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Abstract: Worldview-3 satellite imagery provides panchromatic images with a high spatial resolution
and visible near infrared (VNIR) and shortwave infrared (SWIR) bands with a low spatial resolution.
These images can be used for various applications such as environmental analysis, urban monitoring
and surveying for sustainability. In this study, mineral detection was performed using Worldview-3
satellite imagery. A pansharpening technique was applied to the spatial resolution of the panchro-
matic image to effectively utilize the VNIR and SWIR bands of Worldview-3 satellite imagery. The
following representative similarity analysis techniques were implemented for the mineral detection:
the spectral angle mapper (SAM), spectral information divergence (SID) and the normalized spectral
similarity score (NS3). In addition, pixels that could be estimated to indicate minerals were calculated
by applying an empirical threshold to each similarity analysis result. A majority voting technique
was applied to the results of each similarity analysis and pixels estimated to indicate minerals were
finally selected. The results of each similarity analysis were compared to evaluate the accuracy of
the proposed methods. From that comparison, it could be confirmed that false negative and false
positive rates decreased when the methods proposed in the present study were applied.

Keywords: image fusion; Worldview-3; shortwave infrared; spectral angle mapper; mineral detection

1. Introduction

As satellite sensor technology advances, the spatial resolution of satellite images is
being continuously improved and satellite sensors capable of acquiring diverse spectral
wavelength bands have been recently developed. Satellite sensors are able to provide
satellite images with diverse spatial and spectral resolutions. These can be utilized in the
field, for example, in national environmental analyses, urban monitoring, change detection
and surveying for sustainability [1]. In particular, Worldview-3 satellite images provide
panchromatic images, eight visible near infrared (VNIR) bands and eight shortwave in-
frared (SWIR) bands with spatial resolutions of 0.3 m, 1.2 m and 3.7 m, respectively, and are
known to be effective for the analysis of the properties of artificial structures, minerals and
rocks as VNIR and SWIR bands between the spectral wavelength bands of 400 and 2,400
nm are provided [2,3]. However, as the spatial resolution of each band varies, the spatial
resolution should be matched to utilize the satellite images for analysis [4]. Generally,
images of a high spatial resolution are downsampled to match the image size of each band
but this is disadvantageous because this reduces the utility of the images. Therefore, a
pansharpening technique was developed to sharpen the VNIR and SWIR bands using the
panchromatic band. Chavez et al. [5] developed the Brovey technique based on the ratio of
the pixel value of the panchromatic band to the intensity of the image and Aiazzi et al. [6]
proposed a sharpening technique using local coefficients to reduce the spatial distortion.

Target detection is a technique that analyzes the position of a pixel presumed to be a
specific material by using the spectral properties of the pixels in remote sensing data [7–9].
A number of studies have recently been conducted related to target detection utilizing
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satellite images that provide wide wavelength bands such as Worldview-3 satellite images.
Sun et al. [10] performed target detection for specific minerals using the band properties
of Worldview-3 imagery and Le et al. [11] detected coal by applying an extreme learning
machine to Landsat 8 OLI satellite images based on the spectral information of coal acquired
using a spectroradiometer. Additionally, Kim [12] developed a processing technique to
minimize the influence of background pixels on target detection using the matched filter
(MF) and adaptive cosine estimator (ACE) techniques.

In this study, mineral detection was performed in areas that are difficult to access
using satellite imagery. As the target area of this study is a region that cannot be accessed,
the spectral data of minerals cannot be directly obtained. In this case, a method can be
applied that uses the spectral data of pixels that are known to indicate the presence of
minerals in the image. Mines and facilities near Pyeongsan (North Korea) were selected
as the study area in this work. Worldview-3 satellite imagery, which provides VNIR and
SWIR bands, was used for mineral detection and minerals were detected via a similarity
analysis-based method using these VNIR and SWIR bands. To effectively utilize the VNIR
and SWIR bands of Worldview-3, the VNIR and SWIR bands with a 0.3 m spatial resolution
the same as that of a panchromatic image were produced by applying the pansharpening
technique. Similarity analyses were conducted utilizing a spectral angle mapper (SAM),
spectral information divergence (SID) and the normalized spectral similarity score (NS3).
Mineral-related spectral data were extracted from the Worldview-3 satellite images that
had undergone a radiometric correction. The pixels presumed to be minerals were selected
by applying thresholds to the results of the SAM, SID and NS3 methods and the final
designation of the pixels (as indicating minerals or not) were determined by applying
a majority voting method to the results from the three techniques. The accuracy of the
method proposed in the present study was evaluated by comparing this final result with
the individual results of applying SAM, SID and NS3, respectively.

