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Abstract: Based on the rapid increase in the demand for people counting and tracking systems for
surveillance applications, there is a critical need for more accurate, efficient, and reliable systems. The
main goal of this study was to develop an accurate, sustainable, and efficient system that is capable of
error-free counting and tracking in public places. The major objective of this research is to develop a
system that can perform well in different orientations, different densities, and different backgrounds.
We propose an accurate and novel approach consisting of preprocessing, object detection, people
verification, particle flow, feature extraction, self-organizing map (SOM) based clustering, people
counting, and people tracking. Initially, filters are applied to preprocess images and detect objects.
Next, random particles are distributed, and features are extracted. Subsequently, particle flows are
clustered using a self-organizing map, and people counting and tracking are performed based on
motion trajectories. Experimental results on the PETS-2009 dataset reveal an accuracy of 86.9% for
people counting and 87.5% for people tracking, while experimental results on the TUD-Pedestrian
dataset yield 94.2% accuracy for people counting and 94.5% for people tracking. The proposed
system is a useful tool for medium-density crowds and can play a vital role in people counting and
tracking applications.

Keywords: clustering; modified self-organizing map; object detection; particle flow; people counting
and tracking

1. Introduction

People counting and tracking in public places has emerged as a hot topic with increases
in the global population. This is because population increases have led to a major increase
in mass events. People have a significant interest in events such a carnival, sports [1–4],
concerts, and festivals [5]. However, such events require proper safety measures and crowd
management. Heavy crowds’ entrance and exit areas present a challenge for organizers
to ensure safety and business health. People counting and tracking systems are used to
estimate crowd density and track human activities in crowded areas. Such systems can
also be used to manage transport systems, schedule labor, monitor promotional events,
and improve surveillance systems [6,7].

Several approaches have been used to implement such systems, but vision-based
methods are the most practical based on the popularity of surveillance systems. In this
study, vision-based methods were used to count and track people in medium-density
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crowds. Multiple methods have been developed for such tasks, but various problems
still exist based on complex and dynamic backgrounds, object occlusion [8], varying
appearances of people, and background/foreground object detection [9]. As we have seen
several approaches, but there is still a consideration for a more accurate system. We have
identified some as following:

• The system must work irrespective of the people density.
• The system must work irrespective of orientation of camera.
• The system must be competent for real time people counting.
• The solution must provide satisfactory performance in different scenarios, such as open

spaces, occlusions, different background, different lighting conditions, and occlusions.

The main goal of this study was to develop a novel, sustainable, and reliable system
that can be used to track and count people in public places with simple to medium-density
crowds and different orientations and views of cameras. We propose an accurate vision-
based system that can be used in different environments to count and track people.

We applied different filters for background removal and extracted foreground objects.
We used template matching for the human verification process, and then multiple particles
were distributed on objects verified as humans. We considered the problem of object
occlusion and attempted to minimize this issue by clustering particle flows (PFs). We used
multiple features, including the start point, direction, velocity, and length of PFs, to cluster
multiple objects and differentiate occluded objects. A record table for each counted person
was maintained to record their position during a sequence of frames. The motion trajectory
of each person was used for tracking.

The major contributions of this research can be summarized as follows.

1. Multiple filters and a sequence of morphological operations are implemented to
remove noise and filter unnecessary objects.

2. Feature extraction is performed using a uniform distribution of particles over detected
people, and the flows of particles are extracted from multiple consecutive frames to
differentiate between multiple individuals.

3. To minimize occlusion, multiple people are detected using the features of PF and a
modified self-organizing map (SOM).

4. People counting and tracking is performed using a record table in combination with
motion trajectories recorded for each person.

The remainder of this paper is organized as follows. Section 2 briefly reviews relevant
works on people counting and people tracking. Section 3 presents the details of the
proposed approach, which consists of three main components: people detection, counting,
and people tracking. The proposed method is evaluated on two datasets called PETS-2009
and TUD-Pedestrian, and the experimental results are summarized in Section 4. Finally,
conclusions and future work are discussed in Section 5.

