and
includes unobstructed operational processes, while the following periods are impacted by
a computer system disruption.

To evaluate the impact of computer system disruptions on operational processes, we
chose the investigation of panel data through a DEA window analysis. We included the day
before the computer system disruption as t−n to compare the efficiency during the regular
business to possible variations, the point in time of the computer system disruption as t0, and the
consequential days as t+n to quantify the possible consequences for the operational efficiency.

6. Empirical Results and Analysis
6.1. C1: Computer System Disruptions in Order-Picking System Affecting Node 1

With the aim of quantifying the efficiency impact of computer system disruptions on
operational processes in warehouse logistics, the first part of the analysis was carried out
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concerning the scale efficiency development of each DMU within the defined windows. To
find out if CRS or VRS needed to be applied, CCR and BCC versions of the DEA model
proposed earlier were calculated. The Table 2 summarizes the mean efficiency scores of the
DEA model calculated with CRS and VRS, as well as the SE scores for the whole network
and per DMU.

Table 2. Mean efficiency scores and scale efficiency (SE) per decision-making unit (DMU) for the network (node1 + node2).

W
DMU1 DMU2 DMU3 DMU4 DMU5

CRS VRS SE CRS VRS SE CRS VRS SE CRS VRS SE CRS VRS SE

1–4 0.88 0.94 0.94 0.86 0.97 0.88 0.79 0.96 0.83 0.87 0.95 0.92 0.80 0.90 0.89
2–5 0.78 0.91 0.85 0.83 0.97 0.86 0.77 0.96 0.80 0.83 0.95 0.88 0.78 0.90 0.87
3–6 0.67 0.87 0.76 0.83 0.96 0.86 0.80 0.98 0.82 0.78 0.93 0.84 0.76 0.91 0.83
4–7 0.56 0.82 0.67 0.79 0.92 0.85 0.79 0.97 0.81 0.78 0.92 0.85 0.73 0.90 0.80
5–8 0.47 0.82 0.57 0.87 0.96 0.90 0.87 0.99 0.88 0.83 0.95 0.87 0.82 0.92 0.89
6–9 0.49 0.86 0.57 0.83 0.95 0.88 0.87 0.97 0.89 0.80 0.96 0.83 0.77 0.93 0.82

7–10 0.55 0.88 0.62 0.78 0.94 0.83 0.83 0.97 0.85 0.78 0.96 0.81 0.77 0.93 0.82
8–11 0.56 0.90 0.62 0.82 0.95 0.86 0.81 0.98 0.83 0.74 0.95 0.78 0.79 0.96 0.82
9–12 0.56 0.90 0.62 0.87 0.98 0.89 0.83 0.98 0.85 0.71 0.96 0.74 0.79 0.95 0.83
10–13 0.58 0.90 0.64 0.84 0.97 0.87 0.85 0.98 0.87 0.81 0.97 0.83 0.83 0.94 0.89
11–14 0.59 0.89 0.67 0.81 0.98 0.83 0.80 0.98 0.82 0.76 0.96 0.79 0.82 0.96 0.86
12–15 0.62 0.89 0.70 0.77 0.93 0.82 0.77 0.93 0.82 0.77 0.96 0.80 0.81 0.95 0.86
13–16 0.68 0.90 0.75 0.73 0.93 0.78 0.73 0.92 0.80 0.79 0.95 0.83 0.82 0.95 0.86
14–17 0.73 0.89 0.81 0.73 0.92 0.79 0.78 0.92 0.86 0.81 0.96 0.84 0.81 0.94 0.87

As the average SE score for all DMUs and in all windows is <1, the results indicate
that the DMUs are not operating under MPSS. This becomes particularly clear when we
consider that the individual warehouses can change their order picking and transport
volume limits within a certain bound. As a result, a BCC model under the assumption of
VRS must be applied within the methodological framework of a DEA window analysis.
When considering the efficiency scores, the DMUs without computer system disruptions
are constant, with a standard deviation of 0.02 (DMU2), 0.02 (DMU3), 0.01 (DMU4), and
0.02 (DMU5). DMU 1, on the other hand, has a standard deviation of 0.03 among all
windows and 0.05 for W1–4 without a computer system disruption and W4–7 immediately
after the computer system disruption. Besides the efficiency of the whole network, the
developments of the single notes are of special interest when answering the research
question. MaxDEA Pro enables the calculation of isolated efficiency values per DMU and
node. The following figure visualizes, summarizes, and contrasts the efficiency scores per
DMU and window for (1) the whole network, (2) the warehouse processes as node 1, and
(3) the transport logistical processes as node 2.

