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Abstract: Water scarcity has put pressure on city development in China. With a particular focus on
urban and rural effects, logarithmic mean Divisia index decomposition (LMDI) was used to analyze
the water footprint per capita (WFP) of food consumption in five East China cities (Beijing, Tianjin,
Shanghai, Qingdao, and Xiamen) from 2008 to 2018. Results show that the WFP of food consumption
exhibited an upward tendency among all cities during the research period. Food consumption
structure contributed the most to the WFP growth, mainly due to urban and rural residents’ diet shift
toward a livestock-rich style. Except in Beijing, the food consumption level mainly inhibited the WFP
growth due to the decrease in food consumption level per capita in urban areas. Urbanization had
less influence on WFP growth for two megacities (Beijing and Shanghai) due to the strictly controlled
urban population inflow policy and more positive effects for other cities. The water footprint intensity
effect among cities was mainly due to uneven water-saving efficiency. Meanwhile, Beijing and Tianjin
have achieved advancement in water utilization efficiency.

Keywords: water footprint per capita; food consumption; east China cities; LMDI

1. Introduction

The Sustainable Development Goals (SDGs) of the United Nations proposed the
expectations for future water availability and sustainable usage, which recognized the
vital role of water management in urban sustainable development [1–3]. As a major
water consumer, agricultural food production currently has the largest share in the total
water consumption (61.2%) of China [4–6]. With a considerable booming population and
continuous urbanization in China, a growing centralized water resource is needed to
meet the demands of the urban food supply [7,8]. Since populations gradually gathered in
eastern coastal areas, which are usually water-stressed [9,10], the growing urban population
imposes apparent pressure on local water management [11,12].

Hoekstra introduced Water Footprint (WF) in 2002 to analyze residential water con-
sumed in a particular region with regard to food consumption [13,14]. This parameter
is defined as the volume of water needed for goods and services consumed in a certain
period and links the physical water usage with virtual indirect water usage in the analy-
sis [13,15,16]. Owing to its wide application and non-imitated research objects, WF provides
a new access point for water consumption monitoring and has gradually become an impor-
tant indicator for water resource management [17]. A certain amount of WF assessment
studies have been conducted at the national, regional, and provincial-scale to study influ-
ences brought by differentiation in spatial water resource distribution and socio-economic
development level of cities [18–25]. Researches also investigated single commodities to ana-
lyze WF in the agricultural sector at the micro-level [26–28]. WF calculation methodologies
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can generally be divided into top-down (sector-based) and bottom-up (product-based) [29].
Due to the few data availability requirements, the bottom-up technique has the superiority
in assessing the water consumption of goods and products in the delineated area [17,30].

Excepted for calculating WF, decomposition methods have normally been applied
in previous studies to examine the effect of a single factor on the total WF changing
progress, aiming to find solutions for urban water management challenges [31]. Especially
when the WF changes are calculated through the bottom-up route, the logarithmic mean
Divisia index (LMDI) model is the preferred technique for evaluating the primary driving
forces [32]. At the national level, Cao et al. (2020) investigated the environmental footprint
changes (including water, carbon, and ecological footprint) of the China food system from
1961 to 2017 by using LMDI and highlighted the diet pattern, which became the major
driving factor since the 1990s [33]. Zhao and Chen (2014) evaluated China’s agricultural
WF from 1990 to 2009 by breaking down influencing factors on agricultural WF into diet
structure, efficiency, economic activity, and population effect, which was pointed out to be
the major contribution of economic activity effect on WF growth [30]. When narrowing
down to regional research, studies suggested that urbanization was another potential
key factor in WF changes [5,34]. For instance, Sun (2019) decomposed the WF per capita
changes of province-level cities in China’s capital region. The results indicated that, with
the socio-economic development, the urbanization and food consumption level effect were
the leading drivers on WF growth [7]. Furthermore, scholars also focused on WF analysis
of the single city. Kang et al. (2017) investigated the driving forces of water intensity, food
consumption structure, food consumption level, population, and urban population rate
on urban food consumption water footprint in Xiamen and pointed out that population
effects were the primary contributors [35]. While studies have been conducted from the
perspective of Chinese food consumption, WF decomposition was mainly conducted at the
macro level in national or provincial scope. WF decomposition has not been previously
compared among cities with high geographical differentiation and varying development
levels. The sustainable use of water resources may require extra efforts at the micro-level
to better meet local conditions.

Therefore, based on the food consumption perspective, this study quantifies and then
compares the WF in five cities (Beijing, Tianjin, Shanghai, Qingdao, and Xiamen) in East
China from 2008 to 2018. LMDI decomposition is further conducted to investigate the
driving factors underlying WF growth among five cities, which could be useful for relevant
policy-making towards future urban sustainability development. This paper is structured
as follows: WF calculation for residential food consumption and LMDI decomposition is
first introduced; the results and discussion of decomposition factors are then presented;
and conclusions and recommendations are proposed.

2. Materials and Methods
2.1. WF Calculation

WF can be classified into three types, namely, green, blue, and grey water. Green
water refers to the rainfall used by crops in the production period, and blue water is the
surface and groundwater evaporated in the production period [36]. Grey water is excluded
from this study because it relies heavily on data availability [29]. Owing to the variations
in population size among cities, WF per capita (WFP) is adopted for comparison. The WFP
of residential food consumption constituting livestock and crop WF is calculated with the
bottom-up method:

WFP = ∑n VWCi ∗ Ci, (1)

where WFP represents the WF consumption per capita (m3/cap), VWCi is the virtual water
of crop or livestock product i (m3/kg), and Ci is the consumption volume per capita of
crop or livestock product i (kg/cap).

The VWC value of the crop is calculated using CropWat software suggested by the Food
and Agriculture Organization database and CLIMWAT software [37] to acquire necessary
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climate data from each city. The livestock VWC value refers to that reported by Chapagain
and Hoekstra [15] in China, and the sugar VWC value is adopted from Wu et al. [10].

