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Abstract: With growing evidence of the operational performance of cyber-physical manufacturing
systems, there is a pivotal need for comprehending sustainable, smart, and sensing technologies
underpinning data-driven decision-making processes. In this research, previous findings were cumu-
lated showing that cyber-physical production networks operate automatically and smoothly with
artificial intelligence-based decision-making algorithms in a sustainable manner and contribute to the
literature by indicating that sustainable Internet of Things-based manufacturing systems function in
an automated, robust, and flexible manner. Throughout October 2020 and April 2021, a quantitative
literature review of the Web of Science, Scopus, and ProQuest databases was performed, with search
terms including “Internet of Things-based real-time production logistics”, “sustainable smart manu-
facturing”, “cyber-physical production system”, “industrial big data”, “sustainable organizational
performance”, “cyber-physical smart manufacturing system”, and “sustainable Internet of Things-
based manufacturing system”. As research published between 2018 and 2021 was inspected, and only
426 articles satisfied the eligibility criteria. By taking out controversial or ambiguous findings (insuf-
ficient/irrelevant data), outcomes unsubstantiated by replication, too general material, or studies
with nearly identical titles, we selected 174 mainly empirical sources. Further developments should
entail how cyber-physical production networks and Internet of Things-based real-time production
logistics, by use of cognitive decision-making algorithms, enable the advancement of data-driven
sustainable smart manufacturing.

Keywords: sustainable smart manufacturing; artificial intelligence-based decision-making algorithm;
big data analytics; cyber-physical production system; digital twin; sensing technology

1. Introduction

There is a growing body of literature concerning the sustainable operational perfor-
mance [1–4] of cyber-physical manufacturing systems in terms of Internet of Things-based
real-time production logistics. Internal and external sustainability practices throughout
supply chains catalyze organizational performance. The enhanced financial operations
from sustainability management [5–8] are traceable to superior product image, sales, and
increased market prospects, and consequently administering the sustainability initiatives
in companies is decisive. Supply chains represent a synergistic and robust component of
organizational competitive advantage. With the amplifying sensitivity to environmental
protection and fluid business settings, companies can decide upon taking more opera-
tional strategies to carry out the likely facilities supplied by sustainable business practices.
Heterogeneous sustainability management routines [9–12] are related to reduced carbon
energy utilization and actions to prevent the intensification of climate change. Sustainable
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supply chain management constitutes a necessary condition for advancing sound business
models [13–15] compatible with extended objectives. The striving towards sustainable
supply chain management develops out of the demands of the present-time world, while
cost-effectiveness and handling of natural resources are instrumental in waste decrease,
breakthroughs, bringing about profits, and articulating a unique perceived benefit. Durable
investments are essential for future-oriented companies and sustainable development.

The objective of this systematic review is to analyze the lately published literature
on sustainable, smart, and sensing technologies for cyber-physical manufacturing sys-
tems and synthesize the insights it articulates on sustainable smart manufacturing. By
inspecting the most recent (2018–2021) and relevant (Web of Science, Scopus, and ProQuest)
sources, this research has endeavored to prove that sustainable smart manufacturing,
through data-driven Internet of Things systems, assimilates complete input of product
lifecycle operations. The actuality and novelty of our research are configured by addressing
sustainable smart manufacturing as cyber-physical production systems, which is a hot
emerging topic. The research problem developed throughout the article is whether the
cyber-manufacturing system harnesses innovative advancements in Internet of Things-
based real-time production logistics, cognitive automation, and industrial big data analytics.
The manufacturing cyber-physical system possesses progressively automated linkages and
networking, leading to big data-driven innovation in sustainable Industry 4.0. Industry 4.0
generates cutting-edge developments in sustainable operations [16] and may attain uni-
form production and consumption practices through cognitive decision-making algorithms
across artificial intelligence data-driven Internet of Things systems.

In this research, previous findings were cumulated, showing that cyber-physical pro-
duction networks operate automatically and smoothly [5,17–19] with artificial intelligence-
based decision-making algorithms and Internet of Things-based real-time production
logistics. Our main objective is to indicate that, throughout cyber-manufacturing networks,
production parts and smart connected sensors interconnect automatically [20–22], resulting
in sustainable organizational performance. This systematic review contribute to the liter-
ature on sustainable, smart, and sensing technologies for cyber-physical manufacturing
systems by clarifying that Internet of Things-based real-time production logistics functions
in an automated, robust, and flexible manner. This research attempts to elucidate whether
cutting-edge sensing and streamlining infrastructure management is prevalent in sustain-
able smart manufacturing. Our contribution is by articulating connected research findings
proving that integrated Industry 4.0–circular economy reinforces sustainable operations
management [23] by constantly upgrading the production and consumption practices
through big data analytics-enabled cognitive decision-making algorithms. The objectives of
sustainable Industry 4.0 for deploying big data technologies, deep learning-assisted smart
process planning, and advanced analytics [24] are to carry out manufacturing efficiency
by use of technological breakthroughs. The advancement of sustainable industrial value
creation, artificial intelligence-based decision-making algorithms, Internet of Things-based
real-time production logistics, and deep learning-assisted smart process planning as cutting-
edge technologies of Industry 4.0 have furthered the shift towards cyber-manufacturing
networks where production parts and smart sensors interconnect automatically.

2. Methodology

A systematic review of lately published literature was conducted on sustainable, smart,
and sensing technologies for cyber-physical manufacturing systems by using Preferred
Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. The
inclusion criteria were (i) publications indexed in the Web of Science, Scopus, and ProQuest
databases; (ii) publication date between 2018 and 2021; (iii) written in English; (iv) being
an original empirical research or review article; and (v) certain search terms covered;
(i) conference proceedings, (ii) books, and (iii) editorial materials were removed from the
research. The Systematic Review Data Repository (SRDR) was employed, a software
program for the collection, processing, and inspection of data for our systematic review.
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The quality of the specified scholarly sources was evaluated by using the Mixed Method
Appraisal Tool. Extracting and analyzing publicly accessible files (academic articles) as evidence,
no institutional ethics approval was required before starting our research (Figure 1).
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Figure 1. PRISMA flow diagram describing the search results and screening.

Throughout October 2020 and April 2021, a quantitative literature review of the Web of
Science, Scopus, and ProQuest databases was performed, with search terms including “In-
ternet of Things-based real-time production logistics”, “sustainable smart manufacturing”,
“cyber-physical production system”, “industrial big data”, “sustainable organizational
performance”, “cyber-physical smart manufacturing system”, and “sustainable Internet of
Things-based manufacturing system”. The search terms were identified as being the most
used words or phrases throughout the investigated literature. As the inspected research
was published between 2018 and 2021, only 426 articles satisfied the eligibility criteria. By
taking out controversial or ambiguous findings (insufficient/irrelevant data), outcomes
unsubstantiated by replication, too general material, or having nearly identical titles, we
selected 174 mainly empirical sources (Tables 1 and 2).
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Table 1. Topics and types of paper identified and selected.

Topic Identified Selected

Internet of Things-based real-time production logistics 38 20
Sustainable smart manufacturing 97 40

Cyber-physical production system 88 34
Industrial big data 80 27

Sustainable organizational performance 62 23
Cyber-physical smart manufacturing system 31 16

Sustainable Internet of Things-based manufacturing system 30 14

Type of paper

Original research 312 167
Review 33 7

Conference proceedings 44 0
Book 16 0

Editorial 21 0
Source: Processed by the authors. Some topics overlap.