2. Literature Review

This section describes different methodologies that have been proposed in recent years
for crowd analysis surveillance systems [10]. It is divided into two subsections on people
counting and people tracking. A detailed review of related work and methodologies is
provided in this section.

2.1. People Counting

Pedestrian counting has been one of the most actively researched topics over the past
decade based on its diverse scenarios in terms of occlusion, variations and complex back-
grounds. Numerous applications have been proposed for vision-based people counting.
Data have been captured using a single zenithal camera [11], single frontal camera [12], or
multiple cameras [13].

In [14], methods based on a single camera were divided into two different classes of
detection-based and feature-based methods. In the first approach, people facing a camera
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are detected and counted. In the second approach, people are detected using features (e.g.,
head, torso, and motion analysis). These methods include motion detection, template-based
methods, and spatiotemporal methods. Motion detection and analysis are used to monitor
the motion trajectories of moving objects and count them. Template-based methods match
predefined regions in images and find the best-matching regions. Spatio-temporal methods
count the number of people crossing a specific line and assess discrepancies to specify
direction. Model-based and texture-based methods have been widely used in the literature.
In [15], moving objects were identified using a specific shape model, and high accuracy was
achieved in an occluded environment. However, for non-grid objects, the performance was
satisfactory. Texture-based methods are useful for uniform patterns; however, non-uniform
objects result in poor performance.

In [16], Horn-Schunck et al. used an optical flow mask to segment objects based on
k-means clustering. They argued that results are dependent on the level of smoothness of
the image and optical flow. Regardless of image magnitude, if the optical flow is smooth,
the correct results can be achieved. To achieve better results, they used a Gaussian filter to
smoothen the image. However, for smaller values, their system’s running time increases
without result improvement. Mehta et al. [17] used a neural network classifier to recognize
background count objects and facilitate location identification in a target scene, but the
accuracy of results depends on the orientation of the camera and number of views captured;
in the case of variant backgrounds and multi-cameras with multi-views, the system is not
much efficient as compared to a single camera. Additionally, in [18], Schlogl et al. used
features of motion to classify pixels as moving, non-moving, or stationary objects. They
classified pixels into the foreground and background objects and grouped similar pixels
together into blobs. They estimated the number of people based on the average human size
and filtered objects that were outside the size limit. This system performs well in the case
of a medium-density crowd with a minimum level of occlusion. Objects are miscalculated
if multiple people/ objects are occluded; these objects are filtered based on size limit
and cause a drop in accuracy. In [19], Jalal et Al. used the maximum entropy markov
model and hybrid features to segment humans and objects based on their interaction. The
proposed could be used in a variety of man–machine interfaces, such as medical application,
public-place surveillance, and 3D interactive gaming. However, this algorithm confuses
white or light color clothes of people in the case of white wall backgrounds. To cope with
this problem, they used human verification based on their height and width ratio, but a
frequent change of posture can also impact the height and width ratio and could mislead
the segmentation. In [20], Barandiaran et al. used a set of virtual boundary lines as end
points to count the number of people crossing the lines using cameras placed at different
heights to capture people’s heads. They used the frame differencing method to find the
moving objects and counted the heads of people crossing the line. However, this method
is applicable in an indoor environment only. There should be a specific entrance and exit
line to enter and leave the area. An outdoor environment system could not perform well.
In [21], a human model was verified based on the average size of people. In [22], Prakash
et al. developed a method in which humans were verified based on a skin color model.
They identified skin pixels, and an object having these pixels was declared as human and
then tracked according to their motion. However, the performance of this system depends
upon the posture of the human. If a person has been captured from the back and his face
or hands are not captured, the system accuracy decreased in such scenarios.

