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Abstract: Deteriorating levels of indoor air quality is a prominent environmental issue that results in
long-lasting harmful effects on human health and wellbeing. A concurrent multi-parameter monitor-
ing approach accounting for most crucial indoor pollutants is critical and essential. The challenges
faced by existing conventional equipment in measuring multiple real-time pollutant concentrations
include high cost, limited deployability, and detectability of only select pollutants. The aim of this
paper is to present a comprehensive indoor air quality monitoring system using a low-cost Raspberry
Pi-based air quality sensor module. The custom-built system measures 10 indoor environmental
conditions including pollutants: temperature, relative humidity, Particulate Matter (PM)2.5, PM10,
Nitrogen dioxide (NO2), Sulfur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon diox-
ide (CO2), and Total Volatile Organic Compounds (TVOCs). A residential unit and an educational
office building was selected and monitored over a span of seven days. The recorded mean PM2.5,
and PM10 concentrations were significantly higher in the residential unit compared to the office build-
ing. The mean NO2, SO2, and TVOC concentrations were comparatively similar for both locations.
Spearman rank-order analysis displayed a strong correlation between particulate matter and SO2

for both residential unit and the office building while the latter depicted strong temperature and
humidity correlation with O3, SO2, PM2.5, and PM10 when compared to the former.

Keywords: indoor air quality; smart environment monitoring (SEM); sensors; raspberry Pi

1. Introduction

In the past decade, declining air quality has emerged as one of the largest global
environmental issues due to its harmful effects on human health. The American Lung
Association (ALA) “State of the Air® 2020” estimated that nearly 49% of the United States
population lived in harmful environmental air conditions [1]. An average person spends
upward of 90% of time indoors and owing to the COVID-19 pandemic, this percentage has
further increased [2]. A total of 1.6 million premature deaths worldwide are attributed to
indoor air pollution [3]. Harm inducing health conditions such as Sick Building Syndrome
(SBS) and Building Related Illness (BRI) are proven to be the effects of unhealthy levels
of indoor air quality [4–7]. According to the US Environmental Protection Agency (EPA),
the major constituents of indoor air pollution include Particulate Matter (PM), Nitrogen
dioxide (NO2), Sulfur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon diox-
ide (CO2), and Total Volatile Organic Compounds (TVOCs) [8]. Particulate Matter (PM)
refers to a mixture of airborne particles, which are generally categorized by diameter
as PM10 (2.5 µm to 10 µm) and PM2.5 (less than 2.5 µm) [6,8,9]. Fine particles of aerosol
in the form of PM serve as means for viruses to propagate, causing various respiratory
diseases. NO2 is a reddish-brown gas that is mainly generated by vehicular traffic in
the outdoor environment, while indoors, it is caused by tobacco smoke and fuel-burning
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appliances [6,8,10,11]. The highly reactive SO2 is the most harmful gas among the family of
Sulfur oxides (SOx) [8,12,13]. The most common source of SO2 is the combustion of fossil
fuels and it results in respiratory illness and throat irritation. CO2 is mainly generated by
human-activity and incomplete combustion of organic compounds. Increasing levels of this
gaseous pollutant may cause headaches, drowsiness, and fatigue [8,14,15]. Although CO2
is not a pollutant per se, it can be used to determine ventilation rates which affect indoor
air quality. The common sources of CO, which is a toxic gaseous pollutant, are gas-type
space and water heaters, fuel-burning appliances, tobacco smoke, and vehicle emissions.
This colorless, odorless gas results in cardiovascular diseases, chest pain, nausea, fatigue,
and asthma [8,16–18]. Ground-level O3 is the product of volatile organic compounds
and nitrogen oxides reacting in the presence of ambient air and solar radiation [11,19].
The source of these reactants includes traffic emissions, electric utilities, while high amounts
of heat sources such as volcanic eruptions can act as a catalyst to expedite the reaction to
form increased amounts of O3 [8,20]. TVOC is a collection of multiple harmful organic
compounds that arises from household products, building materials, and human-activities
such as smoking and cooking. Some of the common health impacts of ground-level ozone
are pulmonary diseases, throat infection, coughing, and wheezing [4,8,21].