Table 2. General summary of evidence concerning focus topics and descriptive results (research outcomes).

By deploying groundbreaking sensors, input modeling,
computing, and big data analytics technologies, cyber-physical
production systems can become smart and sustainable.

Bennett et al., 2020; Bratu, 2018; Chessell and Negurit,ă, 2020;
Coatney, 2018; Ghobakhloo, 2020; Hardingham et al., 2018;
Kovacova et al., 2019; Leng et al., 2019; Lyakina et al., 2019;
Morgan et al., 2021; Popescu et al., 2020; Ren et al., 2019;
Rowthorn, 2019; Sawyer, 2020

Implementation of sustainable smart manufacturing may assist in
attaining a data- and service-driven product lifecycle management.

Androniceanu et al., 2020; Brown et al., 2020; Gutschow, 2019;
Haseeb et al., 2019; Hughes, 2020; Ionescu, 2020; Kral et al.,
2019; Mitchell, 2021; Oláh et al., 2020; Olsen, 2019; Riegler,
2019; Riley et al., 2021; Sion, 2018

Sustainable smart manufacturing enhances the automated level of
design, fabrication, servicing, and recovery by use of evaluation
and distribution of lifecycle data across the entire supply chain.

Bailey, 2021; Birkel and Müller, 2020; Bourke et al., 2019;
Cunningham, 2021; Gutberlet, 2019; Kovacova et al., 2019;
Lyakina et al., 2019; McGinnis, 2019; Mircică, 2020; Moore,
2020; Nica, 2018; Popescu Ljungholm, 2019

Integrated Industry 4.0–circular economy reinforces sustainable
operations management by constantly upgrading the production
and consumption practices.

Bekken, 2019; Ionescu, 2019; Keane, 2020; Meilă, 2018; Mircică,
2019; Nica et al., 2018; Nica et al., 2019; Nica et al., 2021; Smith
and Stirling, 2018; Song and Moon, 2019; Vochozka et al., 2018;
Watkins, 2021; Yadav et al., 2020

Industry 4.0 generates cutting-edge developments in sustainable
operations, making the supply chain more fluid and coherent.

Adams, 2020; Ashander et al., 2019; Dabija et al., 2018; Davis,
2020; Durana et al., 2021; Durst, 2019; Keane et al., 2020;
Popescu et al., 2020; Rogers, 2021; Russell, 2020; Schinckus,
2018; Tötzer et al., 2019; Williams et al., 2020

The sustainable and groundbreaking product design and deep
learning-assisted smart process planning can be attained by use of
adequate management of the input collected throughout
sequential product design and business process optimization in
sustainable smart manufacturing through cognitive
decision-making algorithms across artificial intelligence
data-driven Internet of Things systems.

Balica, 2019; Chessell, 2018; Cris, an-Mitra et al., 2020; Davies,
2020; Di Nardo, 2020; Grondys et al., 2020; Kliestik et al., 2018;
Kovacova et al., 2019; Meilă, 2018; Popescu Ljungholm and
Olah, 2020; Throne and Lăzăroiu, 2020; Trettin et al., 2019

Through big data analytics-enabled cognitive decision-making
algorithms, the performance of the entire lifecycle management
operations and service supplying developed on sustainable smart
manufacturing can be monitored and optimized.

Atwell and Lăzăroiu, 2019; Bolton et al., 2018; Dabija et al.,
2019; Lăzăroiu et al., 2021; Pera, 2019; Peters et al., 2020; Popa
and Dabija, 2019; Rahman et al., 2020; Scott et al., 2020; Slaby,
2019; Zhuravleva et al., 2019; Zimon et al., 2019

Sustainable Industry 4.0 considerably increases the adjustability of
production networks and the heterogeneity of manufactured items.

Dabija et al., 2018; Eskridge, 2019; Istianingsih et al., 2020;
Kliestik et al., 2020; Mircică, 2019; Nelson, 2020; Nelson and
Negurit,ă, 2020; Peters, 2020; Popescu Ljungholm, 2018;
Vorontsova et al., 2020; Walker, 2020; Zhuravleva et al., 2019
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Table 2. Cont.

Throughout cyber-manufacturing networks, production parts and
smart sensors interconnect automatically, performing business
process optimization and real-time big data analytics by use of
cognitive decision-making algorithms across sustainable Internet
of Things-based manufacturing systems.

Balica, 2018; Borocki et al., 2019; Carter et al., 2021; Graessley
et al., 2019; Grayson, 2020; He and Bai, 2020; Hyers, 2020;
Meyers et al., 2019; Mirică (Dumitrescu), 2018; Popescu
Ljungholm, 2018; Sheares, 2020; Tisdell et al., 2020

Sustainable smart manufacturing, through data-driven Internet of
Things systems, assimilates complete input of product lifecycle
operations by leveraging mobile connected sensors, industrial
artificial intelligence, and cognitive decision-making algorithms.

Androniceanu and Tvaronavičienė, 2019; Bratu, 2019; Dabija
and Băbut, , 2019; Davidson, 2020; Duft and Durana, 2020;
Grossman, 2018; Ionescu, 2020; Johnson, 2020; Mikhaylova
et al., 2019; Popescu Ljungholm, 2018; Siekelova et al., 2020

Deep learning-assisted smart process planning catalyzes mobility
in the operations and decreases the expenses; automates the
manufacturing processes; and puts into action artificial
intelligence-based decision-making algorithms, sustainable
organizational performance, and real-time big data analytics.

Grant, 2021; Gray-Hawkins and Lăzăroiu, 2020; Ionescu, 2020;
Kliestik et al., 2020; Miller, 2020; Pisar and Bilkova, 2019;
Popescu Ljungholm, 2019; Robinson, 2020; Sekera, 2018; Sion,
2018; Wingard, 2019; Zaušková and Rezníčková, 2020

Data-driven smart manufacturing and real-time process
monitoring participate in sequential assimilation, addressing
efficiency optimization and furthering the consistency of the
sustainable supply chain by use of operations management.

Androniceanu, 2020; Beier et al., 2020; Bell, 2020; Chovancová
and Tej, 2020; Clarke, 2020; Coatney and Poliak, 2020; Davies
et al., 2020; Davis et al., 2020; Di Nardo et al., 2020; Dubman,
2019; Harrower, 2019; Noack, 2019

The advancement of sustainable industrial value creation,
artificial intelligence-based decision-making algorithms, Internet
of Things-based real-time production logistics, and deep
learning-assisted smart process planning as cutting-edge
technologies of Industry 4.0 have furthered the shift towards
smart manufacturing systems.

Andronie et al., 2021; Bai et al., 2020; Bratu, 2019; Costea, 2020;
Davidson, 2020; Gill-Cox, 2018; Groener, 2019; Jakimowicz
and Rzeczkowski, 2019; Miller, 2020; Nica et al., 2020; Rajput
and Singh, 2019; Stehel et al., 2021; Tucker, 2021

The current paradigm shift of the manufacturing sector attempt to
articulate cyber-physical system-based production by use of artificial
intelligence-based decision-making algorithms, resulting in sustainable
smart manufacturing developed on sustainable organizational
performance and sustainable product lifecycle management.