The results illustrated in Figure 4 show that the computer system disruption in the
warehouse logistics process takes place on day five and is therefore included in the efficiency
score since W2–5 significantly reduces the efficiency of the whole network. The lowest
efficiency level is reached in W4–7 and W5–8 immediately after the outage, so it is important
to mention that the network efficiency of DMU 1 does not return to the original level before
the disruption. Considering the single nodes, the warehouse logistics process is mainly
influenced, which is not surprising in itself, as it was the epicenter of the computer system
disruption. An interesting development can be found for the transport logistical process
(node 2): (1) Although this subsequent process is not directly influenced by the disruption,
the efficiency score drops at the same time as in the warehouse process; (2) the efficiency
loss is not as grave as in node 1; and (3) node 2 recovers significantly faster to a higher and
more stable efficiency level than node 1.
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6.2. C2: Computer System Disruptions in Track-and-Trace Systems Affecting Node 2

Considering that the decision to apply CRS or VRS was already discussed in the
previous section, the investigation of a computer system disruption in the track-and-trace
system affecting node 2 uses the same DEA model as C1. Figure 5 visualizes, summarizes,
and contrasts the efficiency scores per DMU and window for (1) the whole network, (2) the
warehouse processes as node 1, and (3) the transport logistical processes of node 2.
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The curve progression of the total network evaluation in Figure 5 indicates a signifi-
cantly decreasing efficiency level after the computer system disruption on day five over
the course of the first week. The bottom is reached in W7–10 with an average efficiency
score of 0.67 after starting at 0.93 in W1–4. A significant decrease is especially notable
after the computer system disruption in W5–8, W6–9, and W7–10. By considering each node,
it can be observed that the transport logistical process was mainly influenced, which is
not surprising as it is the epicenter of the computer system disruption, with a drop from
0.87 in W2–5 to 0.46 in W7–10. Two circumstances deserve closer attention: (1) the length
and duration of the curve drop are identical for the entire network and for node 1, and
(2) a surprising finding can be stated when considering the efficiency progression of the
warehouse processes. This upstream process is directly affected by the disruption of the
track-and-trace system, although there is no material or information flow in the upstream
direction. The efficiency drop is statistically not as severe as in the directly affected process,
but is still noticeable, with a decline from 0.99 in W1–4 to 0.89 in W5–8.
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7. Discussion

To provide a deeper understanding of the reasons for inefficiencies during computer
system disruptions in retail logistics, we investigated the contribution of all input and output
factors on the given efficiency scores. We thereby analyzed the number of non-zero input and
output slacks, which is frequently applied in the context of DEA methodology after presenting a
radial efficiency score improvement [78]. Depending on the orientation of the DEA model, slack-
based measurements quantify the possibility of DMUs maximizing output values or minimizing
input values that go beyond the radial projection of the envelopment model (CCR or BCC
model). For the specific cases analyzed in C1 and C2, slack-based measurement can provide
in-depth insights into which input or output factor is mainly responsible for inefficiencies. It is
essential to mention that the slack-based measurement is calculated for the whole network of
the NDEA model and not for single nodes. The following figure illustrates the results of the
slack-based measurement for the computer system disruption in node 1 (C1, colored in grey)
and in node 2 (C2, colored in blue).