The air pollutants mentioned above serve as key parameters to indicate air quality,
and to ensure safe, habitable environmental conditions, they are monitored periodically.
The well-established air quality stations provide city-scale approximations of outdoor air
pollutant concentrations, while air quality monitors can be used for smaller regions to
gather data locally (both indoor and outdoor) [8,22,23]. In addition, due to a developing
semi-conductor market in recent times, multiple off-the-shelf Low-Cost Air Quality Sensors
(LCAQSs) are available, which may be used to gather reliable, real-time indoor air quality
estimations. While the traditional monitors utilizing the federal reference method (FRM)
or federal equivalent method (FEM) cost more than thousands of dollars, these low-cost
alternative sensors are priced at a few hundred dollars and offer added advantages of easier
installation and transmissions, variable time-interval recording options, and convenient
data extraction [8,24–26]. The LCAQS technology is an open platform communications
(OPC) system, which integrates electrical conductivity (EC) sensors and non-dispersive
infrared (NDIR) sensors with a metal-oxide-semiconductor (MOS) module [8,27]. A PID
(Proportional-Integral-Derivative) controller is used to control the operations of the system.
The technology is open-source in nature and can be interfaced with already existing pro-
grammable circuit boards and Internet of Things (IoT) platforms. However, to evaluate the
performance and effectiveness of LCAQS against traditional monitors, there is a lack of a
standard protocol [8,24,27]. The data collected by these LCAQS systems are subjected to
both field and laboratory testing by the AQ-SPEC governed by the EPA to ensure an accept-
able level of data accuracy and stability is met [8,26,28]. The specification sheet for these
LCAQSs lacks a calibration protocol, and the end-users depend on the factory-calibrated
settings for data monitoring. Also, inter-pollutant sensitivity leads to uncertainties in
measurements among most of the gaseous LCAQSs. Compared to the expensive air quality
monitors, the operational lifespan of existing LCQASs is shorter [23,27,29–31].

In recent years, the concept of using a single-board computer (SCB) powered LCAQS
to measure indoor air pollutants has surged. The Arduino electronic board powered
Indoor Air Quality (IAQ) monitoring system built by S. Abraham and X. Li [32] measured
pollutants such as CO2, CO, and VOCs to determine air quality. A wireless data transfer
technology was set up using a ZigBee module, and the collected data is compared against
an off-the-shelf GreyWolf monitor. Zhou et al. [33] developed a monitoring system using
Arduino Leonardo, which gathers longitudinal data of dust (PM2.5), temperature, and
humidity to alert the user towards an unhealthy air quality. The Internet of Things (IoT)
technology is utilized to transmit the measured pollutant concentrations to an online
dashboard to visualize and post-process the data. Similar to Arduino, the Raspberry Pi is
a versatile SCB which can be integrated with a wireless sensor network (WSN) to determine
air quality [34]. Studies have shown that air pollutant concentrations are measured by



Sustainability 2021, 13, 370 3 of 15

attaching multiple gas sensors to a Raspberry Pi board [34–38]. The measured data can be
visualized in real-time and also extracted remotely using a local network by the end-user.
The Open Source Building Science Sensors (OSBSS) platform developed by Akram et al.
provides a low-cost Arduino-based system for monitoring and recording long-term indoor
parameters such as light and CO2 [39]. Thomas, Alex, and Richard (2019) [40] analyzed the
calibration data of 100 air quality monitoring devices from 24 office building to measure
the accuracy of monitors using the Monte Carlo simulation. The existing LCAQS studies
primarily focus on pollutants such as PM2.5, CO2, and PM10 more frequently than CO,
Ozone, and NO2, while SO2 and TVOC are rarely encountered [8,41,42].