Diaz and Ocampo-Martinez, 2019; Ionescu, 2019; Ionescu,
2020; Lyons and Lăzăroiu, 2020; Nica et al., 2020; Popescu
et al., 2021; Porter, 2020; Putnam et al., 2019; Sheller, 2019;
Smith, 2020; Sorells, 2018; White et al., 2020; Zimon et al., 2020

Source: Processed by the authors.

3. Cyber-Physical Production Networks in Data-Driven Sustainable Smart Manufacturing

Smart manufacturing makes cyber-physical production networks more well-organized
and sustainable [5,25,26] by use of artificial intelligence-based decision-making algorithms.
Big data analytics can reveal undetected knowledge and connections between lifecycle de-
cisions and operational procedures, assisting in making better-grounded business arrange-
ments in intricate management settings. In Internet of Things-based real-time production
logistics, all manufacturing resources, artifacts, operations, and services are automated,
with adjustable and variable interconnectedness and networking across the value chain.
Huge volumes of data for incongruous manufacturing resources and items are generated
along the entire lifecycle. Big data analytics can harness the concrete capacity and relevance
of lifecycle big data to configure a smart development decision-making, as well as to
assimilate and leverage adequately the cutting-edge technologies of smart manufacturing
to improve competitiveness and sustainability. By deploying groundbreaking sensors,
input modeling, computing, and big data analytics technologies, cyber-physical production
systems can become smart and sustainable. Integrating the cutting-edge technologies of
smart manufacturing with pervading servitization at all phases of product development
leads to automated and sustainable production. The procedure of servitization should inte-
grate product design, smart manufacturing, performance and maintenance, refashioning,
recycling, and reprocessing phases of product lifecycle management. Implementation of
sustainable smart manufacturing may assist in attaining a data- and service-driven product
lifecycle management [6,14,25–27] and facilitate the omnipresent connectivity, effective
consistency, and cumulative upgrade of development business processes. Sustainable
smart manufacturing can assist in decreasing resources/energy waste and in cutting down
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or removing emissions from big data-driven industrial processing, consequently advancing
towards the objectives of automated, sustainable, cleaner production while carrying out
various temporary or lasting customer demands. Users of sustainable smart manufacturing
aim to further the design and delivery of services, decreasing resource usage, deteriora-
tion, and contamination, and enhancing economic and environmental sustainability by
harnessing Internet of Things-based real-time production logistics and big data analytics
technologies throughout the management operations of the entire lifecycle [5,7,14,25,28,29]
in order to optimize the level of automation in artificial intelligence-based decision making.
Sustainable smart manufacturing focuses on servitization everywhere in the product value
chain by harnessing groundbreaking information, big data analytics technologies, and
large-scale upgrade of the entire product lifecycle management to assist in collating the
observations obtained from big data usage. Sustainable smart manufacturing enhances
the automated level of design, fabrication, servicing, and recovery by use of evaluation
and distribution of lifecycle data across the entire supply chain. The goals of reducing
resource inputs, energy consumption, and greenhouse gas emissions can be attained by
means of sustainable and resilient product design, automated maintenance and recov-
ery, value-based innovation, reutilization, remodeling, and recycling by use of artificial
intelligence data-driven Internet of Things systems.

Data-driven sustainable smart manufacturing should be assimilated exemplarily
throughout the energy system with the aim of a coherent sustainable energy transi-
tion [8,9,14,30], and thus an upgrade of demand and provision with significant energy
efficiency and renewable electricity sources is needed. Smart cities are redesigning the kind
of production and the industry configuration. In order to maintain data-driven sustainable
smart manufacturing competitiveness, the supply of a sustainable and secure energy is
pivotal. The most difficult task is to forecast alterations in the energy demand and pro-
duction of urban manufacturing and to adequately assimilate cyber-physical production
networks into the energy system. Data-driven sustainable smart manufacturing [5,8,31–33]
may lead to notably large traffic jams across mixed residential regions. Taking into account
the urban economic pressure, we find that land is chiefly allocated to residential utilization
in preference to industrial use. An urban location provides direct availability to customers
and knowledgeable personnel who further productivity. The mixed land utilization con-
stitutes a prospect for employing convenient renewable energies sources throughout a
regional heat network. The introduction of automated assessment systems and of smart
grids facilitates the articulation of load management architecture across the distribution
network. Adjusting energy demand from urban manufacturing can be associated with
digitalization in established urban manufacturing domains or to additive manufacturing,
vertical farming, or data hubs, constituting an indispensable requirement for sustainable
Internet of Things-based manufacturing systems [8,10,14,34,35], cyber-physical production
networks, and smart industrial value creation. Advanced prospects for the urban energy
system materialize by modifying roles of urban manufacturing to a prosumer and gener-
ator of waste heat and renewable energy sources. The growing utilization of electricity
from renewable energy sources throughout all sectors reinforces the decarbonization of
the whole energy system. Smart technologies can supply utilities and consumers with
the possibility of monitoring their systems. Data quantities will expand considerably, and
more computing capacity and storage space are needed. Data-driven sustainable smart
manufacturing can produce renewable energy and act as a consumer of its oversupply,
using the electricity in manufacturing operations at renewable energy sources at the highest
point attainable or preserving it. Designed district management and cutting-edge energy
planning can provide operational support and a robust infrastructure for the organizational
energy strategy.

With growing heterogeneous manufacturing demands, the production pattern has
been developed into a mass-customized one [11,23,36,37], but it is difficult to attain the
networking between the physical realm and the digital one of the production system for
the automated coordination of resources. By setting up cyber-physical links through de-
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centralized digital twin patterns, one can constitute multifarious manufacturing resources
as an operational self-governing system to co-design customized products. Cutting-edge
manufacturing approaches can lead to the growing amount of fashionably designed smart
manufacturing assembly lines, carrying out mass-customized demands from customers.
Cyber-physical systems enable the coherent forecast of the consequences of products and
mechanisms in addition to performing decisions on the production system behavior with-
out the demand for big-budget and inefficient physical duplicates. While cutting-edge
sensing and streamlining infrastructure management is prevalent in smart manufacturing,
assimilating the digital twin model throughout the groundbreaking production infrastruc-
ture constitutes an essential component between the physical and the cyber application
layers of a cyber-physical system. Digital twin-driven manufacturing cyber-physical sys-
tems are a feasible proposal for parallel monitoring of smart plants. The digital twin is
leveraged for supervising and parallel monitoring of the manufacturing system, enabling
online upgrade of the cyber-physical production system [23,36–39] developed on contex-
tual big data. A cyber-physical system is a combination of physical devices interconnecting
across a virtual cyberspace by use of a data transferring network. Each physical device
has its cyber component as a digital image of the concrete device, catalyzing digital twin
models. The digital twin can inspect and supervise the physical entity that can transfer
data to optimize and integrate its virtual model. The digital twin model represents a precise
and instantaneous cyber duplicate of a physical production system that adequately mirrors
all of its functionalities, assimilating big contextual data as regards work-in-process and
machine, and being deployed as an infrastructure for manufacturing planning, networked
upgrade, and swift remodeling. The digital twin functions as a paradigm transition, inte-
grating production operations into manufacturing cyber-physical systems. Inconsistent
with the standard simulation design, the digital twin component constitutes a confirmation
tool for lifecycle integral upgrading solution and not only visual presentation of repro-
ducing unpredictable events or reporting the outcomes. Developed on the leading-edge
infrastructures by use of big data technologies [36,40–42], cyber-physical manufacturing
systems gather sensory information from operational machines and work-in-processes
and transmit them to the higher level networked parallel monitoring component oper-
ating throughout the digital twin computation module. Such a connected component
processes the collected data, lets the physical system know the outcomes, and conveys
control commands to generate indispensable alterations throughout the physical realm,
or redesigns system parameters. By integrating semi-physical paralleling technology and
swift networking optimization approach, one will advance an adequate iterative process,
as a disconnected upgrade is inefficient in adjusting to latent disruptions and dynamic
operational alterations. Developed on the digital twin performance, upgrading programs
can be catalyzed in a swift fashion, and smart cyber-manufacturing assessment can indicate
the necessary technological enhancement (Table 3).