2.2. LMDI on Food Consumption WFP

Inspired by Kang et al. [35], LMDI is applied to investigate the driving factors underly-
ing the WFP changes in residential food consumption among cities. Owing to the difference
in population density among five cities, the WFP in each city is calculated for compar-
ison [7]. The factors affecting the WFP residential food consumption are decomposed
into WF intensity (the VWC value per kg of crop or livestock product), food consumption
structure, food consumption level, and urbanization rate (the proportion of the urban
population in total population) [4,5,35]. The decomposition equation is as follows:

WFP = ∑i WFPi
u ·Uu+∑i WFPi

r ·Uu
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(2)

where WFP is the water footprint per capita of residential food consumption; WFPi
u and

WFPi
r represent urban and rural WFPs of product i, respectively; U is the total population;

Uu and Ur represent the urban and rural populations, respectively; Cu and Cr are the total
volume of food consumption per capita in urban and rural areas, respectively; Ci

u and Ci
r

represent the consumption of i product per capita in urban and rural areas, respectively; Pu
is the urban population rate; and Pr represents the rural population rate. Here, Pu and Pr
add up to 100%. Ii

u and Ii
r are the urban and rural WFP intensity, respectively; Si

u and Si
r

are the food consumption structures in urban and rural areas, respectively; and Fu and Fr
represent food consumption per capita in urban and rural areas, respectively.

According to the LMDI decomposition, the change in WFP between baseline year 0
and the target year is calculated as follows:

∆WFP = WFPt −WFP0 =
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+∆WFPr(F) + ∆WFPr(P),

(3)

where ∆WFPu(I), ∆WFPu(S), ∆WFPU(F), and ∆WFPu(P) represent WF intensity
effect, food consumption structure effect, food consumption level effect, urbanization
effect, respectively, which are factors that contribute to the change in urban residential
WFP. ∆WFPr(I), ∆WFPr(S), ∆WFPr(F), and ∆WFPr(P) are four factors influencing rural
residential WFP change. The contribution of each effect on WFP change can be calculated
as follows:
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3. Study Area and Data Source
3.1. Study Area

China’s population is denser in the eastern coastal cities, taking the Hu Line as
the population boundary [38]. Benefiting from early reform and opening policy, cities
developed rapidly and gradually formed the Beijing-Tianjin-Hebei urban agglomeration,
the Yangtze River Delta urban agglomeration, and the Guangdong-Hong Kong-Macao
Greater Bay Area, which included the political and economic centers of China (Beijing
and Shanghai, respectively). The coastal cities in East China have now become the core
economic growth zone, while cities will also face increased water demand due to dense
population. Given the current data availability, five cities in East China, namely, Beijing,
Tianjin, Shanghai, Qingdao, and Xiamen, are selected to reveal the driving factors of water
usage with regard to food consumption (Figure 1). In the Beijing–Tianjin–Hebei Region,
Beijing and Tianjin are two resource-based water scarcity megacities located near the Bohai
Sea [9]. Given their close geographical link, these two cities suffer from water shortage
and rely heavily on the South-to-North Water Diversion Project to maintain their citizens’
freshwater usage. Shanghai is another megacity on the south of the Yangtze River Estuary
and is recognized as a quality-based water scarcity city. As the economic center of China,
this city is the most populous and has overloaded water capacity. Qingdao and Xiamen are
two municipalities with independent planning statuses and play important roles in coastal
economic growth. Both suffer from surface water reservations due to their topographic
features. Compared to Qingdao in the southeast of the Jiaodong Peninsula, Xiamen is a
typical bay city in the south of Fujian province that relies heavily on surface water. Detailed
information about these five cities is shown in Figure 1 and Table 1.

Table 1. General information for five cities in Eastern China in 2018.

Items Beijing Tianjin Qingdao Shanghai Xiamen

Population (104

persons)
2154 1560 940 2424 411

Area (km2) 16,411 11,967 11,293 6341 1700
per capita GDP (Yuan) 140,211 120,711 128,459 134,982 118,015
Urbanization rate (%) 86.5% 83.1% 73.7% 88.1% 89.1%

Per capita water
resources

(cµ.m/person)
164 113 117 160 268

Sourced from: Beijing, Tianjin, Shanghai, Qingdao, and Xiamen Statistical Yearbooks and Water
Resource Bulletin (2019).
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Figure 1. Scope of Study area: Beijing, Tianjin, Qingdao, Shanghai, and Xiamen.

3.2. Data Sources

The research period covers from 2008 to 2018. Data on food consumption per capita in
urban and rural areas, the types of crop and livestock products, geological conditions, culti-
vation conditions, and population are sourced from the Statistical Yearbooks (2009–2019)
and Water Resource Bulletin (2019) of each city [6,39–44]. In those publications, the types of
food counted vary. Therefore, due to data availability and feasibility of further comparisons,
this paper employs five crop products (grains, oil crops, vegetables, fruits, and sugar) and
four livestock products (meat, poultry eggs, dairy, and fish and seafood) provided in the
five cities’ Statistical Yearbooks.