The aim of this paper is to present a comprehensive indoor air quality monitoring sys-
tem using a low-cost Raspberry Pi-based air quality sensor module. The proposed system
measures environmental parameters such as temperature, relative humidity, PM2.5, PM10,
NO2, SO2, CO2, CO, O3, and TVOC in real-time to determine air quality. The remainder of
this paper is structured as follows. Section 2 (materials and methods) describes the LCAQS
system with its constituent sensors. The monitoring methods and different data analysis
techniques employed are also detailed. Section 3 (results and discussions) presents a case
study where the monitored data and results are discussed. The conclusion highlights the
paper’s contributions and possible future work in Section 4.

2. Low Cost Air Quality System

The custom built LCAQS monitoring system used for this project was developed on a
Raspberry Pi 3B Plus module. This module is a low-power, compact, easily configurable
SBC which is powered by an ARM Cortex-A53 processor [43]. The Raspberry Pi module
encompasses features such as a Micro SD port for external storage access, Bluetooth, wire-
less LAN, USB ports, and GPIO pins for external communication. A nine-port expansion
board was integrated into the Raspberry Pi module. A Wi-Fi USB adapter was connected
to the Gigabit Ethernet port to establish access to the internet. In order to dissipate excess
operational heat, a dual fan and heat sink module was attached to the Raspberry Pi sys-
tem. Figure 1 shows the custom-built LCAQS monitoring system, and Figure 2 depicts a
detailed block diagram with all electrical connections. The sensors used in this study were
selected from the author’s previous publication [8] accounting for repeatability, tolerance,
and response time.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 15 
 

 

Figure 1. Custom built Low-Cost Air Quality Sensor (LCAQS) monitoring system placed inside a 

weather proof enclosure. 

 

Figure 2. Detailed block diagram of the LCAQS monitoring system. 

 

Figure 3. Geographical map of Gainesville city located in the state of Florida depicting monitoring 

locations site1(residential apartment unit) and site2 (educational office space). 

The SPEC-DGS-NO2 968-043 is a low-power IoT integrated gas sensor used to meas-

ure NO2 levels. The sensor with a circuit voltage of 3 volts is interfaced with the Raspberry 

Pi module using an UART connection. DGS-NO2-968-043, with a response time of fewer 

than 30 s and repeatability less than ±3% of the reading, can measure NO2 concentrations 

Figure 1. Custom built Low-Cost Air Quality Sensor (LCAQS) monitoring system placed inside
a weather proof enclosure.

