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Abstract: The visit paths, dwell time, and taking pictures are all variables of great significance to our
understanding of tourists’ spatio-temporal behavior. Does having a large number of visitors mean
that tourists are interested in a tourist location? What is the relationship between the dwell time and
taking pictures? Are there differences in tourist behavior in different seasons? These issues are of
great significance to tourism research but they have not been rigorously analyzed yet. This paper
aims to understand the relationship between tourists’ visit path, dwell time, and taking pictures,
and test whether there are differences in tourist behavior in different seasons. We used open global
positioning systems (GPS) trajectory data at Yuanmingyuan Park from January 2014 to August 2020.
Using Python and ArcGIS tools, we found hot spots of tourist passing, hot spots of tourist gathering,
high average dwell time areas, and tourist interest areas. It is further found that: (1) passenger
flow strongly explains dwell time, while the correlation between passenger flow and average dwell
time is weak. (2) There was a close relationship between tourists’ stay and photo-taking behavior,
which provided a theoretical basis for defining tourist photo behavior as tourists’ stay behavior.
(3) Seasons did not significantly affect tourist behavior in Yuanmingyuan Park. This study presents
a grid-based open GPS trajectory data processing framework that clarified the potential of an open
GPS trajectory in tourist behavior research. Furthermore, our study explored the relationship between
essential indicators and found that there is a strong consistency in tourist behavior across seasons.

Keywords: tourist behavior; GPS; big data; spatio-temporal behavior; theme park

1. Introduction

In the context of human-centered development, studies of tourists’ spatio-temporal
behavior have been increasingly scrutinized by tourism, urban planning, geography,
and other scholars. Generally, tourist behavior research can be divided into two cate-
gories: inter-destination and intra-destination tourist behavior [1]. Inter-destination tourist
behavioral research mainly focuses on the movement behavior between destinations,
such as how tourists travel from one city to another. Intra-destination tourist behavioral
research focuses on the movement trajectory of tourists within a destination. For example,
this research may explore the travel routes of tourists between various attractions in a city.

Recently, however, researchers have focused on the micro-scale of tourist behavior,
namely intra-attraction tourist behavior [2–5]. Intra-attraction tourist behavioral research
mainly focuses on smaller places such as national parks, theme parks, historical sites, etc.
An understanding of tourist movement and behavior can assist targeted marketing [6,7],
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help to manage impacts associated with overuse or crowding [8,9], guide adjustments to
transport systems [1], and improve the visitor experience [7,10].

Global positioning systems (GPS) data have been widely used in tourist behavior
research [2,11–15]. Scholars often collect trajectories through handheld GPS. Because the
cost of traditional GPS data acquisition is still high, the in-depth study of micro-scale tourist
behavior is greatly restricted. However, the emergence of big data provides an opportunity
to overcome this problem.

With the rapid development of computer science and Internet techniques, many open
and accessible forms of User Generation Content (UGC) have been generated, including
location photos, GPS tracks, travel logs, web reviews, etc. [16–20]. In the study of tourist
behavior, big data has become the mainstream data source. Many scholars have used
check-in records, geo-tagged photographs, and travel logs to explore tourist flows between
and within destinations [21–24]. Yang argued that the massive scale of open data could
compensate for the limitation of sample size issues that survey data users face, thereby
providing a new way to understand tourist behavior [25]. However, due to the particularity
of open GPS trajectory data, its value in intra-attraction tourist behavior research is still not
fully understood.

On the one hand, tourist behavior always takes place in time and space. Changes in
visitor travel patterns are a function of the locations visited and of time. Therefore, it is
crucial to understand how space and time affect visitor travel patterns [26,27]. On the
other hand, with the popularity of mobile devices, tourists can record the places they
are interested in by taking photos, which also provides a new way for researchers to
identify tourists’ behavior patterns [28,29]. The length of time a visitor spends at a single
location (dwell time) is a key factor in their enjoyment of exhibits, as it takes time to absorb
information and relate it to what is being observed [30]. Most tourists take photographs,
creating their visit records as final proof of their experiences [31]. Nevertheless, does a large
number of visitors mean that tourists are interested in a tourist location? What is the
relationship between the length of time a tourist spends at a single location (the dwell time)
and the behavior of taking pictures? Are there differences in tourist behavior in different
seasons? This research will try to answer the above questions.