2.2. People Tracking

In the literature, the tracking of people has been achieved using various methods.
In [23], Maddalena et al. used a counting line on an edge to partition the tracking regions of
a target scene. They used multiple cameras to capture the data, and background subtraction
was used to identify humans, and people were tracked using motion prediction. The
system performed well in occlusion and segmentation of moving and stationary objects.
The limitation of the system is the variance of the posture of an individual with multiple
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orientations. This can mislead the results of people tracking. In [24], Mahwish et al. used
a Gaussian filter to smoothen the image and human body parts, and skin pixels are used
to verify objects as human. Then, they used a human centroid with a jacquard similarity
index to track the people in a medium-density crowd, but their approach did not perform
well in a high-density crowd environment. In [25], Jalal et al. detected human bodies and
used a random forest model with joint motion to track human silhouettes, but in the case
of the human silhouette that is static for a period of time, their system could not track
it. In [26], Kamal et al. implemented another method for counting and tracking people.
They considered people as dots and used the dots as binary masks. They then used a
correlation-based algorithm to track people between consecutive frames. This system is
applicable in heavy density crows and a camera posted on a specific height. In frontal view,
the camera system could not perform well as expected. In another paper [27], Jalal et al.
proposed a procedure to segment and detect moving objects using a frame difference
algorithm, which was then used to detect and track people; however, in constant changing
backgrounds, frame differencing is not a good choice to segment objects.

In [28,29], Kim et al. proposed a method that uses a standard background subtraction
method for foreground map detection in each camera view. They classified foreground
pixels into classes and used Bayesian pixel classification to represent individuals in a scene.
These classes were integrated to obtain the ground plane locations of people in the top
view of the scene. They used the intersections of the central vertical axes of blobs. In [30],
Fleuret et al. proposed a method in which they used the global optimization of trajectories
to detect individuals. They estimated probabilistic occupancy using a combination of
background and color and motion-based generative models. In [31], Du et al. used
the intersections between the principal axes of targets to integrate information and used
particle filters to track people through multiple cameras on the ground plane. Another
study belonging to the same category by Huang and Wang [32] developed a method
to estimate the probability of finding moving objects at specific ground locations using
foreground images. In [33], Khan and Shah determined foot locations on the ground plane
by using planar homographic constraints to track the individuals. Eshel and Moses [34]
detected human heads and their feature points were used to derive the trajectories of
people. However, this system can work well if data is captured using a camera placed at a
specific height.

There are many other states of the art methods used for people counting, but the results
depend upon camera position, the orientation of the camera, the variance of backgrounds
and densities of people. In this approach, we have considered all aspects and tested
our system with different densities of people, multiple orientations of the camera, and
different backgrounds.

3. Materials and Methods

The proposed method consists of seven main steps: preprocessing, object detection,
people verification, PF and feature extraction, SOM-based clustering, people counting, and
people tracking. The main architecture of the proposed system is presented in Figure 1.

Multiple filters are applied to remove noise and smooth images, and object detection
is performed using area-based filtering. Objects having a size within the range of the limit
specified are considered as objects detected, and the remaining objects are discarded. After
object detection, 5–6 templates are chosen from each dataset, and template matching is
used to verify objects as people. Further, the PFs of moving objects are extracted, and their
features are used with modified SOM to cluster the OF belonging to an individual. People
counting is performed based on the correlation between the number of people in an image
and the number of PF clusters. After people are detected, the trajectories are drawn and
tracked accordingly. The complete work flow of the proposed system is given in Figure 2.
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Figure 1. Architecture of the proposed people counting and tracking system.

Figure 2. Work flow of proposed system for people counting and tracking.

3.1. Preprocessing

Videos of the pedestrians are used as inputs for the proposed system. These videos
are first converted into individual frames. Each colored frame is then converted into a
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grayscale image to reduce computation time [35–37]. Different weights are assigned to red,
green, and blue channels to convert them into grayscale images, as shown in Equation (1):

Igray = ((a ∗ R) + (b ∗ G) + (c ∗ B)) (1)

where R, G, and B denote the red, green, and blue channels of the colored image, respec-
tively, and a, b, and c are the weights of those channels having values 0.3, 0.3, and 0.4,
respectively.

A Gaussian filter is used to remove noise [38,39], with a standard deviation applied to
smooth the gray-scale images, as shown in Equation (2).

