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Abstract: Daily measurements of the water table depth are sometimes needed to evaluate the in-
fluence of seasonal water stress on Sphagnum recolonization in restored ombrotrophic peatlands.
However, continuous water table measurements are often scarce due to high costs and, as a re-
sult, water table depth is more commonly measured manually bimonthly with daily logs in few
reference wells. A literature review identified six potential methods to estimate daily water table
depth with bimonthly records and daily measurements from a reference well. A new estimation
method based on the time series decomposition (TSD) is also presented. TSD and the six identified
methods were compared with the water table records of an experimental peatland site with controlled
water table regime located in Eastern Canada. The TSD method was the best performing method
(R2 = 0.95, RMSE = 2.48 cm and the lowest AIC), followed by the general linear method (R2 = 0.92,
RMSE = 3.10 cm) and support vector machines method (R2 = 0.91, RMSE = 3.24 cm). To estimate
daily values, the TSD method, like the six traditional methods, requires daily data from a reference
well. However, the TSD method does not require training nor parameter estimation. For the TSD
method, changing the measurement frequency to weekly measurements decreases the RMSE by 16%
(2.08 cm); monthly measurements increase the RMSE by 13% (2.80 cm).

Keywords: water table monitoring; water table depth fluctuation; groundwater hydrograph; Sphag-
num moss; data-driven regression; machine learning

1. Introduction

Hydrological monitoring in ombrotrophic peatlands is used to understand the effect
of the water table depth fluctuation on vegetation structure [1], which is mostly composed
of Sphagnum species. Spatial changes in the water table depth, which is associated with
water availability, drive changes in the species composition of biotic assemblages [2]. Water
table fluctuation also influences decomposition, microbial activity [3], and greenhouse
gas emissions [4]. Water availability is important information for peatland management
because it influences gas diffusion rates, redox status, nutrient availability and cycling and
species composition and diversity [5–9], and it is important for water resource management,
flooding and stream water quality [9]. There is evidence that demonstrates its potential use
in predicting primary production and surface vegetation growth, mainly Sphagnum, for
moss cultivation [10], even in a forestry or peatland post-extraction context [11,12].

The presence of water in ombrotrophic peatland influences peat hydrophysical prop-
erties such as water storage capacity [13], hydraulic conductivity due to the surface subsi-
dence [1,14] and drainable porosity [14,15]. It is then a domino effect since any alteration
of the hydrological regime can significantly affect peatland vegetation [16,17].
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In natural ombrotrophic peatland conditions, water table level is heterogeneous due
to the effective porosity (larger than 0.5 mm) that allows groundwater to flow. This porosity
changes both spatially and temporally because of biological processes (e.g., microbial
decomposition [18]). It should also be noted that in ombrotrophic peatlands, the local
water table depth follows the domed profile of the terrain. There is an ecological gradient
between the center and the edges of a peat bog. This gradient is mainly due to the
distribution pattern of trees and shrubs that can locally lower the water table depth because
of root water uptake for transpiration demand [19,20], a phenomenon know as biological
drainage [21,22]. At the edges of a bog, the number and size of trees (e.g., spruce and
larch) commonly increase, which can lead to the formation of a forested lagg [19]. The
water table depth is, on average, lower and more fluctuating near the bog edges due to the
changing topography.

When any of the components of peat bog (e.g., soil structure, vegetation composition,
groundwater) are altered, the hydrological regime is changed. Particularly, when a drainage
system is built, the regime observed is totally different compared to the natural systems [23].
Anthropogenic activities can result in an increased heterogeneity of water availability, e.g.,
deforestation [24,25], drainage [12,26,27] and peat extraction [8,28].

Because the ecosystem functions of ombrotrophic peatlands (e.g., carbon sink [29],
fauna and flora habitat [25]) are becoming progressively valued, interest in conserving and
restoring ombrotrophic peatlands is growing. Ecological restauration after peat extraction
aims at allowing the progressive return of ecohydraulic characteristics of peatlands, mainly
through blocking the ditches. Rewetting, especially in combination with other actions such
as Sphagnum reintroduction, benefits the establishment of typical vegetation of peatlands
and decreases the abundance of non-desirable plants [12].

The commonly used indicator to evaluate hydrological restoration is the water table
depth that should be stable and close to the surface [13,14,30] as long as possible during the
growing season, while avoiding flooded conditions. In restored peatland sites of Canada,
the water table depth generally remains high (~10 cm from surface) after snowmelt and
early spring, but it lowers gradually as temperatures increase and can reach depths of
up to 40 cm [6]. Several studies on restored peatlands in Canada confirm the spatial and
temporal variability of water table depth [5,31,32], even when water table control systems
such as irrigation systems are in place [10,33].

The spatial and temporal variation of water availability deserves to be studied and
the adjustment of the water table monitoring protocol must be considered [26,34,35]. The
spatial resolution often limits the potential for hydrological analysis since the depth of the
water table depth is measured weekly (or bimonthly) in a few selected wells [36]. It has been
suggested that the number of wells depends on the objectives of the study, the peatland size
and type, logistical arrangements (e.g., available personnel), site complexity and spatial
variability of the water table depth [37]. No suggestion is made as to the number of wells
to observe the water table regime in post-extraction ombrotrophic peatlands. The need for
daily monitoring has been reported in contexts such as peatland drainage [26], peatland
restoration [10,35] and peatland hydrology reconstruction [34]. The main disadvantage
of monitoring programs based on infrequent measurements is that they are not able of
capturing the full spatial and temporal heterogeneity of hydrological behaviour in bogs [30].