In an attempt to resolve these issues and verify the feasibility of open GPS trajectory
data in intra-attraction research, this paper proposes a grid-based open GPS trajectory
data processing framework. On this basis, this paper used Yuanmingyuan Park, China,
as a case study to identify intra-attraction tourist behavior characteristics. The study aimed
to determine the relationship between tourists’ visit path, dwell time, and behavior of
taking pictures, as well as to test the differences in tourist behavior in different seasons in
order to broaden the horizons of existing intra-attraction tourist behavior research.

Given this aim, this paper opens with a review of extant literature related to intra-
destination tourism flow and intra-attraction tourist behavior research. This is followed
by an introduction of our research framework, study area, collected data, methodology,
and a presentation of the results of the analysis. The paper concludes with a discussion
and conclusion.

2. Literature Review
2.1. Intra-Destination Tourism Flow

There are many commercial or non-commercial nodes in the destination, which play
a large or small role in the destination system and are connected by tourism flows [32,33].
Understanding the number, direction, and duration of tourism flows within a destination
is of positive significance for improving destination management.

When the city is a tourist destination, researchers have mainly attended to tourist
movements and flows [34] and the network patterns and characteristics created by natural
tourism flows in a destination [32,35]. For example, Lew and McKercher divided the
tourism flow patterns of Hong Kong and identified tourism flows were influenced by six
interrelated factors of territoriality [34]. Liu, Huang, and Fu applied network analysis to
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research on the tourism flow of destinations in Xinjiang and found that tourist attractions
of the same level in the tourist destination system mainly compete with each other [36].
Mou and Yuan et al. identified the spatio-temporal changes of city inbound tourism flow
in Shanghai, extracted the Area of Interest (AOI), and found that the inbound tourism
flow network of Shanghai has small-world characteristics, and also indicated that the
distribution of its AOI (nodes) and tourist routes (edges) has general power-law features,
which have been influenced by the World Expo [37].

When the tourist attraction is a tourist destination, the system is more obvious. In the
planning of tourist attractions, functional zoning is often considered. Different areas serve
as nodes for serving, transit, recreation, or attracting tourists. Roads connect different
functional areas within the attraction and affect the tourism flow. Relevant research is
devoted to revealing the causes, patterns, and laws of tourism flow within attractions.
For example, East and Osborne et al. found that time affects the tourism flow within theme
parks [3]. At different times of the day, the tourist gathering area in a theme park is different.
Li and Xie et al. used the social network analysis method to calculate the social network
centrality index of 54 areas in Gulangyu and found areas with development potential
in Gulangyu [2]. Peterson and Perry et al. identified which areas are the most likely to
gather in attractions and explored the differences in tourism flows in different seasons [26].
Li and Yang et al. reveals the underlying behavioral mechanism of choice within tourist
destinations, confirming that proximity, history, and attractiveness significantly influence
tourism flow [38].

Although many scholars have studied intra-destination tourism flow, the literature
regarding tourist destinations as cities or attractions often ignores the relationship between
the direction and duration of tourism flows. The relationship between the two is significant.
Revealing the relationship between tourism flow direction and duration is one of the
interests of this research.

2.2. Intra-Attraction Tourist Behavior

Most studies in tourist behavior have only focused on inter-destination behavior,
whereas discussion involving intra-destination tourist behavior remains relatively scarce [4].
Intra-destination space refers to an enclosed space with defined boundaries, in which tourist
behavior is much more controllable [5]. To analyze tourist behavior within a destination,
some scholars have used traditional methods such as travel diaries and observations.

Recently, various devices such as mobile phones and handheld GPS devices have
been used to collect high-resolution data, laying the foundation for micro-scale research.
A great deal of previous research into intra-attraction tourist behavior has focused on feasi-
bility analysis, tourist behavior characteristics, tourist behavior classification, and tourist
behavior prediction, among other topics. For example, Xiao–Ting developed a combina-
tion approach to clarify such behavioral patterns quantitatively and qualitatively using
the concept of the space-time path of time geography to explain the patterns in terms of
temporal behavior factors, spatial behavior factors, activity choice factors, and path char-
acteristics [5]. East combined tracking data and survey data and found that most tourists
visiting the zoo follow a similar route, revealing a strong dependence on the main road [5].
Li taking Gulangyu as an example, combined GPS data and survey data and developed
a multinomial logit (MNL) model for identifying factors that affect tourists’ destination
choices [2]. Zheng combined dynamic time warping and the earth mover’s distance to
accurately measure the similarity in tourist trajectories [14]. Huang given the marked
differences in demographic and emotional characteristics, identified three spatial-temporal
behavior clusters via density center clustering, consisting of four factors: path length,
tour time, coverage area, and oval circumference [4].