G(x, y) =
1

2πσ2 e
x2+y2

2σ2 (2)

The next step after smoothing the grayscale images is binarization, which converts
a grayscale image into a binary image. Binarization f (x,y) is performed using a fixed
threshold value [40–42], as shown in Equation (3).

f (x, y) =
{

1 i f (G(x, y) ≥ t)
0 i f (G(x, y) < t)

}
(3)

where t is the threshold value, and G(x,y) is the Gaussian filter [40]. These binary images
are filtered to remove small components that are considered to be noise. Pixel-based area
filtering with a threshold and convolution mask is applied to remove small components
from images. After noise filtering, the border of image is identified, and objects connecting
with the border area are removed to eliminate the background area. An inverse transfor-
mation [43] is applied to the filtered images using Equation (4) to reduce the sizes of the
regions of interest, and connected regions are extracted to finalize object detection.

Q(x, y) = 255− f (x, y) (4)

where Q(x, y) is an inverse image, and f (x, y) is a binary image. Figure 3 presents the
silhouette extraction process at different sub-stages.

Figure 3. Preprocessing sub-stages results: (a) input image, (b) Gaussian filtered image, (c) inverse
image, and (d) filtered regions.
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3.2. Object Detection

The background area is removed using a multivalued threshold, and objects are
filtered based on their area. Connected components analysis [43–46] through a pixel-based
search are used to find the clusters [44] having pixels within the range of four neighboring
pixels using Equation (5).

Icc =
{

Iq(x+1,y), I(x−1,y), Iq(x,y+1), Iq(x,y−1)

}
(5)

The area of each region is computed using Equation (6) after object filtering. The area
of an object is computed using the number of pixels q(x, y) contained in that object [47].
These areas are used to detect the largest object in a frame.

Ao = {p(x, y) | p(x, y) ∈ O} (6)

We assume that the largest component belongs to the background area. Therefore, the
removal of this component removes a large background area. Subsequently, all connected
components are labeled and identified according to the sizes of the corresponding objects.

I f =

{
1 f or Ao > t1 and Ao < t2

o otherwise

}
(7)

If is a filtered image in which Ao is greater than the value of the lower threshold t1 and
less than the upper threshold t2. The results of object detection are presented in Figure 4.

Figure 4. Object detection in a preprocessed image. (a) Blue boxes represent detected objects and
(b) red boxes represent filtered objects.

3.3. People Verification

Template matching is a method that is used to identify matching regions in an im-
age. It is typically used to measure the similarity between a reference image and a test
image [48–50].

In this study, people verification was performed using template matching. Five to
six templates were defined for each dataset and used to find matching regions based on a
predefined similarity index. We represent reference images as R(x, y), where x and y are
the coordinates of the search pixels in a reference image, and template images as T(xt, yt),
where (xt, yt) represent the coordinates of each pixel in a template image. Some example
templates are presented in Figure 5.
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Figure 5. Example templates used for human verification.

The sum of absolute differences (SAD) [51,52] is used to measure the intensities of
pixels. A pixel in a search image with coordinates (xs, ys) has an intensity Is(xs, ys), and
a pixel in a template image with coordinates (xt, yt) has an intensity It(xt, yt) [53]. The
absolute difference [54] in pixel intensities is defined by Equation (8), and the SAD is
computed using Equation (9).

Di f f (xs, ys, xt, yt) = IS(xs, ys)− It(xt, yt) (8)

SAD(x, y) =
Trows

∑
i=0

Tcols

∑
j=0

Di f f (x + i, y + j, i, j) (9)

The SAD is computed for all pixels by looping through the pixels in a search image [55].
A mathematical representation of this process is given in Equation (10):

Srows

∑
x=0

Scols

∑
y=0

SAD(x, y) (10)

where Srows and Scols denote the rows and columns of the search image, respectively, and
Trows and Tcols denote the rows and columns of the template image, respectively. In this
method, the lowest SAD score represents the estimate for the best template position within
the search image. This method is simple to implement and understand, but it is relatively
slow [56].

3.4. PF and Feature Extraction

Some people are occluded by other people in a frame, which can reduce people
counting accuracy. To overcome this issue, multiple particles are randomly distributed on
targeted objects, and their features are used to cluster people. This is helpful for segment
partially occluded people in consecutive frames. Figure 6 presents the random distribution
of particles over objects.