The pie chart in Figure 6 on the left illustrates the proportion of possible optimizations
per input and output factor for the case of a computer system disruption in the order-
picking system (node 1). Therein, it is surprising that only 28% of the possible optimizations
may come from the epicenter of the computer system disruption, namely the order-picking
system (grey). Most of the inefficiencies result from the subsequent process, the transport
logistical work system of truck loading. Increasingly high loading times and high numbers
of lost transport units are, therefore, the main drivers of inefficiencies after a breakdown in
the order-picking system. This deviation becomes clear when remembering the processes
described in the data and sample section. An outage within the order-picking system
may result in transportation aids with incomplete, wrong, or missing 1D barcodes. This
leads to a media disruption of the digital workflow, consisting of scanning barcodes for the
information flow. At this point, one finding deserves special attention: as the computer
system disruption in node 1 leads to high inefficiencies regarding the I2 and O2 of node 2,
the information workflow that is based on digital technology has a major impact on the
efficiency of the retail operational processes in warehouse logistics. As seen in the right
pie chart, the computer system disruption in node 2 leads to situations in which mainly I2
and O2 of node 2 could be minimized/maximized in order to reach the efficiency frontier.
This also supports the efficiency progression in the previous chapter, which highlighted the
low impact of the computer system disruption in node one on the previous order-picking
process. However, it may be surprising that disruptions in the track-and-trace system lead
to inefficiencies caused by the total picking time (I1, node 1). In operational logistics, a
massively slowed loading process results in a significantly lower material flow of all goods
leaving the warehouse. Consequently, the continuous working material flow of picked
SKUs collides with the space that is still blocked in the outgoing goods department. This
consequently slows down the order picker when moving at rack ends or changing aisles.
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The complex and versatile interaction of warehouse and transport logistical processes
during computer system disruptions is summarized in a system dynamics framework. The
system dynamics methodology, developed by Jay W. Forrester in the 1950s as industrial dy-
namics, initially aimed to solve problems related to top management [79]. The methodology
includes “[ . . . ] a perspective and set of conceptual tools that enable us to understand the
structure and dynamics of complex systems” [80], p. VII. As management problems contain
various elements in several systems and sub-systems interacting with one another, system
dynamics abstracts these elements, takes an aggregated view, and captures the dynamic
behavior of a system over time by mathematical modeling and visualization. Causal loop
diagrams have been applied to shed light on the interplay and resulting mechanisms of
various variables and levels in complex systems by visualizing a reference model [80]. The
variables are connected to influence lines, forming causal chains and indicating whether
the affected variable is influenced positively (+) or affected negatively (−). One example of
a causal chain is as follows: A computer system disruption in the track-and-trace system
leads to an increasing number of errors when scanning barcodes, which, as a consequence,
requires a post-processing step for non-scannable barcodes. This additional process en-
larges the loading time and decreases the number of units delivered on time. Finally, this
has a negative impact on the efficiency of transport logistical processes.

We augment our quantitative and mostly static DEA methodology with the flexible
system dynamics approach as an additional qualitative method to summarize the complex
problem of computer system disruptions, consisting of various explanations on multiple
levels. This allows us to integrate additional variables and factors that we were not able
to include in our multivariate DEA approach, which may be due to data availability or
restrictions of the applied methodology. Furthermore, the combination of these method-
ologies enables a further and deeper discussion of the problem structure and aims to
provide new insights. As a basis for further deviations, we use the quantitative findings
of our DEA model regarding the disruptions in different nodes of the logistics system.
For further research, the system dynamics approach may again serve as a basis for an
additional quantitative analysis of the examined system, as the relationships mapped in
our framework can be transformed into mathematical equations.

These results link to existing research outputs and publications, for example, in the
domain of resilience [81]. In particular, the link between sustainability and resilience is
explored by these authors. Another example of where this paper connects to the existing
literature is the interrelation between economic sustainability and resilience as the ability
to withstand disruptions with adequate resources [82]. Furthermore, this links to resilience
and even growth options in times of crisis due to critical infrastructure being a basic
resource in relation to individual corporate capacities for change [83].

We can also connect the sustainability dimension of the resilience provided by cor-
porate actors, vice versa, to their ability to establish long-term sustainability [84,85]. This,
again, is connected to the public resource of resilience management, as outlined in [86].

Taking the results from the presented NDEA analysis as well as the systems dynamics
model in Figure 7 towards a comparison with established resilience research, we arrive at the
following observations:
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First, ripple and subsequent effects of disruptions are a major field of analysis like for
example described by Hosseini and Ivanov in 2020 [87]. In this paper, we report that in
a quantitative (NDEA) and qualitative (system dynamics) was for such ripple or process
effects. For example, in the above figure, we can recognize that disruptions in many
cases lead to increased waiting times of workers (order pickers, truck drivers), increasing
the operational and efficiency impact of disruptions originating, for example, from IT
systems. This connects also to the observation by Gölgeci and Kuivalainen (2020) that
social capital could be an important mediating and mitigating factor in resilience and
disruption management [40].