At many undisturbed and peat post-harvest sites, measurements of the water table
depth are carried out weekly or bimonthly [6,38,39], which does not allow the analysis of the
cumulative effect of prolonged drying or flooding on Sphagnum growth. These infrequent
water table measurements co-occur generally with daily records in a few selected wells
(also known as reference wells). Some methodologies can be used to estimate daily values
from the infrequent water table records. Data-driven empirical methods are susceptible to
provide useful results without costly calibration time. This article aims to select the best
method to estimate daily water table depths based on infrequent observations (e.g., weekly
or bimonthly) and daily records from a reference well.
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This paper is divided into seven sections allowing us to answer our research question:
Is it possible to estimate the daily fluctuation of the water table depth from weekly or
bimonthly manual measurements? This paper begins with a brief overview of the methods
identified as potentially useful for estimating daily water table depth with bimonthly
measurements and daily measurements of some reference wells. With the limitations of the
identified methods, a new estimation method based on the time series decomposition (TSD)
is described in the third section. Section 4 describes the methodology for the evaluation of
the set of estimation methods. Finally, Sections 5–7 present and discuss the results.

2. An Overview of Daily Water Table Depth Estimation Methods
2.1. Estimation Methods

The estimation of water table depth in restored peatlands as function of weather
data, hydrological characteristics of peatland (e.g., peat decomposition, depth of peat) and
even past records of the depth of the water table has remained a difficult topic [6,14,40,41].
As bimonthly manual measurements of water table depth co-occur generally with daily
instrumented measurements in a few selected wells (reference wells), some methods can
be used to estimate the daily water table level in wells with infrequent water table records
that are close to reference wells with daily records. These methods are classified into two
groups: physical-based and data-driven methods. Physical-based methods are widely used
for the description of hydrological phenomena in peatlands [7,40–42]. However, they do
have practical limitations [43]. For example, a physical-based modelling approach requires
an adequate and accurate definition of aquifer parameters to describe the soil subsurface
spatial variability [44–46]. Typically, this information is difficult to obtain because of cost
and time constraints [47,48].

Data-driven empirical methods are susceptible to provide useful results without
costly calibration times [43]. The identified data-driven estimation methods are grouped
into three types of methods: linear method, nonlinear methods and regression trees. The
first category includes the general linear model (GLM). The second category comprises
k-nearest neighbours (KNN) method, which is based on the similarity measure (distance)
between data. Finally, for the regression trees, there are four estimation methods: support
vector machines (SVM), decision tree (TREE), random forest (RF) and adaptive boosting
(ADABOOST). The next sections present summaries of these methods. For all methods,
the following terms must be defined a priori: (1) The estimated wells: some occasional
measurements (weekly, bimonthly or monthly) were made for those wells and there is an
interest in knowing the daily water table values to identify periods of water stress; and the
reference well, which has daily or hourly records of the water table level and is normally
located near the estimated well. (2) These data-driven methods are calibrated with the
infrequent data from the reference well and the estimated well. The method then uses the
daily water table data of the reference well to estimate the daily water table values for the
estimated well.

2.2. General Lineal Model (GLM)

The general lineal model is the most widely used method because of its easy imple-
mentation [49]. The GLM assumes a linear relationship between the independent variables
(water table depth of reference wells) and the dependent variable (water table depth of
estimated well).

Brown et al. [10] used a linear regression between weekly logged estimated wells and
daily logged reference wells to estimate daily water table values, obtaining a coefficient
of determination (R2) of 0.55. The dataset was then used to calculate the optimal range of
days for gross ecosystem productivity calculation.

By employing linear regression, the estimation procedure is simple and easy to under-
stand. Authors including Lu et al. [50] and Choubin and Malekian [51] argued that linear
models are appropriate to model simple systems characterized by linear relationships
between the hydrological observations. The use of a linear model (simple or multivariate)
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assumes that the process in question behaves like a normal distribution. The use of linear
regressions is current, even if the groundwater flow and most hydrological processes are
commonly considered nonlinear [52].

2.3. k-Nearest Neighbours (KNN)

Proposed by Cover and Hart [53], this method does not have any discriminative
function from training data, but stores the training data set by groupings. It is based on the
selected distance measurement and the number of k neighbours. The k-nearest neighbours
(KNN) algorithm selects the k-nearest samples in the feature space (N-dimensional space,
where N is the number of features); each sample is equivalent to one vote and assigns an
attribute (labelling) by a majority vote. In the case of having a reference well associated
with an estimated well, the observations can be organized in a 2-D space (x for the water
table depth of the reference well and y for the water table depth of the estimated well).
The interpolation for xi is made within the range of observed water table depth for the
reference well, xmin and xmax, and the estimated value for ŷi is the average of the observed
values closest to xi.

The number of k-neighbours may be specified a priori in the cross-validation. It is ad-
visable to use the square root of the number of observations in the calibration set [54]. There
are two peculiarities of this algorithm: it is a memory-based approach, it is adapted imme-
diately to new training data and it is sensitive to the local structure of the data [55] since
the closest neighbours could have more weight on the average calculation. Moderasi and
Araghinejad [56] and Sakizadeh and Mirzaei [57] report successful cases of groundwater
classification, with accuracy above 90%.