Figure 6. Particle distributions of objects verified as humans: (a) particle distribution, (b) extraction of PFs, and (c) PF features.
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PFs are extracted using the Lucas–Kanade [57] method (as shown in Figure 7) for all
particles that are placed on objects detected as humans. The following assumptions were
adopted for the application of this technique.

Figure 7. Lucas–Kanade method.

• The brightness of consecutive frames remains the same.
• Each particle cannot travel a distance above a certain limit
• Neighboring particles retain the same relative position between frames.

The features of PFs, including their starting point, direction, velocity, and length of
flow, are extracted and used to cluster people. The velocity of a PF is calculated as the
distance covered by particles in unit time [58], as shown in Equation (11)

Vp =
dp

t
(11)

where Vp is the velocity of the particle, dp is the distance covered by the particle, and t is the
time interval [59]. The direction of a particle is derived from its velocity and categorized
into three forms, as shown in Equation (12). If the velocity of a PF is greater than zero, its
direction is considered to be forward. If the velocity of a PF is less than zero, its direction is
considered to be backward. If the velocity of a PF is zero, then the direction is considered
to be static. The angle [60] of a PF is calculated using Equation (12)

ϑ = tan−1 y
x

(12)

where x is considered as movement of object horizontally and should be greater than zero.
If some people are occluded by other objects, then there is a chance of collision between PFs.
To solve this problem, a specific zone of neighboring pixels is defined, and each particle
outside that zone is considered as an independent flow particle. The PF [61] evaluation
process is presented in Figure 8.

Figure 8. PF based clustering.

3.5. Modified SOM Clustering

A SOM is a type of artificial neural network that is used to produce a low-dimensional
representation of training data [62,63]. It is an unsupervised neural network with a single
computational layer that learns using a competitive learning strategy. An SOM uses
a random value as an initial weight vector and computes the Euclidean distance [64]
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between an input vector and the weight vector [65]. It finds the best-matching unit with
the minimum Euclidean distance [66], as shown in Equation (13):

dj(w, x) = ∑D
i=1

(
xi − wji

)2 (13)

where x and w are two points in Euclidean n-space; xi and wji are Euclidean vectors starting
from the initial point and D is n-space.

An SOM group’s input values with similar characteristics and separate values that are
not similar. The structure of an SOM [67] is presented in Figure 9.

Figure 9. The structure of an SOM.

We used an SOM for clustering based on the features extracted in the previous phase.
Specifically, we used it to cluster PFs that belong to a single person. We extracted the
feature for each PF and assumed that all input vectors belonging to one person must be
within the boundary of the corresponding centroid. Therefore, instead of using random
values for initial weights, we calculated the centroids of objects and used them as initial
weights. The complete process is given below:

• SOM used random points as initial weight, but we extracted the centroid of objects
and used them in the first iteration as initial weights to feed the SOM.

• After each iteration, PF that belongs to more than one cluster is identified.
• One more feature Direction is added with centroid and feed as initial weight.
• If some PF still belongs to more than one cluster, the start point of PF is added in the

initial weight list and used to cluster again.
• Iterate till the maximum level of clustering is achieved.
• To avoid errors, we have cross-checked the first iteration using start points as the

first feed.

The initial planes for both datasets are presented in Figure 10.

Figure 10. SOM initial weight planes for the (a) PETS-2009 and (b) TUD-Pedestrian datasets.
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Following the distribution of initial neurons, the Euclidean distance was used to
cluster the input vectors. The SOM algorithm is presented in Algorithm 1.