4. Results and Discussions
4.1. Food Consumption WFP of the Five Cities

Figure 2 presents the trend of food consumption WFP in each city from 2008 to 2018.
The WFP of all cities exhibited an upward tendency; that of Beijing, Tianjin, Qingdao, and
Xiamen grew volatilely, and that of Shanghai WFP had a slow-growth tendency. In terms
of composition, the WFP of each city showed similarity in meat and grain proportions
and variations in poultry eggs, dairy and fish and seafood elements. Meat proportions
accounted for the majority of the WFP in all five cities, thus reflecting the strong effect of
water-intensive products on city Food consumption WFP. Grain proportions also accounted
for large WFP; however, grain products consumed less virtual water and therefore had less
effect on WFP in each city. Poultry eggs and dairy were the main WFP elements in Beijing,
Tianjin, Shanghai, and Qingdao. Compared with Tianjin and Shanghai, fish and seafood
constituted a large part of the WFP in Beijing, Qingdao, and Xiamen. Shanghai was the
only city with a considerably large proportion of fruit WFP.
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4.2. Decomposition Effect Analysis

Figure 3 illustrates the aggregate decomposition effect of WFP changes in five cities
from 2008 to 2018. In general, the food consumption WFP of five cities increased to
varying degrees during 2008–2018, in which Beijing had the highest increase of 75.67 m3,
followed by Tianjin, Shanghai, Qingdao, and Xiamen with 69.5, 57.94, 30.51, and 17.21 m3,
respectively. With regard to the WF intensity effect, Beijing and Tianjin showed negative
effects with −3.19 and −29.04 m3 declines, respectively. This finding indicated the efficient
use of agricultural water in Beijing and Tianjin. The water management optimization
in Beijing–Tianjin–Hebei Region might be related to the South-to-North Water Diversion
Project in China, which pressures Beijing and Tianjin to show awareness on water utilization
improvement [34]. On the contrary, Shanghai, Xiamen, and Qingdao had positive effects
with increases of 25.44, 5.47, and 1.19 m3, respectively. The positive driving forces of these
three coastal cities indicated a descending efficiency in water utilization during the research
period. In terms of the food consumption structure effect, all cities had positive effects.
Among which, Tianjin had the largest driving force with a 100.93 m3 increase, followed
by Beijing, Shanghai, Qingdao, and Xiamen with 30.95, 40.48, 25.09, and 4.57 m3 uplifts,
respectively. This result expressed that Tianjin citizens had a structural change in their
daily food intake, whereas Xiamen residents kept a stable diet habit. In terms of food
consumption level per capita effect, Beijing had a 47.94 m3 surge. Other cities had negative
effects, with Tianjin showing the highest negative effect of −8.23 m3, followed by Shanghai,
Qingdao, and Xiamen at −7.68, –6.37, and −3.67 m3, respectively. The differences between
Beijing and other cities could be caused by the increase in food consumption levels in
urban and rural areas in Beijing. Meanwhile, other cities only had an upward trend in
rural areas. In terms of urbanization effect, Beijing and Shanghai showed negative effects
with declines of −0.02 and −0.29 m3, respectively. This phenomenon is mainly due to the
high urbanization rates in Beijing and Shanghai since 2008 and the counter-urbanization
occurring in both cities. Tianjin, Qingdao, and Xiamen had positive effects with growths of
5.84, 10.60, and 10.83 m3, respectively.
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4.2.1. WF Intensity Effect

Figure 4 shows the urban and rural WF intensity effect of five cities from 2008 to
2013 and 2013 to 2018. The WF intensity effect of Beijing and Tianjin was negative effects,
whereas that of Qingdao, Shanghai, and Xiamen was positive. Except for Shanghai, the
urban effect showing a 20.44 m3 increase, the urban effect of other cities had negative
driving forces with decreases of −4.40 m3 in Beijing, −3.04 m3 in Tianjin, −0.39 m3 in
Qingdao, and –4.98 m3 in Xiamen from 2008 to 2013. The rural effect contributed positively
to Shanghai and Qingdao with 1.24 and 0.32 m3 increases, respectively, but contributed
negatively to Beijing, Tianjin, and Xiamen with −1.18, −1.06, and −0.34 m3 decreases,
respectively. In this period, most cities were mainly driven by negative urban effects.
Shanghai’s positive urban effect was the only main contributor. Compared with urban
effects, rural effects had relatively small driving forces in most cities.
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From 2013 to 2018, the urban effect of most cities was positive, with increases of
2.15 m3 in Beijing, 0.98 m3 in Qingdao, 3.34 m3 in Shanghai, and 9.81 m3 in Xiamen, thereby
reflecting a decrease in water efficiency in most urban areas. By contrast, the Tianjin urban
effect reflected a −20.67 m3 drop, the only city with increasing water utility efficiency.
Rural effects had a similar trend, in which only Tianjin decreased by −4.27 m3, whereas
Beijing, Qingdao, Shanghai, and Xiamen contributed positively with 0.24, 0.28, 0.41, and
0.98 m3 uplifts, respectively. The urban and rural areas in Tianjin had an improvement
in water saving. In this period, most cities were mainly driven by positive urban effects.
Tianjin’s negative urban effect was the only main contributor. Therefore, urban effects
were maintained as the primary contributor to the city WF intensity effect throughout the
whole period.

Since the WF intensity effect was related to crop yield, geographical conditions, and
temperature changes in a certain area, we mainly analyze the city’s overall WF intensity
effect here. From 2008 to 2018, the effect of Beijing and Tianjin inhibited WFP growth, while
Qingdao, Shanghai, and Xiamen contributed positive effects. Compared with those in the
former period, the effects of Beijing, Qingdao, and Xiamen turned to contribute positively
in 2013–2018, and Shanghai continued to contribute positively during the two periods.
Only Tianjin kept negative contributions from 2008 to 2018. This finding indicated the
continuous improvement of water usage efficiency in Tianjin, but a decrease in water utility
efficiency in other cities in 2013–2018. As Beijing and Tianjin were in the capital region,
the water shortage issues may become more severe with climate change. The continuous
improvement of water efficiency in these two cities indicated that cities with higher water
pressure would have a more urgent need for water-saving technology promotion and
emphasis on water usage efficiency optimization [45]. This is consistent with previous
studies in the Beijing-Tianjin-Hebei region, that is, cities with water scarcity would have
advantages in water usage efficiency [7,34]. Besides, since a large amount of water were
consumed in agriculture production, Beijing has reduced its localized agricultural pro-
duction and gradually become a consumer-oriented city, which may also be the reason
for Beijing to have the negative WF intensity effect [46]. In this case, surrounding cities,
especially Tianjin, would face increasing pressure on agricultural production, which may
be the reason for Tianjin having the leading national irrigation efficiency [47].