In general, existing research still has some shortcomings. First, in terms of data sources,
most of the GPS data used in research are collected by the researchers. The high upfront
cost of GPS data limits the popularization of their use in research. Second, with regards
to the research content, most studies have only focused on the classification of tourist
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behavior. To date, few studies have investigated the association between some indicators
in the course of tourist behavior, such as dwell time, number of tourists, and a number
of geo-tagged photographs. As a result, the relationship between these indicators is still
unclear. Although some studies have proved the uniformity of tourist behavior, it is still
unclear whether there are differences in tourist behavior across seasons due to the short
duration of existing research. Therefore, this study will propose a processing framework for
open GPS trajectory data, explore the relationship between essential indicators, and identify
seasonal differences in tourist behavior to resolve the shortcomings mentioned above.

3. Data and Methods
3.1. Study Area

Yuanmingyuan Park is located in Haidian District, the western suburb of Beijing, and is
adjacent to the Summer Palace. Built in the 46th year of Emperor Kangxi’s reign (1707),
Yuanmingyuan includes three gardens: Yuanmingyuan, Changchunyuan, and Qichunyuan.
With a floor area of 350 hectares and a building area of almost 200,000 square meters,
Yuanmingyuan was a vast royal palatial garden established and operated for over 150 years
by emperors during the Qing Dynasty. Yuanmingyuan is also a waterscape garden, and the
water surface occupies more than half of the entire area of the park. The Qing emperor came
to Yuanmingyuan, which was also called the “Summer Palace,” every summer to escape the
heat, listen to politics, and handle military affairs. In November 1976, the Administrative
Office of Yuanmingyuan was established. In January 1988, Yuanmingyuan Park was
announced as a key cultural relic protection site at the national level. On 29 June 1988,
Yuanmingyuan Park was officially opened to the public. The ticket offices of Yuanmingyuan
Park are mainly located at the gate of Qichunyuan Palace, the East Gate of Changchunyuan,
Zaoyuan Gate, and Zhengjue Temple Gate. The entrance ticket is 10 yuan per person. It is
an important place for both Beijing residents and for tourism, leisure, and science education.
Yuanmingyuan Park is a suitable year-round destination, and the scenic management office
recommends various tourist routes for the different seasons (spring, summer, autumn,
and winter). Please see Figure 1.
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3.2. Data

Due to the popularization of mobile internet and the use of GPS, tourists produce
many digital footprints during their travel. These publicly available footprints include
location photos, GPS tracks, travel logs, online reviews, etc. These text data and location
photo information have been abundantly mined but results based on open GPS trajectory
data are rare. Although many scholars have devoted themselves to tourist GPS data mining,
they often collect trajectory data through handheld GPS, but collect tourist population and
emotional data through questionnaires.

There are many advantages to using open GPS trajectory data. First, traditional
research is limited by cost and the process of collecting data is often concentrated within
two weeks [4], but the timeframe is much wider when collecting open GPS data. Second,
open GPS trajectory data access does not require researchers to purchase equipment and
does not require traveling to the case site for data collection. The cost and convenience of
research are thus greatly improved. Third, tourists often update their trajectories as they
upload location photos [3,39]. These photos reflect the interests of tourists and can broaden
the scope of research. However, open GPS trajectory data still has many disadvantages
when compared to traditional GPS data. First, handheld GPS data is highly accurate,
and the time distribution between points is relatively even [40]. However, open GPS
trajectory data is subject to interference from mobile phone signals and other factors.
Therefore, its distribution is more scattered. Second, the starting and ending points of open
GPS trajectory data records are not controlled by the researcher. General tourist spatio-
temporal behavioral research indicators such as average speed, travel length, and total
travel time are difficult to obtain directly. Third, as in the case of general open data,
open GPS trajectory data cannot obtain the demographic characteristics of the uploader,
which limits further analysis. Even with these shortcomings, the potential of open GPS
trajectory data in tourist behavior research is still huge.