Algorithm 1 Algorithm for Clustering based on PFs and SOM

Input: I: Filtered binary image with connected regions
C: Centroids of objects verified as humans using template matching

Output: N: number of clusters
R←getRegionLabelled
Pr←RandomParticles(R)
Pf = getParticleFlow(Pr)
vel←getVelocity(pf)
if (vel > 0)

d = forward
else if(vel < 0)

d = backward
else
d = 0

angle← getAnglePf
inputVector← I { vel, d,s,a}
Centroid← C
initialWeight←centroid
N→ SOM(inputVector)

Return N

3.6. People Counting

We assumed that the number of clusters identified by the SOM was strongly correlated
with the number of people in a video. The total number of clusters resulting from the
previous step is the number of people counted in that frame. Optical flows are extracted
from moving objects that represent pedestrians in video frames; the optical flows detected
from a single pedestrian tend to belong to the same cluster. The degree of correlation
depends on the camera position, size of the pedestrians in the frames, and various other
factors. The proposed method utilizes a portion of the frames in a video sequence for pre-
learning and then estimates the number of pedestrians in all frames in the video sequence.
Here, the number of clusters in frame Fl is denoted as cq. Our method calculates the average
number of clusters [68] C in the frames used for pre-learning, as shown in Equation (14).

C =
∑Fl

q=1 Cq

Fl
(14)

To enhance accuracy, a person is only counted after their presence is confirmed in five
consecutive frames. In the case of occlusion, if a person disappears and reappears again
within the frame limit, then the count will not be decremented. The estimated number of
pedestrians in frame f, denoted as P f

i , is calculated as shown in Equation (15):

P f
i =

Ci
Cp

(15)

where ci is number of clusters, and cp is number of people as shown in Figure 11.
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Figure 11. People counting results for the (a) PETS-2009 dataset and (b) TUD-Pedestrian dataset.

3.7. People Tracking

For people tracking, the motion trajectories [69] of people are extracted by matching
frame metrics and maintaining an accurate count. We maintained a record of the idle-state
for each person. The idle state represents a person located in the previous frame but not
located in the current frame. The f-value represents the number of frames in which a
person remains in an idle state. If a person remains idle for 10 frames, then that person
will be removed from the count. A record table for each person is maintained, including
the person’s id, position in the previous frame pt-1, position in current frame Pc, idle state
i-value, and the number of frames with the idle state as the f-value, as shown in Table 1.
If there is a person whose previous state is null but who exists in the current frame, then
the count for the current frame is incremented. People tracking is performed using motion
trajectories across sequences of frames. We calculate the initial velocity, final velocity, initial
point, final point, horizontal distance [70], time duration, and direction for each frame
based on the previous frames. These values are then used to predict the future positions of
people as shown in Figure 12.

Table 1. Record table for people tracking.

Title Description

PeopleId# Id of person
Pt-1 Position in previous frame
Po Position in current frame

i-value Idle state
f-value Number of frames

Figure 12. The results of people tracking and the corresponding motion trajectories.
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4. Experiments and Results

Experiments were conducted using the public benchmark PETS-2009 dataset and TUD-
Pedestrian dataset to evaluate the accuracy and performance of our system on different
sequences of colored frames.

4.1. Experimental Setup

The system has been implemented using Multi-Paradigm Programming Language
(matlab) by Mathwork with a core i5 processor and 16GB RAM. We used the 9.1 version
of matlab named R2016b to implement the system, whereas the image processing toolbox
has been used in the preprocessing step to apply different filters to smoothen the images.
This system can be used standalone in real-time scenarios with minimum specifications
given above.

4.2. PETS-2009 Dataset

PETS-2009 has been used by multiple researchers [71] for different video surveillance
challenges, including people counting, crowd estimation, multi-person tracking, and
multiple flow analysis for event recognition. We used multiple views from the S2 subset
with people walking in a medium-density crowd. Data were captured from multiple views
using multiple frontal and rear camera angles. Therefore, a person showing their front side
could not be verified using the same template as a person showing their backside. Some
example views from the dataset are presented in Figure 13.

Figure 13. Sample frames from different views in the PETS-2009 dataset.

4.3. TUD-Pedestrian

The TUD-Pedestrian dataset contains 250 images with 311 fully visible people with
significant variations in clothing and orientation. This dataset is typically used for single-
frame detector evaluations. The main challenge in this dataset is the variance of the
background. The image backgrounds differ between different sequences of frames, and the
people are carrying various objects such as bags and umbrellas. Therefore, it is difficult to
define a specific filter for background removal and templates for humans to account for
different objects. Some example views from the dataset are presented in Figure 14.