Table 3. Summary of evidence concerning focus topics and descriptive results (research outcomes).

Smart manufacturing makes cyber-physical production networks more
well-organized and sustainable by use of artificial intelligence-based
decision-making algorithms.

Bell, 2020; Kovacova et al., 2019; Leng et al., 2019;
Meyers et al., 2019; Ren et al., 2019; Vorontsova
et al., 2020

Big data analytics can harness the concrete capacity and relevance of
lifecycle big data to configure smart development decision making, as well
as to assimilate and leverage adequately the cutting-edge technologies of
smart manufacturing to improve competitiveness and sustainability.

Bratu, 2019; Costea, 2020; Kovacova et al., 2019;
Miller, 2020; Popescu Ljungholm, 2019; Rajput and
Singh, 2019; Tisdell et al., 2020; White et al., 2020

When groundbreaking sensors, input modeling, computing, and big data
analytics technologies are deployed, cyber-physical production systems
can become smart and sustainable.

Davidson, 2020; Hughes, A. 2020; Ionescu, 2020;
Jakimowicz and Rzeczkowski, 2019; Mikhaylova
et al., 2019; Scott et al., 2020; Smith, 2020

Sustainable smart manufacturing can assist in decreasing resources/energy
waste and in cutting down or removing emissions from big data-driven
industrial processing.

Coatney and Harrower, 2019; Hyers, 2020; Miller,
2020; Mircică, 2019; Poliak, 2020; Robinson, 2020;
Tötzer et al., 2019
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4. Sustainable Organizational Performance in Cyber-Physical Smart Manufacturing Systems

The carrying out of manufacturing cyber-physical systems necessitates accessing huge
quantities of sensors, actuators, appliances, and groundbreaking production infrastructure
devices with connected integrated networking processors [12–14,23,36,43–47], constituting
an exemplary coherent machinery. Combination of all cyber-physical data devices into an
integrated management system can assist heterogeneous digital twin models in inspecting
contextual big data and accomplishing the operational upgrade (e.g., production system ro-
bustness). Throughout manufacturing processes, the digital twin assimilates instantaneous
production contextual big data from work-in-process, prosumers, and machinery. Vast om-
nipresent data requires the adequate operational mining tools to be turned into functional
input. Pattern mining, real-time sensor networks, and deep learning-assisted smart process
planning deploy contextual big data [36,48–50] and expose the intricate connections among
work-in-process, machinery, and operational features latent or intrinsic in the manufac-
turing process. The cyber-physical networked production systems can interconnect by
deploying conventional interfaces, inspect contextual big data to forecast failures while
processing, set up manufacturing services at the Internet of Things-enabled sustainability
level, and adjust to prosumer alterations socially. The manufacturing cyber-physical system
possesses progressively automated linkages and networking [23,36,51–53], becoming quite
resilient with the cutting-edge computing and monitoring infrastructures. Manufacturing
cyber-physical systems integrate groundbreaking connectivity to gather instantaneous data
produced by physical manufacturing systems and automated data management, machine
learning analytics, and cyber computation. The computerized twin-driven production
cognitive loop swiftly redesigns the customized requests into the monitoring parameters of
the cyber-physical manufacturing system that significantly enhances operational efficiency
from preparation to production. The digital twin integrates a connection to the inspection
storage that includes contextual big data concerning distinct components and statistical
allotments for assemblages of components. The hierarchical or centralized control system
is neither adjustable nor proficient for the mass-customized pattern [23,36,51–60], in which
decentralized self-managing constitutes an exemplary option. For a sequence of distinct
demands and product orders, the task sub-operations are harmonized to various forms of
equipment. Decentralized self-managing can perform adequately when regulating the un-
dertakings of loosely connected networks that are extremely inconstant and self-governing.
The digital twin-driven manufacturing cyber-physical system platform can upgrade dy-
namic execution processes. The operations of the manufacturing cyber-physical system
can be virtually inspected, and input can be generated to the physical system. Performance
can be refashioned and repeated until the exemplary status of a substandard operation is
obtained. The task self-managing can decrease the intricacies of the inconstant networked
parallel monitoring of cyberspace manufacturing flows [36,57–60] and enhance the adjusta-
bility of work-in-process for customized production demands. Digital twin determines
the deployment of performance metrics to reinforce production processes and configures
a standardized engineering-based strategy that facilitates incessant optimization and op-
erational adjustability to change. The intricacies of mass customization in the inconstant
manufacturing flows management are decreased, and the resilience of work-in-process for
personalized production demands is enhanced.

The connection between Industry 4.0 and circular economy results in the achievement
of sustainable production and consumption [15,20–22,40,61–66] by taking advantage of the
technological breakthroughs of smart manufacturing. The digitalization operation and
the semantic networking have significant dynamic capacity and low dependence, being
pivotal in enhancing resource efficiency and sustainability. Integrated Industry 4.0–circular
economy reinforces sustainable operations management by constantly upgrading the pro-
duction and consumption practices while supplying a prospect of personalization where
end users and products interconnect and can supervise the execution of processes by using
the Internet of Things sensors. Industry 4.0 is instrumental in attaining productivity and
faultlessness [14,61,67] by inspecting, interfacing, administering, real-time data handling,
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and self-optimizing the production process smartly through remodeling, energy use moni-
toring, adjustability, and forward–backward streaming of materials. Industry 4.0 may attain
uniform production and consumption practices [68] and thus manufacturing efficiency can
be carried out by use of technological breakthroughs. Industry 4.0 generates cutting-edge
developments in sustainable operations [69], making the supply chain more fluid and
coherent. Deficiencies in data collection, unprocessed materials, cleaner technologies, and
interval for deployment have impacted the circular economy standards. As cutting-edge
technologies developed on the mainstays of Industry 4.0 are influential [5,61,70], circular
economy can be implemented by harnessing Internet of Things-based real-time production
logistics associated with data-driven sustainable smart manufacturing. Tracking unpro-
cessed materials and producing instantaneous data as regards manufacturing, working
parts, equipment, and post-consumption of the items are decisive in the circular economy,
assisting in making knowledgeable decisions, supervising the operations, and tracing the
product development, thus making sustainable smart manufacturing possible. The circular
economy approach produces massive volumes of data concerning wastage, subsidiary
products, and unprocessed materials, necessitating digitization throughout the supply
chain to supervise and access instantaneous input.