The DHT22 sensor is utilized to measure humidity and temperature levels. The sensor
is connected to the Raspberry Pi module through a 5k pull-up resistor using I/O pins.
The measuring capacity of the sensor ranges between −40 ◦F and 176 ◦F with ±0.5 ◦F
accuracy for temperature and from 0% to 100% with ±2–5% accuracy or humidity [44].
DHT22 outputs humidity and temperature values as serial data. The SDS 011 sensor
measures particulate matter between 0.3 and 10 µm in diameter using a laser scattering
technique. The sensor with a built-in fan is interfaced with the Raspberry Pi module
using an UART (universal asynchronous receiver-transmitter) connection. SDS 011 with a
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quick response time (<10 s) can measure particulate matter concentrations between 0 and
999 µg/m3 with ±15% accuracy [45]. PM2.5 and PM10 are outputted in the form of PWM
(Pulse Width Modulation) output.
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The SPEC-DGS-NO2 968-043 is a low-power IoT integrated gas sensor used to mea-
sure NO2 levels. The sensor with a circuit voltage of 3 volts is interfaced with the Raspberry
Pi module using an UART connection. DGS-NO2-968-043, with a response time of fewer
than 30 s and repeatability less than ±3% of the reading, can measure NO2 concentrations
between 0 and 5 ppm [46]. The SPEC-DGS-SO2-968-038 is a high-performance IoT inte-
grated gas sensor used to measure SO2 levels. The sensor with a circuit voltage of 3 volts is
interfaced with the Raspberry Pi module using an UART connection. DGS-SO2 968-038
with a response time of less than 30 s and repeatability less than ±3% of the reading can
measure SO2 concentrations between 0 and 20 ppm [47]. The Senseair K30 is an OEM (origi-
nal equipment manufacturer) module which is customized as a sensor platform to measure
CO2 gas. The sensor uses the NDIR (non-dispersive infrared) technique to detect CO2
levels in a region. The module is interfaced with Raspberry Pi using an UART connection.
SenseAir K30, with a quick response time of 20 s, can measure CO2 concentrations between
0 and 5000 ppm with accuracy of ±3% of the reading [48]. The SPEC-DGS-CO 968-034 is a
lightweight IoT integrated gas sensor used to measure CO levels. The sensor with a circuit
voltage of 3.3 volts is interfaced with the Raspberry Pi module using an UART connection.
DGS-CO-968-034 with a typical response time of 15 s and repeatability less than ±3% of
the reading (or 2 ppm, whichever is greater) can measure CO concentrations between 0
and 1000 ppm [49]. The SPEC-DGS-O3-968-042 is an ultra-low power consumption IoT
integrated gas sensor used to measure O3 levels. The sensor with a circuit voltage of 3.3
volts is interfaced with the Raspberry Pi module using an UART connection. DGS-O3-968-
042 with a response time of less than 30 s and repeatability less than ±3% of the reading
can measure O3 concentrations between 0 and 5 ppm [50]. The uThing::VOC™ is an open
access USB module which utilizes the Bosch BME680 air quality sensor to detect VOCs
(volatile organic compounds) [51]. The BME680 sensor mainly detects compounds such as
ethane, ethanol, acetone, and isoprene with an accuracy of 5%. The module is integrated
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with Raspberry Pi using a simple USB connection, and the VCP (virtual communication
port) interface is utilized to export data as a CSV (comma-separated values) file. The sensor
with a response time of less than one second outputs an IAQ index between 0 and 500 based
on EPA guidelines, which corresponds to the VOC concentrations [51]. The specifications
and the market price of this LCAQS are shown in Table 1. Based on the official datasheets
and specifications, the sensor modules chosen for this LCAQS are pre-calibrated in the
factory with FRM/FEM equipment and therefore required no end-user calibration.

Table 1. Specifications of sensors used in the LCAQS system.