2. Methods

In this study, mineral detection was performed using the VNIR and SWIR bands of
Worldview-3 satellites. Radiometric correction is essential when using satellite imagery
for mineral detection. Therefore, radiometric correction was performed using the QUick
Atmospheric Correction (QUAC) algorithm on the Worldview-3 satellite images. VNIR and
SWIR bands with the same spatial resolution as the panchromatic image were produced by
applying the GS2 (Gram–Schmidt 2) sharpening technique to the VNIR and SWIR bands.
Similarity analyses were then conducted utilizing the spectral data of the minerals acquired
from the Worldview-3 satellite images. The similarity analyses were conducted using SAM
and SID and the pixels finally presumed to be minerals were determined by using a majority
voting technique. The results obtained from this approach were comparatively evaluated
with the respective results from the two similarity analyses to verify the performance of
the method proposed in this study. Figure 1 shows the flowchart of the study.
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Figure 1. Workflow of the proposed mineral detection.

2.1. Pansharpening

In general, a high-resolution satellite sensor provides high-resolution panchromatic
images and low-resolution multispectral images. Panchromatic images and multispectral
images are fused to produce high-resolution multispectral images, which increase the utility
of the low-resolution images; this technique is called pansharpening. The pansharpening
technique extracts high-frequency information from panchromatic images and injects this
information into multispectral images [13–15] (see Equation (1)).

M̂Sn = M̃Sn + gn(P− IL), n = 1, . . . , N (1)

In Equation (1), M̂Sn is the sharpened high-resolution multispectral image, M̃Sn is
the multispectral image interpolated using the scale of the P image, gn is the injection
gain, P is the panchromatic image, IL is the low-resolution synthetic intensity image and N
represents the band number of the multispectral image.

The GS2 pansharpening technique was applied in this study. In the GS2 technique,
the low-resolution images obtained by applying the image pyramid or image filtering
technique to the panchromatic image are applied to IL (from Equation (1)). The variable gn
is calculated using the relation of the covariance between IL and the variance of IL [16].

2.2. Spectral Angle Mapper

In this study, similarity indexes were utilized for mineral detection. SAM measures
similarities using the spectral angle between pixels [17,18]; see Equation (2).

SAM = acos
(
〈V1, V2〉
‖V1‖, ‖V2‖

)
(2)

In Equation (2), V1 and V2 refer to the pixels or spectral reflectances of the object and
the material of interest, respectively, 〈V1, V2〉 is the inner product of the pixel values and
‖V1‖ represents the size of the vector when the first pixel is assumed to be a vector. The
SAM indexes are in the range of 0 to π/2. The more similar the properties of pixels are to
each other, the closer the value is to 0. As the SAM indexes measure the spectral angle of
each pixel, materials that have different absolute values of spectral reflectance will have
low values if they have the same spectral pattern.
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2.3. Spectral Information Divergence

SID indexes are calculated assuming that each pixel of the object and the material of
interest, p and q, could be represented by random vectors. SID indexes can be put in order
using Equation (3). Hence, the larger the value of the SID index, the higher the similarity
between pixels [19,20].

SID = ∑ plog
(

p
q

)
+ ∑ qlog

(
p
q

)
(3)

2.4. Normalized Spectral Similarity Score

NS3 is one of the representative similarity analysis techniques and is defined as
Equation (4).