2.4. Support Vector Machines (SVM)

This algorithm was originally developed for classification problems [58]. However, it
aroused special interest years after its emergence because despite being a linear machine,
it can be implemented on nonlinear class boundaries [59]. The objective of the support
vector machines (SVM) method is to construct a hyperplane to classify the data points (data
from the reference well and the estimated well) in the feature space [59]. The selection
criteria to draw the hyperplane is to maximize the margin. The margin is defined as the
distance between the hyperplane of separation and the training points that are close to
the hyperplane. These points are also called support vectors. The SVM method has been
developed to be applied to nonlinear problems using few support vectors [55,60]. Although
authors including Zhao et al. [61] and Rahman et al. [62] report satisfactory evaluation
statistics (R2 grater than 0.93) for groundwater level forecasting, its interpretability is low.

2.5. Decision-Tree-Based Models: Regression Tree (TREE) and Random Forest (RF)

Like the SVM method, a division of the data set is performed in different and non-
overlapping regions with shared characteristics. Decision-tree-based models represent a
suitable solution for applications on small-sized datasets [63]. Regression tree (TREE) repre-
sents a set of restrictions or conditions which are hierarchically organized and successively
applied from root to a terminal node or leaf of the tree [64,65]. In practice, this can produce a
very deep tree with many nodes, which produces overfitting. A good option is to prune the
tree, i.e., adjust its maximum depth [55]. The induction of the decision-tree-based method
involves (a) selecting optimal splitting of the dependent variable into binary pieces, where
the child nodes are “purer” than the parent node, and (b) searching through all candidate
splits to find the optimal split that minimizes the impurity of the resulting tree [63,64].
Decision-tree-based models allow the presentation of more understandable results. They
can model nonlinear phenomena and do not need prior statistical assumptions, elimination
of outliers or data transformation [66].

The random forest (RF) method combines multiple decision-tree-based models to
produce repeated predictions of the same phenomenon [63]. RF is a relatively new machine
learning technique [67]. The idea behind RF is to average multiple blocks to create a
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more robust model that has better generalization performance, and it is less susceptible to
overfitting to their training set [55,63]. The multiple blocks are also called deep-decision
trees, which individually suffer from high variance. RF is a popular approach due to its
high precision and capability to handle a large amount of input variables [68,69]. The
number of trees and the number of features to be used at each split are the parameters to be
determined during training [70]. There are also other two parameters to be established
for RF training: the random state to control the random number generator used, and the
minimum number of observations at the terminal nodes of the tree [63]. This methodology
reports the best results (R2 grater than 0.9) in hydrology applications (e.g., groundwater
pollution and groundwater forecasting) in comparison to the set of data-driven methods
(R2 between 0.5 and 0.9), explained before [66,69,71,72].

2.6. Adaptive Boosting (ADABOOST)

The original idea of adaptive boosting was formulated by Robert E. Schapire [73] in
1990 and it became one of the most used combined sets in the following years [74,75]. The
concept behind the boosting is to focus on training samples that are difficult to classify [76],
i.e., to let classifiers (called weak classifiers, also weak learners) learn from poorly classified
training samples to improve overall performance [55]. If the performance of each weak
classifier is slightly better than random guessing, the final model can be shown to converge
to strong learning. ADABOOST is adaptive in the sense that subsequent weak classifiers
are tweaked in favour of those samples misclassified by previous classifiers. To maximize
the predictive accuracy of ADABOOST, the following parameters must be defined [77]: the
learning algorithm use to train the weak models (base estimator), the number of models to
iteratively train (number of estimators) and the contribution of each model to the weights
(learning rate).

2.7. Closing Considerations About Data-Driven Methods

All the above methods (general linear model—GLM, k-nearest neighbours—KNN,
support vector machines—SVM, decision-tree-based methods—TREE, random forest—
RF, and adaptive boosting—ADABOOST) have a common factor. Their performance in
modelling groundwater hydrology requires a long-time series of hydrological data to be
trained [78], and these methods present overfitting during the training step [72]. Data-
driven methods are sensitive to input measurements and all the previous methods used
the same approach: the calibration data (infrequent data from the reference well and the
estimated well) is split in two datasets, a training and a validation set. Those methods
are used to generate estimates, even for the observed data which is counterintuitive.
Furthermore, discrepancies in the input data may be attributed to measurement errors,
systematic bias, geographical distance between the sampling points or a combination
of the above factors [79]. These uncertainties of observation lead to a decrease in the
accuracy of the prediction or even a problematic interpretation of the results. The latter
can be even more problematic for models where the interpretability is low. To counteract
the precision challenges of the six data-driven methods presented, it is recommended to
consider a regional sensitivity analysis [80] and physical background concept [61], where
the observed regime types are considered in the estimation.

3. Time Series Decomposition (TSD) Method: The New Proposed Method

The time series decomposition method (TSD), the new proposed method, defines
the behaviour of the water table as the result of a local component (mainly drainage
and irrigation) and a regional component (mainly precipitation and evapotranspiration).
The intention remains to estimate the daily water table depth, in this case, as the sum
of the regional and local components. The local component can be captured by few
measurements and the regional component can be captured from daily measurements
in few wells. The principle is shown in Figure 1a with real water table observations on
a restored site with controlled water table in Eastern Canada in 2017. The water table
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depths in the two wells are different but show similar patterns. If the observed period is
spit into 2-week periods (a normal frequency of water table observation), the trend of the
water table depth for each period is defined by the water at the beginning and the end
of each period (Figure 1b). The differences between the two trends are caused by local
management, mainly due to drainage and irrigation. For each well, the difference between
the observed water table depth and its trend (Figure 1c) represents the daily fluctuation
of the water table from the trend. Even though the two wells show different water table
depths, the fluctuation from the trend is very similar and represents the influence of
precipitation and evapotranspiration, which are regional in nature. This decomposition
of water table fluctuations corresponds to two components: a deterministic (trend) and
irregular component (daily fluctuation from the trend), which also includes the stationary
processes [81]. Although this principle has been explored for discrete and continuous
description of physical phenomena [82], finding the functions that represent these two
components remains unclear.
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Figure 1. Example of recorded water table depth decomposition. (a) Recorded water table depths in
two nearby wells at a restored site in Eastern Canada in 2017 and decomposition into two components:
the trend (b) and the difference from the trend (c).