The system architecture of big data in sustainable smart manufacturing can be har-
nessed to streamline the elaborate network management environment, to set out the
intricate processes of lifecycle data sharing and input interoperability, and to regulate the
soundness of artificial intelligence-based decision-making algorithms [5,14,17,18,25,71–76]
leading to big data-driven innovation in sustainable Industry 4.0. Cutting-edge technolo-
gies can be deployed for controlling the coherence and sustainability of the smart manufac-
turing systems by supplying well-grounded data and significant insights. Input integration
services can be offered for the shared product design operation, and thus the sustainable
and groundbreaking product design and deep learning-assisted smart process planning can
be attained by use of adequate management of the input collected throughout sequential
product design and business process optimization in sustainable smart manufacturing
through cognitive decision-making algorithms across artificial intelligence data-driven
Internet of Things systems. To thoroughly harness the big data from manufacturing and
energy management database to attain a significant level of sustainability, we require
procedures for inspecting, assessing, and upgrading sustainability performance standards
of production operations and systems. Big data analytics can adequately enable the imple-
mentation of the sustainable smart manufacturing paradigm [25,77–80], by gaining value
from lifecycle big data, through putting into effect servitization approaches during the
entire development, and by generating innovative added-value, improving sustainability
in production companies. Through big data analytics-enabled cognitive decision-making
algorithms, the performance of the entire lifecycle management operations and service
supplying developed on sustainable smart manufacturing can be monitored and opti-
mized. The objectives of sustainable Industry 4.0 for deploying big data technologies, deep
learning-assisted smart process planning, and advanced analytics are to decrease resource
waste, to diminish environmental consequences, to further the digitization level, and to
attain large-scale cognitive automation in cyber-physical manufacturing systems. On the
basis of data sharing and feedback across lifecycle stages, we find that more rigorous and
well-grounded product development decisions are possible, upgrading real-time process
monitoring and sustainable product lifecycle management in cyber-physical system-based
manufacturing [5,14,57,81–83], as well as enabling the adequate deployment of optimiza-
tion options. Product quality and sequential deficiency records data should be integrated
and inspected to forecast the malfunction and period of effectiveness of the manufactured
items, as well as to assist in configuring a projecting maintenance logistics, enhancing
the reutilization rate and usage intensity of the commodities, and diminishing material
and energy use. Material delivery data should be leveraged to design and indicate coex-
tensive upgrading routes and to optimize the energy efficiency of sustainable Internet of
Things-based manufacturing systems.
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Cyber-manufacturing system represents a cutting-edge configuration vision of Indus-
try 4.0 wireless networks [57,84] where physical parts are thoroughly assimilated and co-
herently connected with computational operations [19,85–92], constituting an on-demand,
smart, and interactive production resource and capability storage with exemplary and sus-
tainable manufacturing options. Developed on artificial intelligence-based decision-making
algorithms, the cyber-manufacturing system harnesses innovative advancements in Inter-
net of Things-based real-time production logistics, cognitive automation, and industrial
big data analytics. Production resources and capabilities are embedded and networked, fa-
cilitating smart operations of manufacturing parts and systems (e.g., sensitiveness, forecast,
upgrading, and layout). Cyber-manufacturing systems integrate a large volume of shared,
rearrangeable, and resizable production resources and capabilities. Sustainable Industry
4.0 considerably increases the adjustability of production networks and the heterogeneity
of manufactured items. In the flexible manufacturing systems, cognitive automation and
adjustable monitoring tools are not designed to deploy industrial big data analytics. Cyber-
manufacturing systems supply exemplary options of appropriate resource/capability
distribution approach, vast quantity of production devices and techniques, improved har-
nessing of manufacturing parts, robustness to unpredictability, and shift from production
to service by use of Internet of Things sensing networks. Throughout cyber-manufacturing
networks, production parts and smart sensors interconnect automatically [5,85,93–95], per-
forming business process optimization and real-time big data analytics by use of cognitive
decision-making algorithms across sustainable Internet of Things-based manufacturing
systems. Sustainable smart manufacturing, through data-driven Internet of Things sys-
tems, assimilates complete input of product lifecycle operations by leveraging mobile
connected sensors, industrial artificial intelligence, and cognitive decision-making algo-
rithms. Cyber-manufacturing systems possess service-orientated production and predictive
maintenance [57]: manufacturing operations are fashioned in a requirement-oriented de-
sign displayed to resource suppliers. Organizational self-monitoring regulations and
parameters are established by human experts and operate progressively in conformity with
data collection from physical provider layers, performing processing operations through
systematizing system supervision. Cyber-physical smart manufacturing systems function
in an automated, robust, and flexible manner [85,96–99], thus managing sustainability
issues adequately. Self-upgrading and self-organization are advanced to find the solution
to inconsistencies throughout sustainable smart manufacturing (e.g., failure incidence or
source insufficiency). Performance is assessed by output, expenses, and work-in-process if
manufactured items are mass-produced, or expeditiousness and cost if commodities are
produced on demand (Table 4).

Table 4. Summary of evidence concerning focus topics and descriptive results (research outcomes).

The connection between Industry 4.0 and circular economy
results in the achievement of sustainable production and
consumption by taking advantage of the technological
breakthroughs of smart manufacturing.

Adams, 2020; Balica, 2018; Chovancová and Tej, 2020; Davies,
2020; Ionescu, 2019; Keane et al., 2020; Moore, 2020; Nelson and
Negurit,ă, 2020; Pisar and Bilkova, 2019; Popescu Ljungholm,
2019; Popescu et al., 2020; Ren et al., 2019; Siekelova et al., 2020;
Wingard, 2019; Zhuravleva et al., 2019

Circular economy can be implemented by harnessing Internet of
Things-based real-time production logistics associated with
data-driven sustainable smart manufacturing.

Balica, 2019; Bennett et al., 2020; Borocki et al., 2019; Bratu, 2018;
Clarke, 2020; Dabija et al., 2019; Davies et al., 2020;
Gray-Hawkins and Lăzăroiu, 2020; Grayson, 2020; Ionescu,
2020; Nelson, 2020; Pera, 2019; Popescu Ljungholm and Olah,
2020; Russell, 2020; Song and Moon, 2019

The system architecture of big data in sustainable smart
manufacturing can be harnessed to streamline the elaborate
network management environment, to set out the intricate
processes of lifecycle data sharing and input interoperability,
and to regulate the soundness of artificial intelligence-based
decision-making algorithms leading to big data-driven
innovation in sustainable Industry 4.0.

Androniceanu and Tvaronavičienė, 2019; Bekken, 2019; Chessell
and Negurit,ă, 2020; Diaz and Ocampo-Martinez, 2019;
Graessley et al., 2019; Kovacova et al., 2019; Lyons and Lăzăroiu,
2020; Meilă, 2018; Mircică, 2020; Nica et al., 2020; Peters, 2020;
Sawyer, 2020; Throne and Lăzăroiu, 2020; Tötzer et al., 2019
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Table 4. Cont.

Cutting-edge technologies can be deployed for controlling the
coherence and sustainability of the smart manufacturing systems
by supplying well-grounded data and significant insights.