Measured
Parameter Example Product Manufacturer Measuring Range Accuracy

(Repeatability)
Approx. Price
(USD). 2019

RHT DHT22 Aosong Electronics 40 ◦C–80 ◦C;
0% to 100% ±0.5 ◦C; ±1% ≤$10

PM2.5/10 SDS011 Nova Fitness 0.0–999.9 µg /m3 15%; ±10 µg/m3 ≤$30

NO2 DGS-NO2 968-043 SPEC Sensors 0–10 ppm ±15% ≤$75

SO2 DGS-SO2 968-038 SPEC Sensors 0–20 ppm ±15% ≤$75

CO2 K-30 CO2Meter 0–5000 ppm ±30% ≤$80

CO DGS-CO 968-034 SPEC Sensors 0–1000 ppm ±15% ≤$75

Ozone DGS-O3 968-042 SPEC Sensors 0–5 ppm ±15% ≤$75

TVOC uThing:VOC™ Ohmetech.io 0–500 IAQ index ±15% ≤$95

3. Measurements Using LCAQS
3.1. Site-Description

The two sites (Figure 3) chosen for this experiment were a university lab building and
the living room of a two-bedroom residential apartment unit, both located in the city of
Gainesville, Florida, United States. Gainesville is an inland city located in Alachua County
of Central Florida, which experiences a humid subtropical climate all year-round. The lab
building is an educational office space with a plywood floored area of 321 sq.ft situated
at a distance of 245 ft from the nearest major road. A 1.5-ton ducted split-type indoor
air conditioning unit (Mitsubishi PEA-A18AA) provides centralized cooling for the room
while the air handling unit maintains a constant airflow rate of 235 CFM [52]. This HVAC
unit is coupled with a washable MERV-8 air filter with a PM2.5 removal efficiency of
20–35% [53]. The mechanically ventilated space has three operable windows, which are
closed at all times. Due to the COVID pandemic, the occupancy capacity is limited to
a maximum of three people at a given time. The living room is part of a standard two-
bedroom residential unit. The unit is located on the second floor of a three-story building
with a carpet floor area of 421 sq.ft. A 4-ton centralized air conditioning unit (GOODMAN
GSX13048-AWUF24051BA) provides cooling, and the air handling unit maintains a constant
airflow rate of 835 CFM [54]. This HVAC unit is coupled with a MERV-8 air filter with
a PM2.5 removal efficiency of 20–35% [53]. The mechanically ventilated space has two
operable windows, which are closed at all times. The occupancy capacity is limited to a
maximum of three people throughout the year. The distance between the two experimental
sites is 2272.30 ft. The air conditioning units at both sites continuously function throughout
the year. The experimental sites were chosen to study variations in air quality among two
similar spaces with different functional purposes.

3.2. Measuring and Sampling Methods

Two distinct time periods spanning seven days were selected to conduct the experi-
ments at the two respective locations. For the residential unit, data were collected between
8 September 2020 and 14 September 2020 while for the educational building, air quality
was monitored from 17 September 2020 to 23 September 2020. In total, the 10 air quality
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parameters measured were relative humidity, temperature, PM2.5, PM10, NO2, SO2, CO2,
CO, O3, and TVOC. In order to structure the monitoring process to limit measurement
uncertainties, the standardized EPA monitoring protocol for indoor air quality was imple-
mented [10]. The ASHRAE 62.1-2019 standard was utilized for analyzing each air pollutant
concentration [55]. In both monitoring locations, the LCAQS system was placed 3.7 feet
above floor level, 1.5 feet away from a wall, and at least a 4.8 feet distance from any corner.
Each of the two LCAQS systems deployed at both locations collects 24-h continuous data
in intervals of 10-min for all of the pollutants mentioned [10,27,56,57].
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3.3. Data Analysis

The data measured by the LCQAS systems are extracted and subjected to statistical
analyses to understand the effects of indoor pollutant concentrations on air quality. Python
(version 3.6.12) language was used to conduct descriptive analysis to determine statistical
parameters such as mean, standard deviation, and variance. A quantile-quantile (Q-Q) plot
was produced in Python to study the distribution pattern of the data set. Correlation studies
were carried out in RStudio software (version 1.3.1093) to study the inter-dependency and
influence of one pollutant on another. The monotonic relationship between pollutants was
determined using Spearman rank-order correlation. The Spearman correlation coefficient
ranging between −1 and 1 was utilized to establish a degree of correlation within pollutants,
while a minimum sensitivity of <0.05 was considered significant [58–60].

4. Results and Discussion

The custom-built LCAQS system was deployed in two locations, namely: site 1
(a living room within a residential apartment unit) and site 2 (an educational office space).
The system successfully gathered concurrent data from all of the individual sensor modules
without hindrance at both respective locations. The values of monitored pollutants were
extracted from the LCAQS system and transferred to an external computer without data
attenuation.