We selected the GPS tracking data of tourists who used the outdoor route websites
2bulu.com and foooooot.com, which are widely used in China. We used Python to write
scripts to collect all the trajectory and photo data uploaded by tourists in the study area on
the two platforms and imported the trajectory data into ArcGIS after coordinate conversion.
The original GPS trajectory was obtained by displaying the XY coordinates and Points to
Line. The first step was to remove low-quality trajectory, including strokes that were too
short or repeated as well as excessively abnormal points. The second step was to use Pandas
(Pandas is a powerful toolset for analyzing structured data based on Numpy, which is
used for data mining and data analysis; Pandas also provides data cleaning functions.) to
calculate the time spent between two points on the same track. The calculation method
used the absolute value of the difference between two adjacent points, and the distance
between two points was calculated as follows:

d =
n

∑
i=2

2
√
(xi − xi−1)

2 + (yi − yi−1)
2. (1)

The third step was to find points that were more than 30 s apart from another point.
If the distance between the two points exceeded 30 m, it was considered an abnormality
and deleted. In step four, we located the outliers and eliminated the influence of extreme
values. For example, we deleted the points that were far apart but took too little time to
reach. In step five, we imported the processed data into ArcGIS and removed the points
outside the study area.

A total of 1219 trajectories data were available from January 2014 to July 2020, of which
906 trajectories were used, including 595,344 valid GPS points, representing a validity
percentage of 74.3%. Example data are shown in Table 1. Each point’s attribute infor-
mation includes the route number, the sequence number of the point in the route, longi-
tude, latitude, time spent, the distance between two points, and timestamp information.
Additionally, the geographical location data of check-in points for visitors from the same



Sustainability 2021, 13, 94 6 of 13

website was adapted to reflect the spatial distribution of tourist preferences in Yuan-
mingyuan Park.

Table 1. Data attribute information.

Number n Longitude Latitude Dwell time Distance/m Time Timestamp

1 12 116.3064 39.99998 9 11 31 January 2018 13:51:18 1517377878
1 13 116.3065 40.00004 8 11 31 January 2018 13:51:26 1517377886
1 14 116.3064 39.99998 34 11 31 January 2018 13:52:00 1517377920
1 15 116.3063 39.99996 6 11 31 January 2018 13:52:06 1517377926
1 16 116.3062 39.99999 9 11 31 January 2018 13:52:15 1517377935
1 17 116.3061 40.00006 8 10 31 January 2018 13:52:23 1517377943
1 18 116.306 40.0001 8 11 31 January 2018 13:52:31 1517377951
1 19 116.3058 40.0001 7 12 31 January 2018 13:52:38 1517377958
1 20 116.3057 40.00011 8 11 31 January 2018 13:52:46 1517377966
1 21 116.3056 40.0001 8 12 31 January 2018 13:52:54 1517377974

Source: http://www.foooooot.com/ and https://www.2bulu.com/.

3.3. Data Analysis

Data analysis included four steps. The first step was to grid the spatial data.
This method has been proven by many scholars to be an effective means of processing
spatial data [2,10,40]. By dividing the research area into grids of a specific size, visual-
ization and statistics can be conveniently performed. As mentioned earlier, the accuracy
of open GPS data is affected by the user’s mobile device, and therefore, there are often
huge inaccuracies. By converting spatial data to grids, the spatially uneven data was pro-
cessed according to a specific geometric grid. Statistics should be combined to more easily
analyze the research data’s coupling characteristics and geographic space [41]. Because
grid statistics rely on GPS trajectory points instead of trajectory lines, they can quickly
summarize information such as the number of tourists, dwell time, and the number of
geo-tagged photographs. GPS trajectory technology can also remove the influence that
a single tourist’s extreme behaviors may have on the overall characteristics, and therefore
it is highly reliable. More importantly, we can obtain many statistical units to facilitate
correlation testing and modeling features of different attributes by gridding the spatial data.
An example is provided in Figures 2 and 3. Considering the study area’s environmental
characteristics and the accuracy of GPS trajectories, we assumed that it was appropriate
to set the grid at 50 × 50 m. Tourist trajectories and location photos were collected on
grid cells to analyze tourists’ spatial distribution characteristics in Yuanmingyuan Park,
the differences in tourists’ spatial distribution in different seasons, and the relationship
between tourist interest districts and dwell time. (Figure 2)
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The second step was to use the spatial join function of ArcGIS to join the location and
attribute information of the trajectory data to the grid and add up the time of all trajectory
points in the grids to obtain the total dwell time in grids. We calculated the number of
tourists passing by and visitors taking pictures in the grid, performed the merge rule-join
operation on the track number field, and removed duplicate values to produce the number
of tourists and geo-tagged photographs. Since the researcher does not control the starting
and ending point of the open GPS trajectory data, it is unreasonable to use the total tour
time and path length without cropping to reflect tourists’ actual behavior characteristics.
Using the method proposed, the calculated tourist behavior indicators include path length,
tour time, and average speed, which can better reflect tourist behavior characteristics.
The open GPS trajectory data process framework proposed in this paper overcomes the
difficulties associated with using the trajectory as line data and the accuracy of kernel
density estimation directly on the trajectory point data is not high. This framework will
significantly improve the researchers’ control over the experiment (Figure 3).