NS3 =

√
ED2 + (1− cos θ)2 (4)

In Equation (4), ED is the spectral distance between two pixels and θ represents the
spectral angle between two pixels. An NS3 index represents the average of the spectral
angles and spectral distances and is a measure that quantifies the size difference, similarity
and shape of the spectral reflectance [21,22]. NS3 indexes range from 0 to

√
2. Hence, the

closer the value is to 0, the higher the similarity between the pixels, as in the case of SAM.

3. Result and Discussion
3.1. Study Area and Materials

The VNIR and SWIR bands of Worldview-3 satellite images acquired on 17 October
2016 were utilized for mineral detection. The selected study area was Pyeongsan-gun
(Hwanghaebuk-do, North Korea), which has regions in which uranium plants and mines
are presumed to be located. The Worldview-3 satellite images utilized for mineral detection
provided panchromatic images with a spatial resolution of 0.31 m, eight VNIR bands
with a spatial resolution of 1.24 m and eight SWIR bands with a spatial resolution of
3.7 m. The panchromatic images were converted to a spatial resolution of 0.3 m through a
geometric correction for use in the sharpening technique and the VNIR and SWIR bands
were converted to spatial resolutions of 1.2 m and 3.7 m, respectively, which were integer
multiples of the 0.3 m spatial resolution. In addition, a radiometric correction was used to
transform the spectral reflectance values. Table 1 shows the spectral information for each
band of the Worldview-3 satellite images and specifies the Worldview-3 satellite images
utilized for the experiment, as shown in Figure 2.

Table 1. Worldview-3 data specifications.

Worldview-3 Bands
Central

Wavelength
[nm]

Band
Width
[nm]

Spatial
Resolution [m]

Panchromatic 625 350 0.31

VNIR

Band 1: coastal 425 50

1.24

Band 2: blue 480 60

Band 3: green 545 70

Band 4: yellow 605 40

Band 5: red 660 60

Band 6: red edge 725 40

Band 7: near-IR 1 833 125

Band 8: near-IR 2 950 180
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Table 1. Cont.

Worldview-3 Bands
Central

Wavelength
[nm]

Band
Width
[nm]

Spatial
Resolution [m]

SWIR

Band 9: SWIR 1 1210 30

3.7

Band 10: SWIR 2 1570 40

Band 11: SWIR 3 1660 40

Band 12: SWIR 4 1730 40

Band 13: SWIR 5 2165 40

Band 14: SWIR 6 2205 40

Band 15: SWIR 7 2260 50

Band 16: SWIR 8 2330 70
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Figure 2. Study area (Pyeongsan-gun, Hwanghaebuk-do, North Korea).

3.2. Experimental Results

As the target area of this study was an inaccessible region, mineral-related spectral
data could not be directly obtained. In cases such as this, a method can be employed that
uses the spectral data of pixels that are presumed to be pixels that solely indicate minerals
in the image. Therefore, in this study, a spectral library was built using the spectral data of
minerals acquired from Worldview-3 satellite images for mineral detection. The spectral
data of the minerals were acquired from an area that was not included in Figure 2 and
the average value of five pixels presumed to be pixels that only indicated minerals was
ultimately designated as the spectral value of the mineral. The image of the region where
the spectral data of the minerals were acquired is shown in Figure 3; this mine is known to
produce the same mineral as the mine in Figure 2. Figure 4 is the spectral graph of the five
pixels presumed to be the mineral.
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Figure 4. Spectral graph of the mineral pixel.

A similarity analysis of the images of the study area was conducted using the pre-
viously built spectral library of the minerals. SAM, SID and NS3 were applied in the
similarity analyses and binary images were produced by applying empirical thresholds.
Figure 5 shows the images before and after applying these thresholds to the results from
the SAM, SID and NS3 analyses.
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A majority voting technique was applied to improve the accuracy of mineral detection.
Majority voting was applied to pixels that were presumed to be minerals in each similarity
analysis result. In majority voting, the pixels in which two or more results are estimated to
be minerals as a result of applying three similarity techniques are finally determined to be
mineral pixels.