Splitting the observed interval in time elements (called periods) and the decomposition
of the water table depth in a trend and a fluctuation component are the base of the proposed
method. For each period, the daily estimation of the water table depth in a well with
infrequent measurements will be the addition of the trend of the water table observed and
the daily fluctuation component derived from a reference well—in this case, a nearby well
with daily observations. As shown in Figure 1c, the daily fluctuation from the trend is
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nearly the same for the estimated well and the reference well. The water table depth of the
estimated well can therefore be expressed by Equation (1):

he(t) = λe(t) + ρr(t), (1)

where h(t) is the daily water table depth, λ(t) refers to the trend component and ρ(t) is the
daily fluctuation from the trend. Superscript e and r represent the values for the estimated
and the reference well, respectively.

The first step for this method is to divide the time scale into periods (time elements),
bound by the infrequent measurements (nodes). Then, the method determines the trend
component for the estimated and the reference wells. For a period, the trend component
(λ) can be described under the shape function of 1-D finite element (Equation (2)):

λe(t) = he
1·ψ1(t) + he

2·ψ2(t), (2)

where λe(t) refers to the trend component for a specific period, h1 and h2 are the observed
values of the water table depth at the beginning and the end of the period, respectively, and
ψ1 and ψ2 are called the partitions of unity and are functions of t, and they are calculated
by Equations (3) and (4):

ψ1(t) = (t2 − t)/(t2 − t1), (3)

ψ2(t) = (t − t1)/(t2 − t1), (4)

where t1 and t2 are the time at the beginning and the end of each period.
For the reference well, the superscript e is replaced by superscript r in Equation (2).

Subsequently, the daily fluctuation component (ρr) is deducted with Equation (5):

ρr(t) = hr(t) − λr(t), (5)

where hr(t) is the observed water table depth in the reference well.
The procedure described above is computed for each of the observed periods. Figure 2

emphasizes the values for period i. The estimation of the water table depth in the estimated
well (ĥe(t), solid red line) is equal to the sum of its trend component (λe(t), dashed red line)
and the daily fluctuation component of the reference well (ρr(t), gray hatching).
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If more than one reference well is available, the estimation of the daily water table
depth is made according to Equation (6) as an average of the daily level of the water table
in each reference well:

he(t) = λe(t) + (1/m) ∑ρri(t), (6)

where m is the number of reference wells used for the estimation.



Sustainability 2021, 13, 5474 8 of 21

4. Materials and Methods
4.1. Requirements for Testing Methods

To test the capacity of the previously described methods to estimate the daily water
table depth, a site with the largest possible number of wells with daily water table measure-
ments is required. Within the database for this project, the largest number of wells with
daily water table depth observations was 30 wells, over a 2-year observation period. Each
of these wells is considered infrequently sampled, obtaining only bimonthly measurements.
For each estimation method, the estimation model is trained with the bimonthly water
table data extracted from each well and the associated reference well. Finally, the daily
estimates of the water table depth are made with each method and are then compared with
the daily water table observations. The procedure is carried out for each well located on
the site.

4.2. Study Area

Field measurements were conducted in an experimental Sphagnum farming peatland
site located in Saint-Modeste, Eastern Canada (47◦49′55” N 69◦27′55” W). A total of five
10 m × 50 m basins (water management systems) were established with controlled water
table regime (Figure 3). Water table regime was controlled through an automated irrigation
installation and each basin was adjusted with different water table management (Table 1).
Sphagnum moss was reintroduced over the five basins in 2013 according to an adaptation
of Moss Layer Transfer Technique [11,83].
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Table 1. Set up description for the five experimental basins for Sphagnum farming in Eastern Canada.

Basin ID Chanel Configuration Target Water Table
Depth (cm)

PC-NI Peripheral, non-irrigated None
CC-20 Central 20
CC-10 Central 10
PC-20 Peripheral 20
PC-10 Peripheral 10
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The basins were located at the edge of an industrial bog on slightly decomposed peat
(H3–H5 on the von Post scale, mean peat depth of 1.6 m). The section was in a slight
topographic depression and it was surrounded on the northwest by an adjacent natural
peat bog and on the southeast by a peat extraction field. Among the five basins, three had
a peripheral channel (PC-NI, PC-20, PC-10) and two had a central channel (CC-10, CC-20).
Basins were irrigated with water coming from a sedimentation pond, which collected the
drainage waters of the surrounding peat extraction fields, except for basin PC-NI, which
only received rainfall. A pumping system fed the irrigation channels in each basin. The
water level in channels was monitored by ultrasonic sensors installed at the dam, and
when the water level was lower than the target level, the pumping system was activated
to feed the channel. The maximum water level in a channel was controlled by the height
of a dam, which was a wooden sluice gate that blocked the water flow and increased the
water level upstream of the dam. This increase caused a favourable hydraulic gradient for
groundwater flow within the peat for rewetting.