Dabija and Băbut, , 2019; Davidson, 2020; Davis et al., 2020; Duft
and Durana, 2020; Grossman, 2018; Ionescu, 2020; Johnson, 2020;
Leng et al., 2019; Popescu et al., 2020; Rajput and Singh, 2019;
Sheares, 2020; Sion, 2018; Sorells, 2018; Williams et al., 2020

Sustainable smart manufacturing, through data-driven Internet of
Things systems, assimilates complete input of product lifecycle
operations by leveraging mobile connected sensors, industrial
artificial intelligence, and cognitive decision-making algorithms.

Androniceanu et al., 2020; Atwell and Lăzăroiu, 2019; Bell, 2020;
Bourke et al., 2019; Bratu, 2019; Brown et al., 2020; Costea, 2020;
Gill-Cox, 2018; He and Bai, 2020; Istianingsih et al., 2020;
Mircică, 2019; Nica et al., 2020; Popa and Dabija, 2019; Vochozka
et al., 2018

5. Industrial Big Data in Sustainable Internet of Things-Based Manufacturing Systems

Manufacturing sectors should put into operation cyber-physical system-based smart
factories [57,61,100–107] to perpetuate sustainable Industry 4.0 throughout a closed-loop
supply chain. Cyber-physical systems have spatio-temporal characteristics and necessitate
precise and instantaneous decision-making data processing by the event handler so as
to control for rigorous physical system monitoring by use of Internet of Things-based
real-time production logistics. Cyber-physical system calculation operation entails dis-
crete logical time, whereas the physical performance involves continuous physical time.
Cyber-physical systems integrate various tools/parts and handle large quantities of data,
making their performance more elaborate. Cyber-physical system modeling language
has to adjust across the intricate setting, and thus consistent criteria and stipulations are
needed. Cyber-physical production networks operate automatically and smoothly with
artificial intelligence-based decision-making algorithms and Internet of Things-based real-
time production logistics [61,84,108–111], decreasing human participation, but various
big data-driven plants necessitate distinct smart device advancement and designs, de-
manding investment expenses and certain time before their implementation in product
decision-making information systems and sustainable Industry 4.0. Fog computation
optimizes Internet of Things performance, being a spatially shared system linked to het-
erogeneous smart devices at the edge of Industry 4.0 wireless networks. Internet of
Things-based real-time production logistics necessitates cutting-edge sensors technology
(e.g., radio-frequency identification) to collect industrial big data [14,40,57,61,82,112–114]
and constitute a network of heterogeneous parts/devices. Deep learning-assisted smart
process planning catalyzes mobility in the operations and decreases the expenses; au-
tomates the manufacturing processes; and puts into action artificial intelligence-based
decision-making algorithms, sustainable organizational performance, and real-time big
data analytics. Pivotal success aspects and driving forces assist in obtaining resource
efficiency, greenhouse gas emissions, energy use, and sustainable manufacturing. A shared
network of smart manufacturing resources advances groundbreaking business models,
assimilating production-related technologies while monitoring operations and parts in-
stantaneously. The notable driving obstacles are equipping the circular supply chain with
machines, semantic interaction between the equipment and manufactured items, collecting
data across the cyber-physical system, and enhancing the production and consumption rate
to optimize sustainable processes. Data-driven smart manufacturing and real-time process
monitoring [61,66,115–118] participate in sequential assimilation, addressing efficiency
optimization and furthering the consistency of the sustainable supply chain by use of
operations management.

The smart maintenance and service constituent integrates product performance and
assessment stages [25,119–126] by use of cognitive decision-making algorithms. Developed
on the harnessing of the smart devices for manufactured items, instantaneous performance
status data of commodities can be sensed and collected while deployed by end users.
For manufactured items not appropriate for integrating smart devices, external big data-
driven tools are embedded throughout the installation and debugging phases. The product
performance stage typically entails end-user service and manufactured item support, e.g.,
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preventive, reparative, and predictive maintenance across commodity servicing phase.
The instantaneous performance status data, manufactured item quality controlling data,
sequential deficiency data, and end user assessment data derived from Internet of Things,
smart sensors, customer feedback, and controlling system [25,57,127–129] are instrumental
in end user service, manufactured item support, and mobile data-driven maintenance. Due
to the structure of smart devices, product lifecycle history-related data (e.g., remaining
functioning period, deterioration status, and environmental determinants) can be precisely
collected at the recycle stage and can be decisive in manufactured item recovery decision-
making and across reverse logistics planning. As a consequence of the growing deployment
of cyber-physical production networks throughout Industry 4.0-based manufacturing
systems [5,25,108], metrics for manufactured item processes, performance, service, and
maintenance can be gathered for the duration of lifecycle. By harnessing big data analytics,
the huge quantities of input associated with end-user demands can be gathered and
assimilated from heterogeneous sources for deriving practical insights that can be leveraged
to forecast market requirements in a prompt manner, and thus the developing market
magnitude, price increase, volume of competitors, and the degree of dissimilarity among
manufactured items can be predicted. With respect to sustainable smart manufacturing, the
disconnected lifecycle data shaping the manufactured item and service design should be
assimilated and inspected to bring about relevant insights as regards product enhancements
and breakthroughs.

Digitized mass production assisted by big data-driven decision-making processes is be-
ing repositioned in the direction of more coherent and sustainable systems [5,14,57,82,130–138]
across Internet of Things sensing networks. The advancement of sustainable industrial
value creation, artificial intelligence-based decision-making algorithms, Internet of Things-
based real-time production logistics, and deep learning-assisted smart process planning as
cutting-edge technologies of Industry 4.0 have furthered the shift towards smart manu-
facturing systems that enable the configuration of monitoring approaches adopted instan-
taneously to optimize energy efficiency and adjustability of cyber-physical system-based
manufacturing. Considering the decrease in fossil energy sources, ascending energy tariffs,
and public regulation limitations, we find that the smart manufacturing sector is advancing
in the direction of more coherent and sustainable systems. Process planning and organi-
zation are pivotal and interrelated factors in relation to energy use and adjustability of
data-driven sustainable smart manufacturing. Process scheduling is performed after the
operation planning phase, and generally process planning is only needed for the produc-
tion of a manufactured item. The prevalently adopted strategies in sustainable Internet
of Things-based manufacturing systems concentrate on the advancement of flexible op-
erational approaches [14,66,82,115–118,130] that can be adjustable concerning the energy
and market demands. The current paradigm shift of the manufacturing sector attempt to
articulate cyber-physical system-based production by use of artificial intelligence-based
decision-making algorithms, resulting in sustainable smart manufacturing developed on
sustainable organizational performance and sustainable product lifecycle management.
The integration of Internet of Things smart devices, cognitive decision-making algorithms,
industrial artificial intelligence, and digitized mass production furthers the design of
cutting-edge monitoring strategies across Industry 4.0 wireless networks, which can be
adopted instantaneously with computing interval able to find the solution to the opti-
mization issue, shape the appropriate control operations, and carry out the coordinated
undertakings to maintain the cyber-physical system in the required state. The applica-
tion of Internet of Things-based real-time production logistics in the direction of a more
sustainable and adjustable big data-driven manufacturing sector [14,82,84,108–111,130] by
decreasing resources use and custom services furthers and calls out the design of moni-
toring systems that has to be resilient enough to handle the intricate, wide-ranging, and
networked processes of cyber-physical smart manufacturing systems. To boost the energy
efficiency of the product decision-making information systems, one must enhance both
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energy use decrease and more adequate utilization of resources to attain an environmental,
economic, and social sustainable development.