Figure 14. Random views from the TUD-Pedestrian dataset.
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4.4. Performance Measurements

For system evaluation, accuracy, error rate, and precision (F-score) were used as
performance measures. Accuracy [72] was calculated using Equation (16), the error rate
was calculated using Equation (17), and F-score was calculated using Equation (18).

accuracy =
Tp

(Tp + Fp)
(16)

errorRate =
Tp

(Tp + Fn)
(17)

F− Score =

(
2 ·
(

Tp
(Tp+Fp)

)
·
(

Tp
(Tp+Fn)

))
((

Tp
(Tp+Fp)

)
+
(

Tp
(Tp+Fn)

)) (18)

Tp denotes true positive, Fp denotes false positive, and Fn denotes false negative.
The results of people counting are presented in Tables 2 and 3. The sequence column

represents the number of frames considered for the corresponding experiment, and the
ground truth represents the true number of people in a sequence of frames. For each
sequence of data, the accuracy error rate and F-score were calculated. The results of
counting on the PETS-2009 dataset are presented in Table 2.

Table 2. The results of people counting using the PETS-2009 dataset.

Sequence Ground Truth Tp Fp Fn Accuracy ErrorRate F-Score

10 8 8 0 2 1 0.8 0.88
12 10 10 0 2 1 0.83 0.90
14 12 10 2 0 0.83 1 0.90
16 10 10 0 6 1 0.625 0.76
18 15 15 0 3 1 0.83 0.901
20 7 5 0 2 1 0.71 0.83

Average Accuracy = 86.9%

Table 3. The results of people counting using the TUD-Pedestrian dataset.

Sequence Ground-Truth Tp Fp Fn Accuracy ErrorRate F-Score

10 2 2 0 0 1 1 1
12 3 3 0 0 1 1 1
14 3 3 0 0 1 1 1
16 2 2 0 0 1 1 1
18 4 3 0 1 1 0.75 0.85
20 3 2 0 1 1 0.66 0.8

Average Accuracy = 94.2%

The proposed method was also evaluated on the TUD-Pedestrian dataset, and the
results are presented in Table 3.

The results of people tracking are presented in Table 4. The sequence column repre-
sents the number of frames considered in the corresponding experiment and the ground
truth represents the true number of people in a sequence of frames. For each sequence of
data, the accuracy error and F-score were computed, as shown in Table 4.

The results of people tracking for the TUD-Pedestrian dataset are presented in Table 5.
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Table 4. The results of people tracking on the PETS-2009 dataset.

Sequence Ground Truth Tp Fp Fn Accuracy ErrorRate F-Score

10 8 8 0 2 1 0.8 0.88
12 10 9 0 3 1 0.75 0.85
14 12 10 0 2 1 0.83 0.90
16 11 10 0 5 1 0.66 0.8
18 15 14 0 4 1 0.77 0.87
20 7 6 0 1 1 0.85 0.92

Average Accuracy = 87.5%

Table 5. The results of people tracking on the TUD-Pedestrian dataset.

Sequence Ground Truth Tp Fp Fn Accuracy ErrorRate F-Score

10 2 2 0 0 1 1 1
12 3 3 0 0 1 1 1
14 3 3 0 0 1 1 1
16 2 2 0 0 1 1 1
18 4 3 0 1 1 0.75 0.85
20 3 2 0 1 1 0.66 0.8

Average Accuracy = 94.5%

Comparative analysis of the proposed method was performed by comparing it to
state-of-the-art people counting approaches. Table 6 reveals that the proposed system
achieves a higher accuracy rate (86.9%) and (94.2%) than the existing methods. We have
also performed cost analysis in terms of the time required to process a frame in seconds.
It is clearly visible that the proposed system requires less time to process one frame as
compared to the state-of-the-art methods.

Table 6. Comparison of the proposed approach to state-of-the-art people counting methods.