4.3. Water Table Depth Monitoring

Water table depth (h) was recorded every h by a Solinst Level logger® Edge—Model
3001 (Solinst Canada Ltd., Georgetown, ON, Canada, accuracy: ±0.1 kPa) during the 2016
and 2017 growing season (20 May to 18 October). Water table depth was measured in six
wells per water management systems (basin) and their locations varied according to the
type of basin (Figure 3). The data loggers were placed inside the 30 wells of the site to
simultaneously record pressure and temperature. The wells were made of 2 in diameter
PVC pipe. The wells were installed at a depth of approximately 70 cm using an auger. The
wells had nylon stockings on the outer surface to prevent the entry of solids in suspension.
All measurements were corrected with the air pressure Barologger Gold—Model 3001
(Solinst Canada Ltd., Georgetown, ON, Canada, accuracy: ±0.1 kPa) with the Solinst
Levelogger Series software.

The daily value of the water table depth was estimated from hourly measurements as
the average between the maximum value (hmax, i) and the minimum value (hmin, i) recorded
during each day of the growing season (Equation (7)).

hi = (hmax, i + hmin, i)/2 (7)

4.4. Bimonthly Measurements

Bimonthly measurements were extracted from daily values of water table depth
for each well. This time interval was chosen because it was the frequency with which
field measurements are normally made. A total of 11 measures were chosen per year,
and the data of two years (2016 and 2017) were used. In other terms, a dataset of 660
bimonthly water table observations were assumed to be taken manually (22 measurements
for each well). The water table records from level loggers were verified with the manual
measurements taken on outings. The reference of these measurements was the peat
surface, which was levelled to obtain zero slopes. The relative position of the wells was
recorded with a Prismless Total Station—Model TC905 (Leica Geosystems AG, Heerbrugg,
Switzerland). The extracted bimonthly values were considered the infrequent measure of
the water table depth. The observed daily values are used to evaluate the performance
of estimation methods. For each well, the reference well was chosen as the nearest well,
which was generally not farther than 3.5 m.

4.5. Estimation Methods Implementation, Calibration and Validation

Seven methods were tested: general linear model (GLM), k-nearest neighbours (KNN),
support vector machines (SVM), decision tree (TREE), random forest (RF), adaptive boost-
ing (ADABOOST) and the new method, time series decomposition (TSD). The set of seven
estimation methods was programmed in Python 3 [84] (version 3.6.9) using the standard
scientific libraries (NumPy, SciPy, pandas), statsmodels and scikit-learn packages [85–89].
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The method architectures of GLM, KNN, SVM, TREE, RF and ADABOOST are shown in
Figures A1 and A2 of Appendix A.

To avoid model overfit and errors in out-of-sample estimations, the leave-P-out cross-
validation [88] was used to determine method hyperparameters for the KNN, SVM, TREE,
RF and ADABOOST methods. For these cases, P was set to 2, so predictions were tested on
all distinct samples of size P = 2, while the remaining n−2 samples formed the training
dataset in each iteration. In calibration, 10 resamples of the training dataset were generated
for each hyperparameter value to be assessed. A model was fit using each resample
data set and used to predict the remaining observations. Minimizing of training and
testing root-mean-square error (RMSE, Equation (8)) was the criterion for the selection of
the hyperparameter.

Table 2 shows the different hyperparameters used for the training of the methods, the
estimated parameters for regression and the number of estimated parameters (k). For all
methods except TSD, which does not require any training, the bimonthly values dataset was
divided by the random split function (train_test_split) from scikit-learn python library [88].
The result of the split was two datasets: a training subset, which contained 80% of data
randomly selected, and the test subset with the remaining 20%. After the training and
calibration of each method, daily estimates were generated and compared with the daily
data originally observed. The test dataset was used to assess the generalization ability of
the trained model.

Table 2. List of hyperparameters used for each method and the number of regression parameters.

Method Hyperparameters of the
Method

Estimated
Parameters for

Regression
k

TSD No training 0 0
GLM No special consideration 2 a1, b1

SVM

degree of the polynomial
function = 1
linear kernel

gamma coefficient automatic

2 w2, b2

RF
random state equals zero

n_estimators = 2
max depth of the tree = 2

2 f1, e

KNN n_neighbours = 1
weights based in distance 2 f1, e

ADABOOST random state equals zero
n_estimators = 1 2 f1, e

TREE

split criteria set by default
random state equals zero

max depth = 2
min_samples_leaf = 0.3

2 f1, e

4.6. Data Analysis and Method Performance

To quantify the degree of correspondence between the daily estimated and daily
observed data, four criteria were considered: coefficient of determination (R2), the root-
mean-square error (RMSE), the Nash–Sutcliffe coefficient (NS), and the Akaike information
criterion (AIC). These coefficients were calculated according to Equations (8)–(11).