In sustainable Industry 4.0, a manufacturing cloud is configured and comprises both
on-demand and extensively requested manufactured items [5,85,131–136]. The production
parts in manufacturing cloud design duplicate components and the projecting character-
istics considerably result in economizing the hindering period of replicating on-demand
manufactured items generated by a faulty manufacturing process. The standards of moni-
toring strategy aim to concede the time criticality of extensively requested manufactured
items that bring about reduced value, so as to ensure the time criticality of the significant
value of on-demand parts. Decrease of waiting time, work-in-process expenses, and output
optimization constitute the chief upsides of data-driven sustainable smart manufacturing.
Such essential operational indicators display the performance optimization when shifting
to Internet of Things-based real-time production logistics [85,137–142] from the bounded
standard manufacturing system. The streamlined operation and work-in-process make
deep learning-assisted smart process planning more sustainably manageable, while the
economical attainment makes sustainable Internet of Things-based manufacturing systems
competitive. Internet of Things sensing networks, industrial big data, and cyber-physical
smart manufacturing systems show a significant optimization [14,57,82,143–148] in the
custom-designed and on-demand part production. Artificial intelligence data-driven In-
ternet of Things systems can supply enhanced options in straightening out the bottleneck
issues in material and energy use while amplifying production efficiency and estimated
cost strategy. Throughout artificial intelligence data-driven Internet of Things systems,
operational optimization and design are pivotal in the identification of connected tasks
and monitoring of the manufacturing unit scheduling across cyber-physical system-based
smart factories [66,85,115–118] by use of advanced robotics, cognitive automation, and
deep learning-assisted smart process planning. Sustainable Internet of Things-based man-
ufacturing systems facilitate mass customization in terms of completion time, expenses,
quality, and steadiness. By correlating the customized manufactured item with simi-
lar mass-produced commodities, by use of artificial intelligence-based decision-making
algorithms [84,85,108–111], one can create tailor-made goods without undermining the
performance of mass production. The automated functions can contribute to increased
productivity and decrease of work-in-process throughout deep learning-assisted smart
process planning and cyber-physical system-based manufacturing by sensor network
implementation (Table 5).

Table 5. Summary of evidence concerning focus topics and descriptive results (research outcomes).

Deep learning-assisted smart process planning catalyzes mobility in the
operations and decreases the expenses; automates the manufacturing
processes; and puts into action artificial intelligence-based decision-making
algorithms, sustainable organizational performance, and real-time big
data analytics.

Androniceanu, 2020; Bai et al., 2020; Chessell, 2018; Dabija et al.,
2018; Di Nardo et al., 2020; Hardingham et al., 2018; Noack, 2019;
Oláh et al., 2020; Olsen, 2019; Schinckus, 2018; Sekera, 2018; Smith
and Stirling, 2018; Song and Moon, 2019; Tötzer et al., 2019;
Vochozka et al., 2018

Digitized mass production assisted by big data-driven decision-making
processes is being repositioned in the direction of more coherent and
sustainable systems across Internet of Things sensing networks.

Ashander et al., 2019; Beier et al., 2020; Bell, 2020; Birkel and Müller,
2020; Bourke et al., 2019; Coatney, 2018; Grondys et al., 2020; Haseeb
et al., 2019; Kliestik et al., 2018; Kral et al., 2019; Meilă, 2018; Nica,
2018; Popescu Ljungholm, 2018; Rajput and Singh, 2019; Sion, 2018

The advancement of sustainable industrial value creation, artificial
intelligence-based decision-making algorithms, Internet of Things-based
real-time production logistics, and deep learning-assisted smart process
planning as cutting-edge technologies of Industry 4.0 have furthered the
shift towards smart manufacturing systems.

Bolton et al., 2018; Cris, an-Mitra et al., 2020; Davis, 2020;
Ghobakhloo, 2020; Gill-Cox, 2018; Ionescu, 2020; Kliestik et al., 2020;
Lyakina et al., 2019; Mirică (Dumitrescu), 2018; Popescu Ljungholm,
2018; Yadav et al., 2020; Zaušková and Rezníčková, 2020

In sustainable Industry 4.0, a manufacturing cloud is configured and
comprises both on-demand and extensively requested manufactured items.

Dabija et al., 2018; Diaz and Ocampo-Martinez, 2019; Di Nardo,
2020; Ionescu, 2019; Keane, 2020; Kliestik et al., 2020; Nica et al.,
2018; Peters et al., 2020; Pisar and Bilkova, 2019; Popescu
Ljungholm, 2018; Rahman et al., 2020; Ren et al., 2019; Walker, 2020
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6. Discussion

The relevance of sustainable, smart, and sensing technologies for cyber-physical man-
ufacturing systems is extensively in agreement with, and supplies further validation of,
previous review articles, e.g., [3,25,26,115,120,139,149], indicating that business process
optimization throughout sustainable product lifecycle management can be carried out
exemplarily by use of real-time process monitoring in Internet of Things-based manu-
facturing systems. Internet of Things-based real-time production logistics is pivotal in
sustainable Industry 4.0 by deploying smart connected sensors that are determining in big
data-driven decision-making processes. Automated production systems and industrial
artificial intelligence enable the operations performed by cyber-physical system-based
smart factories through big data-driven innovation and sustainable industrial value cre-
ation. The reviewed research matches the global needs by indicating how industrial big
data, cognitive decision-making algorithms, and Internet of Things sensing networks are
instrumental in configuring sustainable organizational performance across cyber-physical
smart manufacturing systems. Internet of Things smart devices assist Industry 4.0-based
manufacturing systems in articulating the big data-driven urban economy by harnessing
cyber-physical production networks. Internet of Things-enabled sustainability can be at-
tained by networking deep learning-assisted smart process planning, artificial intelligence-
based decision-making algorithms, and real-time big data analytics. Sustainable Internet of
Things-based manufacturing systems are competitive in digitized mass production by aim-
ing smart industrial value creation through advanced robotics, cognitive automation, and
real-time sensor networks. Sustainable smart manufacturing needs artificial intelligence
data-driven Internet of Things systems to integrate in Industry 4.0 wireless networks.

The results of this systematic review develop on empirical studies [5,120–130] claiming
that big data analytics, by adequately enabling the implementation of the sustainable smart
manufacturing paradigm [131–138], can reveal undetected knowledge and connections be-
tween lifecycle decisions and operational procedures. Industry 4.0 generates cutting-edge
developments in sustainable operations. Implementation of sustainable smart manufac-
turing may assist in attaining a data- and service-driven product lifecycle management.
Cutting-edge manufacturing approaches can lead to the growing amount of fashionably
designed smart manufacturing assembly lines. Pattern mining, real-time sensor networks,
and deep learning-assisted smart process planning deploy contextual big data. Throughout
cyber-manufacturing networks, production parts and smart connected sensors interconnect
automatically. Cyber-physical production networks operate automatically and smoothly
with artificial intelligence-based decision-making algorithms and Internet of Things-based
real-time production logistics.