Second, the “quantitative push” in resilience research is followed in our paper with
the reference to the NDEA efficiency analysis to evaluate supply chain disruptions; this also
represents the final factor in the qualitative system dynamics perspective (“efficiency of
warehouse/transport processes”). Other research papers apply, for example, value-at-risk
analytics like by Dixit et al. 2020 [88], financial impact measures like with Yu et al. in
2019 [89] or the general overview by Aldrighetti et al. in 2021 regarding costs of disruptions
and low resilience levels in supply chains [90]. The most general and generic view on
metrics for resilience analysis and management is provided by Behzadi et al. in 2020 [91].

Third, technology use is discussed as a driver as well as mitigation perspective for
supply chain disruptions and resilience as was the original starting question for this paper:
Gu et al. provide 2021 a similar approach [92], whereas Lohmer et al. in 2020 see, for
example, blockchain technology as a possible moderator in supply chain disruptions and
resilience [93]. Finally, Al-Talib et al. in 2020 describe how to apply digital IoT technologies
to improve supply chain resilience [94].

In total, there is a considerate body of literature where the presented paper fits well
into the main discussion streams with the presented messages and results. From a general
perspective [95], focusing on specialized areas such as retail [96] up to the challenge of a
generalized theory contribution in this field [4]—all aspects are addressed. This is the basis
for further interactions and research addressing the challenges of supply chain resilience.

8. Conclusions

The quantitative results from this study showed specific but diverse efficiency impacts by
technical computer system disruptions in the two stages of the operational retail logistics process.
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Considering performance measurement in supply chain management, Agrell and Hatami-
Marbini [97] differentiate between (1) performance measurement that provides productivity
estimations in the sense of prediction, e.g., yields, or demands, and (2) providing targets for
improvement in the case of poor performance as a normative paradigm.

The findings of this paper can be assigned to a normative rather than a predictive
paradigm, as they provide a deeper understanding of decreasing performance after com-
puter system disruptions in operational retail logistics processes. For the research questions
raised at the beginning, the findings show that supply chain disruptions are operational-
izable on a micro-level and through a multi-variable approach. The quantitative DEA
methodology applied in this paper takes an a posteriori evaluation perspective, which is a
counterbalance to recent research in supply chain management focusing on the a priori
simulations of disruption, e.g., related to COVID-19. Especially for logistics and supply
chain managers, these evaluation approaches are valuable for scenarios, where disrup-
tions may occur more than once. In most cases, technological disruptions are recurring.
Therefore, our approach can be used to estimate costs and benefits for IT system reliability.

From a theoretical viewpoint, our results can be connected to the research results of
Fartaj, Kabir, Eghujovbo, Ali and Paul [32] or Beltagui, Rosli and Candi [33] for internal
causes of supply chain disruptions. In this sense, our research adds a further internal
cause analysis regarding computer system breakdowns as internal disruptions of supply
chain processes. Therefore, the existing theory and body of knowledge is expanded for this
specific topical area.

The limitations of this study include its use of specific input and output types in one
particular retail logistics setting. In addition, a specified setting in Germany is addressed;
other countries’ cases and datasets could increase the geographical reach of such efficiency
perspectives on supply chain disruptions. From a methodological point of view, we applied
a traditional VRS-based DEA approach. As this requires the availability of exactly known
values for the specified input and output measures, it is a deterministic method. Hatami-
Marbini, Agrell, Fukuyama, Gholami and Khoshnevis [98] argue that this kind of model
is susceptible to changes or errors in data values. As the data in real-world problems
are sometimes imprecise or vague, they propose the application of fuzzy DEA as a more
probabilistic model [61].

This study can be the basis for further research directed at showing similar effects for
further processes in the supply chain and logistics management using the NDEA methodology.
Additional analyses could also be directed at identifying new relevant explaining factors for the
severity of efficiency losses and capacities for recovering (resilience). This could complement
the predominantly qualitative research on supply chain resilience in the future.

From a practitioner’s point of view, this paper is dedicated to a non-parametric evalu-
ation model to assess ex-post effects on the technical efficiency of operational processes in
warehouse and transport logistics as a result of computer system disruptions. A potential
ex ante approach could positively impact the decision-making process of logistic managers
when it comes to the specification of the degree of availability [99], as well as the maximum
degree of failure for computer system disruptions in logistics [100]. However, this is often
a decision based on (rather short-term) cost considerations and seldom based on the over-
all long-term efficiency of operational production and logistics systems [101]. Therefore,
further research is warranted in this interesting field, as highlighted by the disruptions to
many supply chain processes caused by the COVID-19 pandemic.
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