R2 = 1 − [∑ (hi − ĥi)
2]/[∑(hi

2) − (1/N) ∑(ĥi
2)], (8)

RMSE =
√

[∑ (hi − ĥi)
2 / N], (9)

NS = 1 − [∑ (hi − ĥi)
2]/ [∑ (hi − h̄i)

2], (10)

AIC = N ln[∑ ((hi − ĥi)
2/N)] + 2k, (11)
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where hi is the observed water table depth, ĥi is the estimated water table depth from each
method, h̄i is the mean of observed water table depth, N is the number of observations and
k is the number of estimated parameters. The best fit between simulated and observed data
shows the RMSE closer to zero, the AIC lower, the NS and R2 closer to one. In this study,
RMSE and NS statistics are used to measure the method performance for forecasting water
table depth and AIC is used to compare the performance of methods regarding accuracy
and complexity, whereas R2 is used to analyze the linear regression goodness of fit between
observed and estimated data. Moreover, for the best fit between simulated and observed
data, the intercept and gradient should be close to zero and one respectively to observe
over- or under-predictions.

4.7. Impact on a Practical Application: Sum of Daily Deficit of Water Table Depth

The daily estimates of the water table depth can be used to quantify the annual water
stress due to fluctuations of the water table depth in restored bogs. For this publication,
the sum of the daily deficit of water table deeper than 15 cm (SDW15) was used to study
the error generated by daily estimates from the different methods on the computation of
this indicator. This sum is computed for each well via Equation (12).

SDW15 = ∑ hi − 15) for hi > 15 (12)

SDW15 values were computed with the data from the 151 days of observation (20
May to 18 October) for both years (2016 and 2017). The SDW15 from estimated and
observed water table depths were compared using the same performance criteria as in the
previous section.

5. Results
5.1. Water Table Observations Statistics

As expected, the different water management systems (basins) resulted in variability
of observed water table conditions (Table 3). For basins with a target water table depth of
10 cm (PC-10 and CC-10), the water table depth remained close to the surface for both years,
with PC-10 having the least variation and a stable level. The basin without any control
(PC-NI) was the treatment with the greatest variation in the water table depth. There are
significant differences between the water tables observed between basins, except for PC-NI
and PC-20.

Table 3. Summary of water table depth in the five experimental basins. Number of observations
per well (N obs), number of wells per basin (N wells) and descriptive statistics of water table depth:
mean, standard deviation (SD), minimum (min) and maximum (max).

Basin ID N Obs N Wells Mean 1 SD Min Max 2

2016

PC-NI 151 6 25.33 d 11.06 54.25 0.1
CC-20 151 6 21.14 c 7.6 40.05 −0.6
CC-10 151 6 12.52 b 6.94 34.3 −1.85
PC-20 151 6 24.44 d 8.66 44.55 2.25
PC-10 151 6 9.34 a 4.75 25.3 −3.5

2017

PC-NI 151 6 26.9 d 12.48 51.6 −1.4
CC-20 151 6 21.39 c 7.45 44.4 −0.45
CC-10 151 6 11.73 b 6.27 35.4 −0.5
PC-20 151 6 24.99 d 8.24 43.05 −1.4
PC-10 151 6 5.43 a 3.3 21.25 −1.4

1 Means followed by different letters indicate differences, according to Nemenyi (non-parametric test). 2 Negative
values represent levels above ground level.



Sustainability 2021, 13, 5474 12 of 21

5.2. Methods Performance

The results of the method performance evaluation are presented by the Taylor dia-
gram (Figure 4) and Table 4, which show the methods’ performance. The azimuth angle
in the Taylor diagram represents the correlation coefficient (R, dashed lines), the radial
distance the standard deviation of estimated water table depth (SD, solid lines) and the
semicircles centred at the “Observed” marker the root mean squared error (RMSE, dash-
dotted lines). Considering those performance metrics, the seven methods had an overall
acceptable performance (R2 greater than 80%). The TSD method offers the best perfor-
mance (R = 0.97, R2 = 0.95 and RMSE = 2.48 cm). The GLM and SVM methods show
similar performance (for GLM R = 0.96, R2 = 0.92 and RMSE = 3.10 cm; for SVM R = 0.95,
R2 = 0.91 and RMSE = 3.24 cm). Finally, KNN, RF, ADABOOST and TREE were the least
performing methods.
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Table 4. Performance criteria for daily water table depth (cm) estimations by the different methods.

Performance
Criteria

Methods

TSD GLM SVM RF KNN ADABOOST TREE

R2 0.95 0.92 0.91 0.88 0.88 0.86 0.82
RMSE (cm) 2.48 3.10 3.24 3.84 3.87 4.19 4.68

NS 0.95 0.92 0.91 0.88 0.87 0.85 0.82
AIC 7628 10,241 10,659 12,202 12,257 12,983 13,989

The accuracy and simplicity of the methods is also evaluated using the Akaike infor-
mation criterion (AIC), which favours models with the lowest RMSE (accuracy) and with
the minimum number of estimated parameters (simplicity). The model with the lowest AIC
value is privileged, which in this case is the TSD method, with an AIC of 7628 (Table 4).