Methods People Counting Accuracy (%) Dataset Used Cost (Time)

Head-shoulder-based
detection [38] 85.3 PETS 2009 14.7 s

Pixels-based
detection [39] 85.6 PETS 2009 14.3 s

Holistic properties [40] 84.2 PETS 2009 13.2 s
Proposed method 86.9 PETS 2009 7.6 s
Proposed method 94.2 TUD-Pedestrian 5.9 s

Performance comparisons on people tracking were also performed, and the proposed
method achieved an accuracy rate of 87.5% and 94.5%. The accuracy of our system was a bit
lower than the one of the state-of-the-art methods, but in cost analysis, it is clearly visible
that the time required by that system to process one frame is larger than the proposed
system that made the performance of the proposed system more efficient, as shown in
Table 7.

Table 7. Comparison of the proposed approach to state-of-the-art people tracking methods.

Methods People Tracking Accuracy (%) Dataset Used Cost (Time)

Head-torso template [2] 88.7 PETS 2009 16.5 s
Robust features [41] 85.2 PETS 2009 12 s

Motion trajectories [34] 86.8 PETS 2009 13.2 s
Proposed method 87.5 PETS 2009 9.4 s
Proposed method 94.5 TUD-Pedestrian 8.6 s
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5. Discussion

We developed an accurate and sustainable system to address the challenges faced by
people tracking and counting systems. In this approach, we used seven major modules:
preprocessing, object detection, people verification, PF, and feature extraction, Modified
SOM clustering, people counting, and tracking. The proposed method is initiated with
video frames as inputs. We used the PETS-2009 and TUD-Pedestrian datasets in this study.
Next, preprocessing is performed to reduce noise and remove the background areas from
images. To this end, a Gaussian filter and a series of morphological operations are applied.

After successful removal of the background area, objects are filtered and are detected.
To enhance accuracy and avoid errors, human verification is performed to verify detected
people as human silhouettes. Multiple templates from each dataset were used as reference
images, and template matching was performed to verify the human silhouettes. There
are multiple occurrences at which people are occluded by other objects. To detect people
in an occluded environment, we applied clustering using PFs and a modified SOM. We
used a random distribution of particles over the human silhouettes and extracted PFs
from the scattered particles. Feature extraction was performed on each PF, and the start
point, direction, angle, and velocity were used to cluster multiple people. After successful
clustering, people counting was performed based on the correlation between clusters and
the number of people. We maintained a record table for each person counted to track their
motion based on their motion trajectories across sequences of frames. To handle occlusion,
we set a threshold number of frames to see if a person would become isolated. Finally,
people were tracked based on their motion trajectories.

The proposed system performed very well on both datasets for low- and medium-
density crowds. There were some limitations in the case of high-density crowds and
continuously occluded objects. We were not able to detect human silhouettes that were
partially or fully occluded by other objects for extended periods of time, which is the main
reason for the low accuracy of people detection methods. In the images displayed in Figure
15, we could observe people who were partially and fully occluded, but if they remained
occluded for a long period of time, their positions could not be detected throughout a
video.

Figure 15. Some identified limitations of the proposed system.

We presented analyses of the accuracy of the proposed counting and tracking methods
for both datasets. The mean accuracy for people counting on the PETS-2009 dataset was
86.9%, with an accuracy of 87.5% for people tracking. The experimental results for the
TUD-Pedestrian dataset revealed 94.2% accuracy for people counting and 94.5% accuracy
for people tracking.

6. Conclusions

In this study, an accurate, sustainable, and efficient system was proposed for people
counting. The main objective of this study was to develop a system that could perform
well in low-to-medium density crowds, with occluded objects and different orientations
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of the camera. We used the template matching method for human verification. To handle
occlusion, multiple particles were distributed on objects verified as humans and PFs were
extracted. Their features were then used to cluster people and differentiate between
multiple occluded individuals. Our system is limited in the case of high-density crowds,
resulting in reduced accuracy for object detection. The main reason behind this is size-
based object detection in preprocessing. The size of occluded objects gets bigger than
the size limit, and they get filtered. The experimental results on the PETS-2009 dataset
revealed 86.9% accuracy for people counting and 87.5% accuracy for people tracking. The
experimental results on the TUD-Pedestrian dataset revealed 94.2% accuracy for people
counting and 94.5% accuracy for people tracking.

In future work, we will improve the proposed system to count and track people in
high-density crowd environments more accurately.
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