Table 2 shows the monitored average environmental parameters along with its stan-
dard deviation, minimum, and maximum levels. Site 1 has a mean temperature and
humidity of 80.5 ◦F and 45.5%, while site 2 has a relatively lower mean temperature of
75.5 ◦F and a higher mean humidity of 70.4%. The PM2.5 and PM10 concentrations for site
one range between 0.20 and 50.5 µg/m3 and 0.20 and 80.9 µg/m3 while recording mean
values of 8.53 and 10.2 µg/m3, respectively. The average PM2.5 and PM10 concentrations
for site 2 are comparatively lower at 2.33 and 2.43 µg/m3. The mean NO2 concentration for
site 2 at 60.3 ppb is relatively higher than that of site 1 at 41.8 ppb, and the corresponding
standard deviation follows a similar trend at 2.02 for site 1 and 6.94 for site 2. Site 1 has a
mean SO2 value of 39.9 ppb, while site 2 has a relatively lower value of 29.6 ppb. The mini-
mum CO2 concentration of 761 ppm recorded at site 1 is greater than the maximum value
of 522 ppm registered at site 2. Similarly, the mean concentration of 2195 ppm at site 1
is significantly higher than the mean value of 432 ppm at site 2. Since the collected CO
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data for site 2 was mostly negligible in value, it was deemed as statistically insignificant
for this study. For site 1, the average CO concentration is 1.05 ppb, and the maximum
value recorded is 2.12 ppb. The mean ozone level for site 1 at 12.1 ppb is over five times
greater than the mean concentration of 2.37 ppb registered at site 2. The recorded TVOC
values were measured against the IAQ index scale ranging from 0 to 500. Site 1 has an
average TVOC level of 139.2, and site 2 has a value of 121 while the maximum value for
both sites is 250.

Table 2. Descriptive statistics of indoor environmental parameters measured at site 1 and site 2.

Site 1 Site 2

Environmental Parameters Average ± SD Min Max Median Average ± SD Min Max Median

PM2.5 (µg/m3) 8.53 ± 11.9 0.20 50.5 3.60 2.33 ± 2.74 0.00 13.8 1.20
PM10 (µg/m3) 10.2 ± 16.1 0.20 80.9 3.90 2.43 ± 2.84 0.00 14.3 1.30

NO2 (ppb) 41.8 ± 2.02 34.1 53.5 41.8 60.3 ± 6.94 43.8 132 62.1
SO2 (ppb) 39.9 ± 20.7 0.01 161 37.6 29.6 ± 23.0 4.79 114 22.6

CO2 (ppm) 2195 ± 479 761 3039 2270 432 ± 34.6 384 522 424
CO (ppb) 1.05 ± 0.45 0.00 2.12 1.06 N/A N/A N/A N/A

Ozone (ppb) 12.1 ± 1.84 9.10 19.1 11.9 2.37 ± 2.92 0.00 23.7 1.65
TVOC 139.2 ± 68.2 23.0 250 146 121 ± 67.1 25 250 123

Temp. (◦F) 80.5 ± 0.73 76.6 81.7 80.7 75.5 ± 1.20 72.3 78.8 75.1
Humidity (%) 45.5 ± 1.61 44.3 62.8 54.5 70.4 ± 3.28 59.7 81.1 71.5