The third step was to visualize the data based on the indicators obtained above.
To improve the visualization, we used the Feature to Point tool in ArcGIS software to
extract each grid’s center point to make it more convenient to use Kernel density. Kernel
density analysis was used to highlight the spatial distribution characteristics in time spent,
visit path and region of interest in particular areas of the park for all visitors. The kernel
density maps were produced using a default output raster cell size and a search radius
of 100 m. To reduce the impact of small samples on the results, we selected a grid with
a total number of people greater than four as the statistical cell. By completing this step,
we found hot spots for tourists passing, hot spots for tourist gathering, high average dwell
time areas, and tourist interest areas.

We can intuitively discover the geographical features of tourists’ behavior in Yuan-
mingyuan Park through the visualization method. To further understand and explain
the tourists’ spatio-temporal behavior characteristics, the fourth step involved correlation
analysis to determine the relationship between dwell time, number of tourists, and number
of geo-tagged photographs. After completing this step, we used one-way analyses of
variance (ANOVAs) and spatial data visualization methods to test the differences in tourist
behavior in different seasons.

4. Analysis and Findings
4.1. Spatio-Temporal Behavior Characteristics and Interrelationships
4.1.1. Tourist Visit Path

The kernel density analysis, which is based on the number of tourists passing by,
reveals the areas which most tourists pass through (Figure 4a). Most tourists enter the park
through the gate of Qichunyuan Palace. As Fuhai lies at the center of the Yuanmingyuan
Park, the northern and southern areas are the main roads for tourists. Fewer tourists
enter Changchun Garden, as most choose to pass through the north of Changchun Garden.
Two agglomeration centers are also located at the intersection of major roads, including
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Dequange and Xieqiqu at the northern and southern ends of the Yuanmingyuan and
Changchunyuan.
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4.1.2. Tourist Dwell Time

The kernel density analysis, weighted by tourists’ dwell time, reveals the areas where
tourists stay the longest (Figure 4b). In terms of aggregation characteristics, the analysis
shows a trend similar to that of tourists’ visit paths. The agglomeration centers where
tourists travel are all high-value areas of tourists’ dwell time, but the latter’s degree of
agglomeration is weaker than that of the former. The analysis results show that there are
several areas where tourists spend a long time, even where there are not many tourists.
They mainly include the Zhengjue Temple in Qichun Garden, the Huanghuazhen, Dashuifa,
and Yuanmingyuan panoramic sand table scenic area in Changchun Garden. The correla-
tion coefficient between the number of tourists and the dwell time is calculated (R = 0.87
p < 0.01), which shows that the passenger flow has a strong ability to explain the hot spot
where tourists spend more time.