4.2.2. Food Consumption Structure Effect

Figure 5 shows the urban and rural food consumption structure effect of the five cities
from 2008 to 2013 and from 2013 to 2018. The food consumption structure effects of all cities
were all positive. For the driving forces that differed among each food type, the variations
in the VWC values resulted in different contributions to WFP growth. In particular, meat
products had the largest VWC value, followed by fish and seafood, poultry eggs, and
dairy. For urban and rural areas, vegetarian products such as grain, vegetables, and fruits
accounted for the major proportion of residential food consumption in all cities. Among
the livestock products, meat, poultry eggs, dairy, and fish and seafood were allocated with
major proportions. Details on the food consumption structure in these five cities are shown
in Figure 6.

From 2008 to 2013, the urban effect of most cities showed a strong positive driving force
with growths of 29.23 m3 in Beijing, 70.85 m3 in Tianjin, 28.41 m3 in Qingdao, and 14.63 m3

in Shanghai. The increase in meat and dairy consumption proportion mainly contributed
to these positive forces. The Xiamen urban effect had a −10.68 m3 decrease, which was
mainly due to the reduction in fish and seafood, meat, and poultry egg proportions. In
addition, the rural effect only contributed negatively to Qingdao with a−4.97 m3 reduction
due to the decline of fish and seafood and grain proportions. Beijing, Tianjin, Shanghai, and
Xiamen had positive rural effects with 2.79, 15.50, 2.43, and 8.63 m3 growths, respectively.
For the food structure, meat and dairy proportions increased in all cities and contributed
primary positive forces. In this period, most cities were mainly driven by a positive urban
effect, except for Xiamen, which was driven by the negative urban effect. The dominant
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positive urban effects caused a considerable change in food consumption structure in
urban areas, which in turn altered the diet structure with a high WF. In addition, the rural
effects mainly had positive driving forces in most cities, except for the negative effect
in Qingdao. This finding indicates that the food structure in rural areas also changed
gradually, although not as dramatically as that in urban areas.
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From 2013 to 2018, the urban effect turned from positive to negative in Beijing and
Qingdao, with −0.94 and −4.70 m3 reductions, respectively. The drop of grain and dairy
proportions in both cities contributed to major negative driving forces. By contrast, Tianjin,
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Shanghai, and Xiamen had positive effects with 15.11, 24.93, and 8.67 m3 surges, respec-
tively. The major positive effects were contributed by increases in meat, fruit, and fish
and seafood proportions in Tianjin and Shanghai. While the meat proportion decreased in
Xiamen, the positive effects driven by grain proportion growth were the primary contrib-
utors. The rural effects of Beijing, Tianjin, Shanghai, and Xiamen were opposite to those
in the previous period, which turned from positive to negative with −0.13, −0.53, −1.51,
and −2.05 m3 declines, respectively. The decrease in grain proportion contributed to the
negative effects in these cities. Owing to the slow growth of meat proportion in Beijing
and Tianjin, the positive effects were overridden by the negative effects contributing to
the decrease in dairy and fish and seafood proportions. Otherwise, the negative rural
effects of Shanghai and Xiamen were mainly driven by a reduction in meat proportion,
which contributed from positive to negative. The rural effect only contributed positively
to Qingdao with a 6.35 m3 increase, in which the increasing consumption proportions of
meat and fish and seafood were the major contributors. In the current period, most cities
were still driven by the urban effect, which was weaker than that in the previous period.
The decline of positive urban effects revealed that the food consumption changes became
minimal in the 2013–2018 period. The rural effect otherwise contributed negatively to WFP,
indicating that the food consumption in rural areas was gradually stabilized.

From 2008 to 2018, urban effects were the major driving forces among the five cities
except for Qingdao. This finding reflected an important food structure change in urban
areas compared to that in rural areas. Urban residents in most cities had a great diet change
in 2008–2013, and those in Shanghai tended to have a different diet in the latter period.
Rural residential food structure also changed considerably in the first stage except for
Qingdao, where people tended to keep the same diet preference in the 2013–2018 period.

Furthermore, cities showed similarity in diet changes. Food consumption structures
gradually turned to livestock-rich diet preference, showing less demand for vegetarian
products and high demand for meat products. However, a livestock-rich diet could be
highly prevalent in rural areas because the people have a consistent tendency to increase
their livestock product consumption. As the two most consumed vegetarian products,
grain and vegetable consumption proportions had a downward tendency in most cities,
except for the grain proportion growth in Xiamen urban areas and the vegetable proportion
growth in Shanghai and Qingdao for urban and rural areas. Different from grain and
vegetable products, the fruit proportion increased in the urban and rural areas of all cities,
especially in Tianjin. The proportion of meat consumption generally increased among
the five cities and only decreased in Xiamen urban areas. The proportion of poultry eggs
and dairy varied among the five cities. The consumption proportion of poultry eggs
only increased in Qingdao and Shanghai urban areas and decreased in Tianjin rural areas.
Additionally, dairy proportion was increased in Beijing and Tianjin urban areas but was
reduced in Qingdao rural areas. Given that livestock products have great VWC values, the
growth in their consumption could lead to a high positive driving force on WFP in cities.

4.2.3. Food Consumption Level Effect

Figure 7 illustrates the urban and rural food consumption level effect of five cities from
2008 to 2013 and from 2013 to 2018. Beijing’s food consumption level contributed a positive
effect, whereas Tianjin, Qingdao, Shanghai, and Xiamen had negative effects. Except Beijing
where the urban effect had a 10.41 m3 increase, the urban effect of other cities showed
a negative driving force with decreases of −30.87 m3 in Tianjin, −24.48 m3 in Qingdao,
−18.77 m3 in Shanghai, and −79.13 m3 in Xiamen from 2008 to 2013. The rural effect
only contributed negatively to Tianjin with a −12.29 m3 decline, but positively to Beijing,
Qingdao, Shanghai, and Xiamen with 4.31, 7.61, 5.95, and 12.34 m3 increases, respectively.
In this period, negative urban effects were the main contributors among most cities, except
in Beijing, which was driven by a positive urban effect. This finding showed a remarkably
downward urban residential food consumption level. Rural effects contributed positively
to most cities, except in Tianjin with a negative rural effect. This result indicated that rural
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residents are willing to increase their food consumption level. The food consumption
level growth in rural areas could be caused by the increased income of rural residents
and logistics development. Benefiting from these occurrences, rural residents could easily
consume food and own a border collection, leading to less dependence on local food
resources. Thus, the rural food consumption level was on an upward trend and led to city
WF growth.