There has been a small but increasing number of studies [5,14,40,48–60,77–99,112–114,127–149]
contending that, in Internet of Things-based real-time production logistics, all manufac-
turing resources, artifacts, operations, and services are automated. Sustainable smart
manufacturing can assist in decreasing resources/energy waste and in cutting down or
removing emissions from big data-driven industrial processing. Cutting-edge sensing
and streamlining infrastructure management is prevalent in smart manufacturing. The
manufacturing cyber-physical system possesses progressively automated linkages and
networking. Circular economy can be implemented by harnessing Internet of Things-based
real-time production logistics associated with data-driven sustainable smart manufactur-
ing. On the basis of data sharing and feedback across lifecycle stages, we are able to
generate more rigorous and well-grounded product development decisions. Sustainable
smart manufacturing, through data-driven Internet of Things systems, assimilates com-
plete input of product lifecycle operations. By harnessing big data analytics, the huge
quantities of input associated with end-user demands can be gathered and assimilated
from heterogeneous sources.

As underlying mechanisms between industrial artificial intelligence and cognitive
decision-making algorithms are insufficiently grasped in the current literature, selected
empirical studies [5–11,14,23,26–40,75,82] systematically prove how big data analytics can
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harness the concrete capacity and relevance of lifecycle big data to configure a smart de-
velopment decision-making. Data-driven sustainable smart manufacturing can produce
renewable energy and act as a consumer of its oversupply. The digital twin is leveraged
for supervising and parallel monitoring of the manufacturing system. Integrated Industry
4.0–circular economy reinforces sustainable operations management [150–160] by con-
stantly upgrading the production and consumption practices. Cutting-edge technologies
can be deployed for controlling the coherence and sustainability [161–168] of the smart
manufacturing systems. The cyber-manufacturing system harnesses innovative advance-
ments in Internet of Things-based real-time production logistics, cognitive automation, and
industrial big data analytics. Cyber-physical smart manufacturing systems function in an
automated, robust, and flexible manner. The integration of Internet of Things smart de-
vices, cognitive decision-making algorithms, industrial artificial intelligence, and digitized
mass production [169–180] furthers the design of cutting-edge monitoring strategies across
Industry 4.0 wireless networks.

7. Summary of the Main Results of the Research

Cyber-physical production networks operate automatically and smoothly with artifi-
cial intelligence-based decision-making algorithms and Internet of Things-based real-time
production logistics. Cyber-physical smart manufacturing systems function in an auto-
mated, robust, and flexible manner by use of Internet of Things-based real-time production
logistics. Throughout cyber-manufacturing networks, production parts and smart sensors
interconnect automatically, performing business process optimization and real-time big
data analytics. Manufacturing cyber-physical systems integrate groundbreaking connectiv-
ity to gather instantaneous data, performing business process optimization and real-time
big data analytics by use of cognitive decision-making algorithms across sustainable In-
ternet of Things-based production systems. The manufacturing cyber-physical system
possesses progressively automated linkages and networking, leading to big data-driven
innovation in sustainable Industry 4.0. The integration of Internet of Things smart devices,
cognitive decision-making algorithms, industrial artificial intelligence, and digitized mass
production furthers the design of cutting-edge monitoring strategies across Industry 4.0
wireless networks. Industry 4.0 generates cutting-edge developments in sustainable opera-
tions and may attain uniform production and consumption practices through cognitive
decision-making algorithms across artificial intelligence data-driven Internet of Things
systems. Integrated Industry 4.0–circular economy reinforces sustainable operations man-
agement by constantly upgrading the production and consumption practices through big
data analytics-enabled cognitive decision-making algorithms. Sustainable smart manu-
facturing, through data-driven Internet of Things systems, assimilates complete input
of product lifecycle operations. Internet of Things-based real-time production logistics
necessitates cutting-edge sensors technology to collect industrial big data, articulating
cyber-physical system-based production by use of artificial intelligence-based decision-
making algorithms.

8. Conclusions

Outstanding research has recently analyzed whether implementation of sustain-
able smart manufacturing may assist in attaining a data- and service-driven product
lifecycle management. Sustainable smart manufacturing can be pivotal in decreasing
resources/energy waste and in cutting down or removing emissions from big data-driven
industrial processing. Data-driven sustainable smart manufacturing can produce renew-
able energy and act as a consumer of its oversupply. By adequately enabling the imple-
mentation of the sustainable smart manufacturing paradigm, big data analytics can reveal
undetected knowledge and connections between lifecycle decisions and operational proce-
dures. This systematic literature review displays the available published peer-reviewed
evidence in relation to cutting-edge technologies that can be deployed for controlling the
coherence and sustainability of the smart manufacturing systems by leveraging mobile
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connected sensors, industrial artificial intelligence, and cognitive decision-making algo-
rithms. The objectives of sustainable Industry 4.0 for deploying big data technologies,
deep learning-assisted smart process planning, and advanced analytics are to carry out
manufacturing efficiency by use of technological breakthroughs. As a consequence of the
growing deployment of cyber-physical production networks throughout Industry 4.0-based
manufacturing systems, circular economy can be implemented by harnessing Internet of
Things-based real-time production logistics associated with data-driven sustainable smart
manufacturing. The findings drawn from the above analyses clarify that cutting-edge
manufacturing approaches can lead to the growing amount of fashionably designed smart
manufacturing assembly lines. Industry 4.0 generates cutting-edge developments in sus-
tainable operations, as all manufacturing resources, artifacts, operations, and services are
automated in Internet of Things-based real-time production logistics. The manufactur-
ing cyber-physical system possesses progressively automated linkages and networking,
harnessing innovative advancements in Internet of Things-based real-time production
logistics, cognitive automation, and industrial big data analytics. Sustainable smart manu-
facturing has been developed on sustainable organizational performance and sustainable
product lifecycle management. The advancement of sustainable industrial value creation,
artificial intelligence-based decision-making algorithms, Internet of Things-based real-time
production logistics, and deep learning-assisted smart process planning as cutting-edge
technologies of Industry 4.0 have furthered the shift towards cyber-manufacturing net-
works where production parts and smart sensors interconnect automatically. Big data
analytics can adequately enable the implementation of the sustainable smart manufactur-
ing paradigm, upgrading real-time process monitoring and sustainable product lifecycle
management in cyber-physical system-based manufacturing.

9. Limitations, Implications, and Further Directions of Research

By inspecting only sources published in outlets indexed in the Web of Science, Scopus,
and ProQuest databases between 2018 and 2021, important articles on sustainable, smart,
and sensing technologies for cyber-physical manufacturing systems may have been omitted.
Limitations of this study include certain types of publications (original empirical research
and review articles) to the detriment of others (conference proceedings articles, books,
and editorial materials). The scope of our research also does not advance the analysis of
intricate connections between sustainable smart manufacturing systems and Internet of
Things-based real-time production logistics in terms of artificial intelligence-based decision-
making algorithms, real-time sensor networks, and cognitive automation. There is a need
for subsequent analyses to develop on deep learning-assisted smart process planning so as
to configure the relevance of sustainable Industry 4.0 for cyber-physical manufacturing
systems by use of industrial big data analytics, real-time sensor networks, and digitized
mass production. Future research should thus investigate how cyber-physical production
networks and Internet of Things-based real-time production logistics, by use of cognitive
decision-making algorithms, enable the advancement of data-driven sustainable smart
manufacturing. Subsequent attention should be directed to how robotic wireless sensor
networks, cyber-physical system-based real-time monitoring, and deep learning-assisted
smart process planning configure sustainable manufacturing Internet of Things by use of
industrial big data analytics and product decision-making information systems.
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