4.1.3. Tourist Average Dwell Time

To eliminate the tourist numbers’ influence on dwell time, the average dwell time was
calculated to find the places where tourists spent longer times. The kernel density analysis,
which uses the average dwell time of tourists as the weight, reveals the areas where tourists
spend longer times, on average (Figure 4c). We found that the main scenic roads and road
intersections had the highest number of tourists, but the average dwell time of tourists was
short. The correlation coefficient between the number of tourists and the average dwell
time (R = 0.13, p < 0.01) demonstrates that there was a weak correlation between the tourist
number and the average dwell time.
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4.1.4. Number of Geo-Tagged Photographs

The number of geo-tagged photographs as the weight for kernel density analysis
reveals the places tourists were most interested in (Figure 4d). From the gathering cen-
ter’s spatial location, the analysis reveals that the gathering area highly coincided with
the tourist dwell time. Both the correlation coefficient between the number of tourists
and the number of geo-tagged photographs (R = 0.73, p < 0.01) and the correlation co-
efficient between the dwell time and the number of geo-tagged photographs (R = 0.88,
p < 0.01) were calculated. The coefficients demonstrate that compared with the number of
tourists, there was a stronger correlation between dwell time and the number of geo-tagged
photographs in the spatial distribution.

4.2. Tourists Behave Differently in Different Seasons

According to the travel time, tourists’ trajectory data was divided into four categories:
spring, summer, autumn, and winter. One-way analysis of variance (ANOVAs) was used
to investigate whether there were significant differences in tourist behavior in different
seasons. The selected variables are path length, tour time, and average speed. Post-hoc
tests were conducted when ANOVA results were significant at the p < 0.05 level. If the
assumption of homogeneity of variance was valid, a Tukey test was performed; otherwise,
Tamhane’s T2 was used [4].

There was no significant difference in the tour time and average speed in different
seasons (Table 2). There was a significant difference in the path length in spring and
autumn (p < 0.05), but there was no significant difference in the path length in other seasons.
This demonstrates that the path length, tour time, and average speed in the Yuanmingyuan
Park show substantial homogeneity in different seasons. To further understand the seasonal
differences of tourist behaviors within the attraction, we used tourists’ dwell time in
different seasons as weights to draw a kernel density map (Figure 5).
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Table 2. Analyses of variance (ANOVA) results for seasonal spatial-temporal patterns. (source:
author self-painted).

Spring
n = 288

Summer
n = 250

Autumn
n = 251

Winter
n = 117 Test Score

length 7056 6412 6286 6552 F = 3.399
p = 0.017

Time 7822.233 7653.928 7512.072 7507.154 F = 0.326
p = 0.807

Speed 59.08 57.00 56.05 56.75 F = 0.708
p = 0.548

Figure 5 shows that, although the Administrative Office of Yuanmingyuan provides
different recommended sighting lines for different seasons, tourists always choose the same
paths, which again proves the homogeneity of tourists’ behavior. The number of tourists
in winter declined compared to the other seasons. However, further analysis shows that
the season does not significantly affect tourists’ behavior, regardless of whether it is the
average travel time, average speed, travel length, or tourist movement behavior. Although
tourist behavior appears to be homogeneous, this does not necessarily mean that there
is no difference in tourists’ behavior choices in different seasons. As shown in Figure 5b,
there is an apparent high-value area for tourists to stay in the lotus area (zone E) during
the summer. The figure shows that although zone E is not highly accessible, the behavior
of tourists is affected by attractions in summer.

5. Conclusions and Future Research
5.1. Conclusions

This study set out to determine if open GPS trajectory data could be used to accurately
understand intra-attraction tourist behavior. This study visually demonstrated the tourists’
spatio-temporal behavior, analyzed the relationship between several essential indicators in
tourists’ behavior and investigated whether different seasons significantly affected tourists’
behavior. The data was obtained from two websites, foooooot.com and 2bulu.com, with 906
trajectory data obtained in the Yuanmingyuan Park. The paper demonstrated that open
GPS trajectory data are reliable in tourist behavior research. The research results show that
open GPS trajectory data are significantly better than traditional self-collected GPS data
in both quantity and efficiency. Nevertheless, the accuracy of the data is relatively low.
We have identified tourist interest areas and found that the indicator of dwell time could
explain the relationship between tourist stay behavior and tourist photo behavior. We used
ANOVA to compare the differences in tourist behavior (path length, tour time, and average
speed) in different seasons. We also drew a kernel density map of tourists’ dwell time in
different seasons and found that tourist behavior is consistent regardless of the season.