The performance of the mineral detection method proposed in this study was both
qualitatively and quantitatively evaluated and the object of comparison was the result of
applying each similarity analysis. The qualitative evaluation involved a visual reading
of the images and the quantitative evaluation entailed calculating the confusion matrix
using ground truth data. Ground truth data were obtained from pixels known to indicate
minerals in the image of the study area. Figure 6 shows the majority voting results and
Tables 2–5 show the results of the quantitative evaluation.
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Table 2. Result of mineral detection by applying SAM.

Mineral detection result
using SAM

Ground Truth Data

Mineral
pixels

Non-mineral
pixels

Mineral
pixels 223,118 152,424

Non-mineral
pixels 29,880 13,594,578

Detection rate 0.882

False alarm rate 0.011

Table 3. Result of mineral detection by applying SID.

Mineral detection result
using SID

Ground Truth Data

Mineral
pixels

Non-mineral
pixels

Mineral
pixels 131,586 21,315

Non-mineral
pixels 121,412 13,725,687

Detection rate 0.520

False alarm rate 0.002
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Table 4. Result of mineral detection by applying NS3.

Mineral detection result
using NS3

Ground Truth Data

Mineral
pixels

Non-mineral
pixels

Mineral
pixels 205,683 264,826

Non-mineral
pixels 47,315 13,482,176

Detection rate 0.813

False alarm rate 0.019

Table 5. Result of mineral detection by applying majority voting.

Mineral detection result
using majority voting

Ground Truth Data

Mineral
pixels

Non-mineral
pixels

Mineral
pixels 203,291 60,480

Non-mineral
pixels 49,707 13,686,522

Detection rate 0.804

False alarm rate 0.004

The qualitative evaluation confirmed that the proportion of undetected areas and
the false alarm rate were lower than the results obtained by individually conducting each
similarity analysis. In particular, the false alarm rate of water-covered areas and building
shadows, which show a low spectral reflectance (like minerals) decreased. The results
from the quantitative evaluation were similar to the qualitative evaluation results. The
detection accuracy for the SAM and NS3 results were 0.882 and 0.813, respectively, showing
high detection rates. However, the false alarm rates were also high at 0.011 and 0.019,
respectively, indicating overdetection. The false alarm rate was low (0.002) for the SID
result but the detection rate was also low (0.520). The detection rate of the method proposed
in this study was 0.804, which was slightly lower than the SAM and NS3 detection rates but
the false alarm rate was greatly reduced (0.004). This confirmed that the method proposed
in this study produced high detection rates and low false detection rates.

4. Conclusions

The VNIR and SWIR bands from Worldview-3 satellite imagery were used for mineral
detection in this study. As part of our approach, the low-resolution VNIR and SWIR bands
were converted to high-resolution bands through the GS2 method. In addition, a spectral
library of the target minerals was constructed for detection and the spectral data of the
target minerals were computed as the average of five pixels in the images estimated to
be purely composed of the target mineral. SAM, SID and NS3, which are representative
similarity analysis techniques, were used for mineral detection and binary images of pixels
presumed to be minerals were produced by applying an empirical threshold to the results
of the similarity analyses. Majority voting was then used to determine the final mineral
designation of a given pixel when the results of more than two of the three similarity
analyses determined that the pixel indicated the presence of a mineral. The proposed
method was evaluated by a comparison with the results of each similarity analysis and
it was confirmed that the detection rate increased by 28% when compared with the SID
results and false alarms decreased by 1.5% when compared with the NS3 results. Further
mineral detection research is planned by acquiring verified spectral data for minerals.
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Abbreviations

VNIR Visible Near InfraRed
SWIR Shortwave InfraRed
SAM Spectral Angle Mapper
SID Spectral Information Divergence
NS3 Normalized Spectral Similarity Score
MF Matched Filter
ACE Adaptive Cosine Estimator
QUAC QUick Atmospheric Correction
GS2 Gram–Schmidt 2
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