From 2013 to 2018, only Shanghai urban effect, with a −8.76 m3 drop, maintained
negative urban effects during the two periods. The urban effect of other cities shifted from
negative to positive with increases of 28.20 m3 in Beijing, 18.35 m3 in Tianjin, 12.24 m3 in
Qingdao, and 63.04 m3 in Xiamen. The rural effect only contributed negatively to Qingdao
with a −1.75 m3 reduction, but contributed positively to Beijing, Tianjin, Shanghai, and
Xiamen with 5.02, 16.58, 13.91, and 0.08 m3 uplifts, respectively. In this period, the cities
were mainly driven by positive urban effects. The positive rural effect was only evident
in Shanghai. These changes in urban effect suggested that urban residents in most cities
consumed more food in this period than in the previous period. Meanwhile, a continuous
decline was observed in the Shanghai urban residential food consumption level. Most
cities still had positive rural effects, except for Qingdao, indicating that rural residents in
most cities preferred to continuously increase their food consumption level.
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From 2008 to 2018, the urban effect was the major contributor to WFP in most cities,
except Shanghai. In terms of urban effect, the negative effects of most cities in the 2008–2013
period were greater than the positive effect in the later period. This finding indicates a
downward tendency of urban residential food consumption level and fluctuations between
the two periods. However, only Beijing urban residents showed high demands for increased
food consumption during the whole period. The growing food demand of Beijing residents
could possibly be due to a higher living standard in this city, which has been indicated in
other researches [7,34]. For the rural effect, the positive effects of Qingdao and Xiamen were
reduced in the 2013–2018 period, reflecting a slow growth of food consumption level in
Xiamen and a reduction in Qingdao. By contrast, Beijing, Tianjin, and Shanghai had a great
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positive effect in the 2013–2018 period. The continuous growth of rural effect displayed the
growing food consumption demand of rural residents in these cities.

Comparing the effects of urban and rural areas, the urban population’s reductions
in food consumption level had strong negative driving forces on the overall WF of cities
due to the large urban population base. The general decline in the consumption level of
urban residents could be related to the “clear your plate” campaign conducted in China,
where food-saving regulations and publicity activities were carried out among cities. The
concept of food saving may be more popular among urban residents. The declining
food consumption has inhibited the WFP growth. However, it cannot be ignored that
consumption in rural areas continues to rise. While the rural population continues to move
to cities, the positive effect led by the increase in the rural food consumption level on the
WFP growth should be concerned.

4.2.4. Urbanization Effect

Figure 8 illustrates the urban and rural urbanization effects of the five cities from 2008
to 2013 and 2013 to 2018. The urbanization effect contributed negatively to Beijing and
Shanghai but positively to Tianjin, Qingdao, and Xiamen. From 2008 to 2013, the urban
effects contributed positively to all cities, among which Xiamen had the highest growth
with 73.85 m3, followed by Tianjin, Qingdao, Shanghai, and Beijing, with 22.10, 16.45, 5.56,
and 4.69 m3 surges, respectively. All cities had negative rural effects, among which Xiamen
still had the largest driving force with a −62.67 m3 decrease, followed by Tianjin, Qingdao,
Shanghai, and Beijing with −17.50, −13.37, −5.18, and –4.82 m3 reductions, respectively.
In this period, most cities were mainly driven by positive urban effects, with Beijing the
only city driven by the negative rural effect. The positive driving forces reflected a boom
in the urban population from 2008 to 2013, especially in Tianjin, Xiamen, and Qingdao.
This boom resulted in the rapid growth of WFP. The negative rural effects caused by rural
population reduction was otherwise offset on city WFP growth.
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Except Shanghai, where the urban effect had a −8.29 m3 decrease, the urban effect
of other cities showed positive driving forces with growths of 0.85 m3 in Beijing, 5.74 m3

in Tianjin, 30.05 m3 in Qingdao, and 1.72 m3 in Xiamen from 2013 to 2018. The rural
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effect contributed positively only to Shanghai with a 7.62 m3 growth but negatively to
Beijing, Tianjin, Qingdao, and Xiamen with −0.74, −4.49, −22.53, and −2.08 m3 declines,
respectively. In this period, positive urban effects were still the main contributors among
most cities, except for Shanghai, which was driven by the negative urban effect. Rural
effects continuously contributed negative driving forces, whereas the Shanghai rural effect
contributed positively. Other cities kept the continuous growth of the urban population,
particularly Qingdao with the greatest urbanization growth. By contrast, Shanghai popula-
tion reduced the urban area but increased the rural areas, showing a counter-urbanization
tendency in the 2013–2018 period.

From 2008 to 2018, urban effects contributed positively to WFP growth during urban-
ization, whereas negative rural effects inhibited the WFP growth, mainly by offsetting the
positive urban effect. Among the cities, the urbanization effect of Beijing and Shanghai con-
tributed the weakest driving force on city WFP growth. As first-tier cities, these cities have
almost completed urbanization progress since 2008. Owing to the strict urban population
inflow control policy, these cities had minimal population structure changes between 2008
and 2018, and even experienced different counter-urbanization degrees during the research
period. Therefore, the WFP caused by residential food consumption in megacities could
be strictly controlled by keeping a stable population structure, in which the urbanization
effect could only have a small driving force on WFP growth. Moreover, as a new first-tier
megacity, Tianjin had a substantially positive urbanization effect on WFP growth similarly
to two second-tier cities, namely, Qingdao and Xiamen. The strong positive driving force
of urbanization effects indicates the considerable changes in population structure in these
cities, namely, the upsurge in the urban population and the drop in rural populations.
Specifically, Tianjin and Xiamen had rapid urbanization progress in 2013–2018, whereas
Qingdao sped up the urbanization process in 2013–2018. In other words, the rapid growth
of the urban population has put pressure on city water resources.