Our results significantly contribute to current theory and provide a set of guidelines
for managers. First, the study demonstrated that although UGC is widely used in tourism
research and destination marketing and management, the role of open GPS trajectory
data in tourist behavior research is underestimated. We then clarified the potential of
open GPS trajectory data in tourist behavior research and compared their accuracy and
processing to traditional self-collected trajectory data. The study proposed a framework
for processing analysis that will provide a new perspective for tourist behavior research.
Second, this paper found that the R between the average dwell time and the number
of tourists was only 0.13, suggesting that the area of real interest to tourists may not
be the areas with the highest number of trips made by tourists. This is different from
people’s intuitive experience, but it provides important guidance for the tourist attractions’
functional planning. Tourist attractions often build shopping stores or other public service
facilities at the tourist passages that tourists must pass. Because of the large flow of people
in these areas, the potential benefits of layout facilities may be higher. However, this is
not necessarily the case. Our research proves that the correlation between the number

foooooot.com
2bulu.com
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of tourists and the average stay time of tourists is weak, indicating that the layout of
service facilities in areas with a high number of tourists does not significantly increase the
average stay time of tourists, and the revenue target of the tourist attraction may not be
well achieved. Furthermore, the COVID 19 pandemic has changed the way that people
travel. More and more people hope to reduce their contact with others during travel and
to feel nature more. However, suppose facilities that require tourists to stay are built at
the tourist passages that tourists must pass. In that case, it may slow down the flow of
people and cause many tourists to gather in a small space, which intensifies the discomfort
of tourists and increases the risk of virus transmission.

On the other hand, the study found that the R of dwell time and number of geo-
tagged photographs was as high as 0.88. This indicated that there was a close relationship
between tourists’ stay and photo-taking behavior. It also implied that if more tourists take
photos in an area, it is often an easy place for tourists to gather. In previous research on
tourist behavior, due to the difficulty of obtaining data on tourists’ staying time, scholars
often use the number of photos to reverse the concentration of tourists. They believe that
the more photos are taken of a particular area, the stronger the concentration of tourists.
Although this concept has obtained support in the past, there was very little evidence
to prove the quantitative connection between the number of photos taken and tourists’
length of stay. This article proves the strong correlation between the two. It also provides
a theoretical basis for the research of tourist behavior. Third, the study found that seasons
do not significantly affect tourist behavior in Yuanmingyuan Park. Although the reasons
are still worth exploring, they raise a question about tourism research and destination
management. Does the seasonality of tourism correspond with tourist behavior at the level
of intra-attraction? Is it necessary for tourism attractions to set up different recommended
routes in different seasons?

In the context of big data, this research has the following implications for destination
management: (1) The conclusions can enhance destinations’ management capabilities, in-
cluding tourism marketing, landscape design, potential crowding prevention, etc. (2) The
proposed method provides decision-makers with powerful tools to optimize resource alloca-
tion and service facility layout. (3) The conclusions can enrich the understanding of tourist
behaviors during different seasons to improve attraction and enhance the tourist experience.

5.2. Future Research

This paper’s findings provide the following insights for future research: On the one
hand, the high cost of collecting traditional trajectory data makes it difficult to use when
conducting long-term investigations. It is still unclear whether there are differences in
tourist behavior in different seasons. Although this article finds that tourist behavior is
very consistent across seasons, which is consistent with the results of related studies [42,43],
there are inconsistent examples [44]. Urban parks were the object of study of this article.
It is still unclear whether the same conclusion will be obtained for a natural scenic loca-
tion. Future research should pay more attention to the differences in the tourist behavior
in multi-type and multi-scale destinations over the course of either a year or a month.
Open trajectory data are often accompanied by tourists’ picture-taking behavior, making
the refined research of destination images possible. In the past, the research of destina-
tion images was often based on cities or attractions. Future research can try to study the
attraction’s internal image and use deep learning and image recognition technology to
analyze and identify the destination image’s characteristics in different regions. Never-
theless, it is difficult for open GPS trajectory data to collect tourists’ demographic and
emotional characteristics, limiting the identification of causal relationships and further
analysis of tourist classification. In future studies, the combination of multi-source data
should be reasonably selected or configured for a variety of research purposes. For example,
the approach devised for this study can be extended to understand if the utilization of
short-term facilities set up for festivals has an impact on tourist behavior. Future research
can combine the long-term nature of open GPS trajectory data with the short-term concen-
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tration of self-acquired GPS data to identify tourist behavior characteristics during such
specific activities.
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