The accuracy of the TSD method, followed by GLM and SVM methods for daily water
table depth estimation can also observed in specific cases (Figure 5). Figure 5 (blue lines)
presents a near-surface and stable water table depth (basin PC-10, an observation well
approximately 1 m from the irrigation channel). Figure 5 (red lines) also shows more
unstable and deeper water table (basin PC-NI, observation well in the middle of the non
irrigated basin). In both cases, the estimates with the highest performance in terms of
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coefficient of determination were those made with the TSD, GLM and SVM methods.
The different water management systems do not affect the order of the best performing
methods. When there was larger variation of water table depth, as is the well in basin
PC-NI (Figure 5, red lines), the estimates were not good for the ADABOOST, TREE and RF
methods, which show abrupt changes in the depth of water table that do not match the
observed values. As evidence of the lower performance, the RMSE for these methods was
higher than the other cases (RMSE = 7.7 cm for ADABOOST, 7.2 cm for TREE and 4.8 cm
for RF). When there is a minor variation of water table depth, the model estimates were
generally good (RMSE less than 4.5 cm).
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5.3. Impact on the Computed Daily Indicator

To estimate the impact of the error produced by the different methods on cumulative
daily indicator computation, Equation (12) was used with the observed data and the
estimates from each of the seven methods. Table 5 shows the SDW15 computed for the six
observation wells in each basin. The data show variability within each basin and between
basins. Three groups were identified according to the Nemenyi multiple non-parametric
comparison test. The first grouping points to where water table depth remained, most of
the time, above or close to 15 cm (a small SDW15 value, less than 260 cm·days). This group
consists of the wells in basins PC-10 and CC-10. The second group is the basins with a high
SDW15 value (greater than 1200 cm·days), which means that the water table depth was
repeatedly below 15 cm and/or even reached greater depths. This group consists of the
wells located at basins PC-NI and PC-20. Finally, the third group consists of the wells in
CC-20, which are somewhere in between the two previous groupings.

Table 5. Mean SDW15 values (cm·days) computed with the water table level observed in the six wells
of each basin. Values between parentheses represent the 95% confidence interval.

Basin ID 2016 2017

PC-NI 1729 b (1299–2158) 1991 b (1552–2430)
CC-20 1065 ab (803–1326) 1107 ab (644–1573)
CC-10 261 a (0–531) 216 a (0–467)
PC-20 1495 b (1008–1983) 1582 b (1142–2021)
PC-10 23 a (0–51) 1 a (0–3)

Means from observed data followed by different letters indicate differences, according to Nemenyi (non-
parametric test).

Table 6 presents performance criteria for the different methods for estimating SDW15.
As expected, estimations of water table depth by the TSD method to compute the SDW15
is the best performing method with the highest R2 and the lowest RMSE. An RMSE of
131 cm·days is quite low in regard of the range of computed SDW15 (Table 5).

Table 6. Performance criteria for SDW15 (cm·days) estimations by the different methods.

Performance
Criteria

Methods

TSD GLM SVM RF KNN ADABOOST TREE

R2 0.98 0.95 0.94 0.95 0.96 0.89 0.95
RMSE

(cm·days) 131 200 215 198 182 377 201

NS 0.98 0.95 0.94 0.95 0.96 0.87 0.95

5.4. Selection of the Reference Well

For the evaluation of the different methods, the reference well was chosen as the
nearest well (not farther than 3.5 m). The selection of the reference well (e.g., based on
distance) can have an impact on the estimation performance. To test the impacts (notably
on the RMSE estimation) of the selection of the reference well, the TSD method was chosen
with two cases:

• A reference well within the basin: One well was randomly selected per basin as the
reference well and, the water table depths for the remaining five wells in the basin
were re-estimated. This was done for every basin;

• A reference well within another basin: The same reference wells of the previous case
were chosen, but in this case, the estimation of the daily water table depths is made
over the wells of all basins. The procedure is repeated for each reference well and is
identified as a run in Table 7.
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Table 7. Analysis of the RMSE (cm) according to the selection criterion for the reference wells.

Basin ID
Nearest

Well

Within
the

Basin

In Another Basin

Run 1 Run 2 Run 3 Run 4 Run 5
PC-NI 1 CC-20 1 CC-10 1 PC-20 1 PC-10 1

PC-NI 3.38 3.29 - 3.89 3.41 2.99 3.47
CC-20 2.71 3.97 3.76 - 2.68 2.92 2.94
CC-10 1.78 2.29 4.47 4.50 - 3.26 1.83
PC-20 2.85 2.36 3.34 3.40 3.01 - 2.98
PC-10 1.10 0.97 4.52 4.45 2.52 3.21 -

Aggregated 2.48 2.77 3.45
1 basin of the reference well.

Variations in RMSE were calculated and are presented in Table 7, including the case
using the nearest well. Changing the nearest well to a random reference well belonging to
the same basin, an RMSE increase of 12% (2.48 to 2.77 cm) was observed, and to a random
reference well in another basin, the increase was 39% (2.48 to 3.45 cm) on average with
five repetitions (runs). The increase made by choosing a random reference well in another
basin is expected because those other basins do not have the same water management
or hydraulic network type, which may influence the daily fluctuation. Therefore, it is
preferable that the reference well be chosen from wells belonging to the same basin.

Table 7 also shows that the basins with higher water table depth fluctuation (PC-NI,
CC-20, PC-20) show larger RMSE.

Figure 6 shows that the error between observed and estimated water table level
(hi − ĥi) is not influenced by the distance to the reference well belonging to the same basin.
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5.5. Measurement Frequency

The measurement frequency could influence the performance of the estimation meth-
ods. After extracting the bimonthly data, the same estimation procedure was also done
with the TSD method with a weekly and monthly measurement frequency. As shown in
Table 8, the correlation coefficient increases when the measurement frequency is higher.
Changing the measurement frequency to weekly measurements decreases the RMSE by
16% (2.08 cm); monthly measurements increase the RMSE by 13% (2.80 cm). The TSD
method can be used with monthly measurements, but it leads to higher error.
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Table 8. Performance criteria for daily estimations of water table depth by the TSD method using
different measurement frequencies for infrequent data.