Therefore, although previous studies have put forward concerns about the pressure
of the continued urbanization process on water resources [8,35,36], in fact, the change
of population structure during rapid urbanization may be the influencing factors that
hindered the WFP growth. This calls for cities to have a well-planned urbanization pro-
cess and an overall view of the resource carrying capacity. With proper planning and
restrictions on population inflow, urbanization could impose fewer threats to urban water
resources. This could provide guidelines for cities under low urbanization level to develop
sustainable practices.

5. Conclusions

The WFP generated by food consumption from 2008–2018 was calculated in five
East China cities: Beijing, Tianjin, Qingdao, Shanghai, and Xiamen. By using LMDI
decomposition, this paper investigated the driving force of WF intensity effect, food
consumption structure effect, food consumption level effect, and urbanization effect on the
whole city’s food consumption WFP changes, with a focus on urban and rural aspects. The
main conclusions and policy suggestions are drawn as follows:

(1) The WFP related to food consumption showed a rolling upward tendency in the five
East China cities. The largest contributor to WFP was meat proportions, which had an
upward trend during the research periods, followed by grains, which had a decreasing
trend. Decomposition results show that the major driving factor was food consump-
tion level for Beijing and food consumption structure for Beijing Tianjin, Qingdao,
and Shanghai. Xiamen was primarily driven positively by the urbanization effect.

(2) Food consumption structure was the primary factor promoting the WFP growth
among the five cities. Urban effects were the major contributing driving forces. In
most cities, urban and rural residents have dramatically changed their eating habits,
especially in the 2008–2013 period. The changed eating habits were mainly reflected
by the reduced grain and vegetable consumption proportion and the overall increase
in the proportions of meat, poultry eggs, and dairy consumption, especially in rural
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areas. Improving water resources utilization by guiding a balanced diet could be an
efficient way for urban sustainable development.

(3) The food consumption level effect mainly inhibited the WFP growth in most cities, ex-
cept Beijing. Urban residents mainly had a downward tendency of food consumption
level throughout the research period, leading to major driving forces. On the contrary,
rural effects kept positive contributions to WFP growth in most cities. Rural residents
have raised the demand for consuming more food mainly due to their increased
income level and logistics development. On the premise of satisfying daily nutrition,
encouraging residents to raise food-saving awareness could reduce the impact of food
consumption level on the WFP growth.

(4) The urbanization effect was limited in two megacities: Beijing and Shanghai. Stable
urbanization level and restrictions on urban population inflow in these two cities
evidently inhibited the WFP growth. However, the positive effect led to WFP growth
in Tianjin, Qingdao, and Xiamen due to the booming population during rapid urban-
ization. While the urbanization effects of each city differed between urban and rural
areas, the strong offsetting between urban and rural effects weakened the driving
forces of city urbanization effects. Cities currently at a low level of urbanization could
develop more sustainably by addressing attentions on future water usage and urban
population planning.

(5) The WF intensity effect contributed negatively to Tianjin and Beijing but promoted
WFP growth in other cities. The differences in water efficiency in temporal and spatial
might be due to the high water-saving awareness led by the South-to-North Water
Diversion Project in cities located in the Beijing-Tianjin-Hebei region and the leading
irrigation technologies in Tianjin and Beijing. The better performance in Beijing and
Tianjin pointed out that there is still room for other cities to improve their water
utilization efficiency and irrigation technology.

Regarding current water usage in the five cities, improvements in irrigation tech-
nologies should always be encouraged to save water in production. Also, compared with
developing irrigation technology and constructing water conservancy facilities, raising
residents’ awareness of food consumption would be a more efficient and flexible way
to save water. A higher intake of vegetarian products should be encouraged in daily
food consumption to achieve a healthier and less-WF food consumption pattern. Public
information, such as healthy diet guidelines and nutrition facts on labels, should be made
available to citizens. Given the prevalence of a high WF diet in rural areas, a targeted diet
guideline should be applied, especially for rural residents to set up a less-WF diet. Besides,
under the premise of meeting nutritional needs, public education and practical consump-
tion guideline should be brought up to encourage reductions in food losses and waste
on the dinner table, especially during the COVID-19 pandemic, which that continuously
challenges national food security.

It should be noticed that, due to data availability, this study conducted WF investiga-
tion among five coastal cities. In future research, more cities can be included to get more
general rules of the WF driving forces.

Author Contributions: Conceptualization, J.L.; methodology, R.H. and Y.L.; formal analysis, R.H.
and Y.T.; resources, Y.L.; writing—original draft preparation, R.H.; writing—review and editing, J.L.
and X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Strategic Priority Research Program of the Chinese
Academy of Sciences, XDA23020502 and the National Natural Science Foundation of China, 71573242.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2021, 13, 409 15 of 16

References
1. United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; Report No. A/RES/70/1; United Nations:

New York, NY, USA, 2015.
2. Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on

food-energy-water-CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [CrossRef]
3. Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018,

9, 848. [CrossRef]
4. Yang, C.; Cui, X. Global Changes and Drivers of the Water Footprint of Food Consumption: A Historical Analysis. Water 2014,

6, 1435–1452. [CrossRef]
5. Vanham, D.; Pozo, S.d.; Pekcan, A.G.; Keinan-Boker, L.; Trichopoulou, A.; Gawlik, B.M. Water consumption related to different

diets in Mediterranean cities. Sci. Total Environ. 2016, 573, 96–105. [CrossRef] [PubMed]
6. Ministry of Water Resources the people’s Republic of China. China Water Resource Bulletin; Ministry of Water Resources the

people’s Republic of China: Beijing, China, 2019.
7. Sun, S. Water footprints in Beijing, Tianjin and Hebei: A perspective from comparisons between urban and rural consumptions in

different regions. Sci. Total Environ. 2019, 647, 507–515. [CrossRef] [PubMed]
8. Vanham, D.; Gawlik, B.M.; Bidoglio, G. Cities as hotspots of indirect water consumption: The case study of Hong Kong. J. Hydrol.

2017, 573, 1075–1086. [CrossRef]
9. Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity

and its regional inequality. Nat. Commun. 2020, 11, 1–9. [CrossRef]
10. Wu, Y.; Wnag, X.; Lu, F. Ecological Footprint and Water Footprint of Food Consumption in Beijing. Resour. Sci. 2011, 33, 1145–1152.

(In Chinese)
11. Zhang, Y.; Huang, K.; Yu, Y.; Yang, B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Clean.

Prod. 2017, 149, 70–79. [CrossRef]
12. Koop, S.H.A.; Leeuwen, C.J.v. Assessment of the Sustainability of Water Resources Management: A Critical Review of the City

Blueprint Approach. Water Resour. Manag. 2015, 29, 5649–5670. [CrossRef]
13. Hoekstra, A. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade.

In Proceedings of the International Expert Meeting on Virtual Water Trade 12, Delft, The Netherlands, 12–13 December 2003;
pp. 25–47.

14. Wang, Z.; Huang, K.; Yang, S.; Yu, Y. An input–output approach to evaluate the water footprint and virtual water trade of Beijing,
China. J. Clean. Prod. 2013, 42, 172–179. [CrossRef]

15. Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations; Unesco-IHE Institute for Water Education: Delft, The Netherlands, 2004.
16. Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Aldaya, M.; Ercin, A.E.; Canals, L.M.i.; Hoekstra, A.Y. Water Footprint and Life

Cycle Assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot
studies on tea and margarine. J. Clean. Prod. 2012, 33, 155–166. [CrossRef]

17. Chenoweth, J.L.; Hadjikakou, M.; Zoumides, C. Quantifying the human impact on water resources: A critical review of the water
footprint concept. Hydrol. Earth Syst. Sci. 2014, 18, 2325–2342. [CrossRef]

18. Su, W.; Chen, S.; Baležentis, T.; Chen, J. Economy-water nexus in agricultural sector: Decomposing dynamics in water footprint
by the LMDI. Technol. Econ. Dev. Econ. 2020, 26, 240–257. [CrossRef]

19. Chini, C.M.; Konar, M.; Stillwell, A.S. Direct and indirect urban water footprints of the United States. Water Resour. Res. 2017,
53, 316–327. [CrossRef]

20. Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Sáez, K.; Barrera, F.d.l.; Arumí, J.L. Understanding agricultural water footprint
variability to improve water management in Chile. Sci. Total Environ. 2019, 670, 188–199. [CrossRef]

21. Deng, G.; Ma, Y.; Li, X. Regional water footprint evaluation and trend analysis of China—based on interregional input–output
model. J. Clean. Prod. 2016, 112, 4674–4682. [CrossRef]

22. Fan, J.-L.; Wang, J.-D.; Zhang, X.; Kong, L.-S.; Song, Q.-Y. Exploring the changes and driving forces of water footprints in China
from 2002 to 2012: A perspective of final demand. Sci. Total Environ. 2019, 650, 1101–1111. [CrossRef]

23. Cai, J.; He, Y.; Xie, R.; Liu, Y. A footprint-based water security assessment: An analysis of Hunan province in China. J. Clean. Prod.
2020, 245, 118485. [CrossRef]

24. Shi, C.; Yuan, H.; Pang, Q.; Zhang, Y. Research on the Decoupling of Water Resources Utilization and Agricultural Economic
Development in Gansu Province from the Perspective of Water Footprint. Int. J. Environ. Res. Public Health 2020, 17, 5758.
[CrossRef]

25. Zhao, D.; Tang, Y.; Liu, J.; Tillotson, M.R. Water footprint of Jing-Jin-Ji urban agglomeration in China. J. Clean. Prod. 2017,
167, 919–928. [CrossRef]

26. Huang, J.; Ridoutt, B.G.; Zhang, H.; Xu, C.; Chen, F. Water footprint of cereals and vegetables for the Beijing market: Comparison
between local and imported supplies. J. Ind. Ecol. 2014, 18, 40–48. [CrossRef]

27. Ridoutt, B.G.; Huang, J. Environmental relevance—the key to understanding water footprints. Proc. Natl. Acad. Sci. USA 2012,
109, E1424. [CrossRef] [PubMed]

28. Herath, I.; Deurer, M.; Horne, D.; Singh, R.; Clothier, B. The water footprint of hydroelectricity: A methodological comparison
from a case study in New Zealand. J. Clean. Prod. 2011, 19, 1582–1589. [CrossRef]

http://doi.org/10.1038/s41467-020-19520-3
http://doi.org/10.1038/s41467-018-03308-7
http://doi.org/10.3390/w6051435
http://doi.org/10.1016/j.scitotenv.2016.08.111
http://www.ncbi.nlm.nih.gov/pubmed/27552733
http://doi.org/10.1016/j.scitotenv.2018.07.343
http://www.ncbi.nlm.nih.gov/pubmed/30086502
http://doi.org/10.1016/j.jhydrol.2017.12.004
http://doi.org/10.1038/s41467-020-14532-5
http://doi.org/10.1016/j.jclepro.2017.02.067
http://doi.org/10.1007/s11269-015-1139-z
http://doi.org/10.1016/j.jclepro.2012.11.007
http://doi.org/10.1016/j.jclepro.2012.04.015
http://doi.org/10.5194/hess-18-2325-2014
http://doi.org/10.3846/tede.2020.11908
http://doi.org/10.1002/2016WR019473
http://doi.org/10.1016/j.scitotenv.2019.03.127
http://doi.org/10.1016/j.jclepro.2015.07.129
http://doi.org/10.1016/j.scitotenv.2018.08.426
http://doi.org/10.1016/j.jclepro.2019.118485
http://doi.org/10.3390/ijerph17165758
http://doi.org/10.1016/j.jclepro.2017.07.012
http://doi.org/10.1111/jiec.12037
http://doi.org/10.1073/pnas.1203809109
http://www.ncbi.nlm.nih.gov/pubmed/22552226
http://doi.org/10.1016/j.jclepro.2011.05.007