Measurement
Frequency

Performance Criteria

R2 RMSE (cm) NS

Weekly 0.96 2.08 0.96
Bimonthly 0.95 2.48 0.95
Monthly 0.94 2.80 0.93

6. Discussion
6.1. TSD Method Performance Explanation

According to the criteria performance shown in Figure 4, TSD yielded the lowest
RMSE, the lowest AIC and the highest R2 scores. The RMSE statistics, which is a measure
of residual variances between observed and simulated data, was the lowest for the TSD
method. TSD predictive accuracy is higher for two reasons:

• First, TSD uses an appropriate methodological principle. It estimates the daily water
table depth as the result of a local component and a regional component, which is
observed in real data (Figure 1). This type of method considers regional sensitivity [80]
and uses a physical concept, which is advisable [61]. Moreover, the TSD method keeps
the known data (bimonthly observations) for the estimated well. The other methods
generate new data, even for the observed data, which is contra-intuitive;

• Second, this method considers the time series properties, which the other methods do
not consider. Time series data show auto-correlation from day-to-day data which the
TSD method captures by the trend component. The other methods consider daily data
as independent. Furthermore, the TSD method also captures the local impact of daily
phenomena (precipitation, irrigation) through the daily fluctuation from the trend of
the reference well without any additional step. Therefore, the estimated water table
hydrograph is more realistic than those obtained by the remaining methods (Figure 5).

The TSD method is also interesting because it does not require any training and it is
easy to implement. It can even be used for short observation periods. The testing of this
method at other restored ombrotrophic peatlands will be of interest for generalization.

6.2. Estimation Performance by the Range of Water Table Depth Variation

When estimations are made regardless of the method, the wells with less variation of
the water table level (SD value less than 6 cm, as the example in Figure 5, blue lines), show
a lower R2 than the wells with greater variation of the water table level (SD value greater
than 8 cm, as the example Figure 5, red lines). However, the RMSE is lower for wells with
less variation of the water table observations. The range of variation is smaller and for the
calculation of R2 (Equation (8)), the denominator [∑(hi

2) − (1/N) ∑(ĥi
2)] becomes smaller.

This causes the R2 to decrease, even though the RMSE is low.

6.3. Estimation of Daily Indicator

According to the computed SDW15 values (Table 6), TSD is the method that estimates
values with the least RMSE value. The performance of the method for estimating SDW15
follows a similar order of the performance for estimating the daily water table depth, which
is not surprising. Because SDW15 is a sum, the probable error accumulates according to the
square root of the several measurements [90], in this case, 151 measurements. The probable
error of the SDW15 based on the estimates can be expressed as Equation (13):

Error2
SDW15 ≈ (N − n) RMSE2 + n Eh

2, (13)

where N is the total number of daily estimations and n is the number of bimonthly mea-
surements. The probable error can then decrease as more real measurements of the water
tables depth are made (in this case bimonthly measurements). For this reason, TSD is an
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interesting estimation method as the coefficient (N − n) can be reduced. For the other
methods (as SVM and GLM), n is 0 since the bimonthly measurements are used in the
training stage and not kept in the generated testing dataset. Since (N − 0) and the RMSE
are higher than TSD case, this greatly increases the probable error of the sum.

6.4. Choice of the Reference Well

Fluctuations in the water table depth are influenced by water inputs and outputs
(precipitation, irrigation and evapotranspiration) and essentially by the configuration
and management of the hydraulic network of channels [14,23,26,30]. This explains why
reference wells belonging to the same basin show lower RMSE than for reference wells
belonging to a different basin. The reference well must preferably belong to the same
basin’s hydraulic network and management. Table 7 also shows that in some basins (PC-
NI, PC-20 and PC-10), the randomly selected reference well within the basin gave a lower
RMSE than the original case (the nearest well). This suggests that the nearest well may
not be the best choice and other selection strategies may yield better results. This must be
further investigated.

7. Conclusions

This paper identifies six methods from the literature (GLM, SVM, RF, KNN, AD-
ABOOST and TREE) for estimating daily water table depth with bimonthly measurements
and daily measurements of some reference wells. It also presents a new method (the
time series decomposition, TSD), which divides the time series in periods and for each of
these periods it determines a trend component and daily fluctuation component. These
methods were used to estimate the daily water table depths over two years at a site with
five Sphagnum cultivation basins, and each basin had six observation wells. The TSD
method was the best-performing method (R2 = 0.95, RMSE = 2.48 cm, NS = 0.95 and the
lowest AIC), followed by GLM (R2 = 0.92, RMSE = 3.10 cm, NS = 0.92) and SVM (R2 = 0.91,
RMSE = 3.24 cm, NS = 0.91).

The methods evaluated allow the computation of SDW15, a way of quantifying daily
water stress. This indicator varies according to the location of the well and the basin type
with computed values between 0 and 2860 cm·days. The TSD method is the best method
computing SWD15 (R2 = 0.98, RMSE = 131 cm·days, NS = 0.98), which is not surprising.

The TSD method was also tested with weekly and monthly measurement frequency.
Changing the measurement frequency to weekly measurements decreases the RMSE by 16%
(2.08 cm) and monthly measurements increase the RMSE by 13% (2.80 cm) in comparison
to bimonthly measurements (RMSE 2.48 cm).

It is preferable to choose the reference well from within the same hydraulic network
and management. The distance from the reference well does not have impact on the RMSE.
The selection strategies of the reference well need further investigation. Further data
collection would be of interest to test the TSD method performance on other sites and other
fluctuation regimes of water table depth.
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