Sustainability 2021, 13, 409 16 of 16

29. Paterson, W.; Rushforth, R.; Ruddell, B.L.; Konar, M.; Ahams, I.C.; Gironás, J.; Mijic, A.; Mejia, A. Water Footprint of Cities:
A Review and Suggestions for Future Research. Sustainability 2015, 7, 8461–8490. [CrossRef]

30. Zhao, C.; Chen, B. Driving Force Analysis of the Agricultural Water Footprint in China Based on the LMDI Method. Environ. Sci.
Technol. 2014, 48, 12723–12731. [CrossRef]

31. Zhang, L.; Dong, H.; Geng, Y.; Francisco, M.-J. China’s provincial grey water footprint characteristic and driving forces. Sci. Total
Environ. 2019, 677, 427–435. [CrossRef]

32. Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [CrossRef]
33. Cao, Y.; Chai, L.; Yan, X.; Liang, Y. Drivers of the Growing Water, Carbon and Ecological Footprints of the Chinese Diet from 1961

to 2017. Int. J. Environ. Res. Public Health 2020, 17, 1803. [CrossRef]
34. Kong, Y.; He, W.; Yuan, L.; Shen, J.; An, M.; Degefu, D.M.; Gao, X.; Zhang, Z.; Sun, F.; Wan, Z. Decoupling Analysis of Water

Footprint and Economic Growth: A Case Study of Beijing–Tianjin–Hebei Region from 2004 to 2017. Int. J. Environ. Res. Public
Health 2019, 16, 4873. [CrossRef]

35. Kang, J.; Lin, J.; Zhao, X.; Zhao, S.; Kou, L. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of
Xiamen City. Sustainability 2017, 9, 135. [CrossRef]

36. Vanham, D.; Gawlik, B.M.; Bidoglio, G. Food consumption and related water resources in Nordic cities. Ecol. Indic. 2017,
74, 119–129. [CrossRef]

37. FAO Database. Available online: http://www.fao.org/land-water/databases-and-software/en/ (accessed on 18 November 2020).
38. Wang, F.; Liu, C.; Xu, Y. Analyzing Population Density Disparity in China with GIS-automated Regionalization: The Hu Line

Revisited. Chin. Geogr. Sci. 2019, 20, 541–552. [CrossRef]
39. Xiamen Municipal Bureau of Statistics. Yearbook of Xiamen Special Economic Zone; Xiamen Municipal Bureau of Statistics: Xiamenm,

China, 2019. (In Chinese)
40. Tianjin Municipal Bureau of Statistics. Tianjin Statistical Yearbook; Tianjin Municipal Bureau of Statistics: Tianjin, China, 2019.

(In Chinese)
41. Shanghai Municipal Bureau of Statistics. Shanghai Statistical Yearbook; Shanghai Municipal Bureau of Statistics: Shanghai, China,

2019. (In Chinese)
42. Qingdao Municipal Bureau of Statistics. Qingdao Statistical Yearbook; Qingdao Municipal Bureau of Statistics: Qingdao, China,

2019. (In Chinese)
43. Beijing Municipal Bureau of Statistics. Beijing Statistical Yearbook; Beijing Municipal Bureau of Statistics: Beijing, China, 2019.

(In Chinese)
44. National Bureau of Statistics of China. China Statistical Yearbook; China Statistical Press: Beijing, China, 2019. (In Chinese)
45. Liao, X.; Zhao, X.; Jiang, Y.; Liu, Y.; Yi, Y.; Tillotson, M.R. Water footprint of the energy sector in China’s two megalopolises. Ecol.

Model. 2019, 391, 9–15. [CrossRef]
46. Xiong, X.; Zhang, L.; Zhang, P.; Chang, Y.; Wang, C. Dynamics of Urban Food Metabolism with Water-Carbon Footprint Respond:

A Case Study of Beijing. J. Nat. Resour. 2018, 33, 1886–1896. (In Chinese)
47. Ministry of Water Resources the People’s Republic of China. Tianjin: A National Demonstration City for Water-Saving.

Available online: http://www.mwr.gov.cn/english/Medianews/201610/t20161017_765352.html (accessed on 19 November 2020).

http://doi.org/10.3390/su7078461
http://doi.org/10.1021/es503513z
http://doi.org/10.1016/j.scitotenv.2019.04.318
http://doi.org/10.1016/j.enpol.2015.07.007
http://doi.org/10.3390/ijerph17051803
http://doi.org/10.3390/ijerph16234873
http://doi.org/10.3390/su9010135
http://doi.org/10.1016/j.ecolind.2016.11.019
http://www.fao.org/land-water/databases-and-software/en/
http://doi.org/10.1007/s11769-019-1054-y
http://doi.org/10.1016/j.ecolmodel.2018.10.009
http://www.mwr.gov.cn/english/Medianews/201610/t20161017_765352.html

	Introduction 
	Materials and Methods 
	WF Calculation 
	LMDI on Food Consumption WFP 

	Study Area and Data Source 
	Study Area 
	Data Sources 

	Results and Discussions 
	Food Consumption WFP of the Five Cities 
	Decomposition Effect Analysis 
	WF Intensity Effect 
	Food Consumption Structure Effect 
	Food Consumption Level Effect 
	Urbanization Effect 


	Conclusions 
	References