The PM2.5 and PM10 concentrations follow a similar pattern for both site 1 and site 2
as plotted in Figure 4c,d. For the first three days, distinctive peaks varying in amplitudes
are visible around midday for the particulate matter at Sites 1 and 2. The crests with
higher values at site 1 can be attributed to scheduled cooking activities when compared to
relatively shorter peaks at site 2, which may be due to increased human activity during
lunch breaks and increased nearby vehicular traffic. These peaks can be compared against
the ASHRAE 62.1-2019 standard for the particulate matter, which is 35 µg/m3 (24 h)
for PM2.5 and 150 µg/m3 (24 h) for PM10. Some of the data points for PM2.5 exceed
the ASHRAE 62.1-2019 [55] standard during mid-day, while PM10 exclusively lies below
the standard. On the latter half of the fifth day, a spike is detected starting in the late
evening. This anomaly might be due to an organized house event containing three people,
subsequently leading to increased house activity. This event can also be viewed in terms
of increased pollutant concentrations simultaneously across PM10, CO2, SO2, and TVOC.
From Figure 4e, the NO2 concentrations for site 1 show a significantly stable pattern across
the seven-day monitoring period. The potential reason for this trend could be the lack
of NO2 emitting sources. The recurring smooth crests for site 2 can be attributed to a
gradual increase in traffic-related pollution over the course of the day peaking at midday.
The ASHRAE 62.1-2019 standard for NO2 is 100 ppb (1 h), and at both sites the NO2
levels recorded are below this standard. The SO2 concentrations follow a relatively similar
trend for both site 1 and site 2, as plotted in Figure 4f. The ASHRAE 62.1-2019 standard
for SO2 is 75 ppb (1 h), and at both sites, some data points recorded oscillate above this
standard. The CO2 concentrations for site 2 show a significantly low value exhibiting a
stable pattern across the span of seven-days, as viewed in Figure 4g. The potential reason
for this trend could be because of increased sedentary human behavior within the office
space. The ASHRAE 62.1-2019 standard for CO2 is 1000 ppm (24 h), and at site 2, the CO2
levels registered are below this standard. Most of the data points are above the standard for
Site 1, which might be due to factors such as CO2 exhalation from increased people count,
cooking, and emissions from household cleaning products. The CO concentrations detected
in site 1 portray a relatively low value when compared to the ASHRAE 62.1-2019 standard
for CO, which is 9 ppm (8 h). Figure 4i shows O3 concentrations where site 1 displays a
significantly stable pattern across the entirety of the study period. The possible reason
for this trend could be a lack of nearby vehicular-emissions, which is a primary source of
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ground-level O3. The repeating low-amplitude smooth peaks for site 2 can be attributed
to locational proximity to traffic-related pollution over the course of the day. Both sites
recorded O3 levels below the ASHRAE 62.1-2019 standard of 70 ppb (8 h). The measured
TVOC data is mapped onto the IAQ index scale, which classifies air quality on a scale
of 0 to 500 as: good (0–50), average (51–100), little bad (101–150), bad (151–200), worse
(201–300), and very bad (301–500) [51,61]. As depicted in Figure 4j, the data oscillates,
leaving only a few observation points below the acceptable good standard, and some
even exceed the worse standard line. Both sites display TVOC concentrations that peak at
varying amplitudes throughout the study period around midday. The only exception is day
five at site 2 where the decline in TVOC levels can be attributed to the absence of occupants.
This decline in concentration is also simultaneously seen in PM2.5, PM10, and O3.
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Figure 4. Seven-day evaluation of indoor environmental parameters monitored at 10-minute intervals (144 observational points a day
equating to 1008): (a) temperature, (b) relative humidity, (c) PM2.5, (d) PM10, (e) NO2, (f) SO2, (g) CO2, (h) CO, (i) O3, (j) TVOC.

Quantile-Quantile (Q-Q) plots [62,63] are used to characterize the distribution of
measured values at Site 1 and 2. Based on the spread of observational points, the type
of distribution can be determined by visually characterizing the data sets with respect
to the identity line. If most of the measured points are concentrated along the identity
line sharing a similar slope, then the data are normally distributed while a deviation
above (high-bias) or below (low-bias) the identity line indicates a skewed distribution.
From Figure 5, the PM2.5 and PM10 data are normally distributed with limited deviation
from the identity line for low to medium concentrations and exhibit a low-bias towards
higher concentrations. For NO2, the observational points are concentrated towards the
low and medium spectrum of the data range, while a few points exist away from the
distribution for higher concentrations. The slope of TVOC distribution is the most identical
to that of the identity line, thereby displaying a high degree of normal distribution while
indicating a high closeness in trend between Site 1 and 2. Pollutants such as SO2 and CO2
depict a substantial positive and negative deviation respectively across medium and higher
concentrations resulting in a skewed distribution. From lower to medium pollutant levels,
O3 has a relatively normal distribution. At higher concentrations, the plot shows a greater
positive deviation from the identity line.
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The Spearman rank-order analysis was used to estimate the strength of the correlation
between two measured parameters by assigning a ranked value (R) between −1 and
1 [58,59,64]. According to Figure 6, site 2 exhibits a relatively stronger correlation among
environmental parameters compared to site 1. Site 1 shows that SO2 has a strong correlation
with PM2.5 (R = 0.9) and PM10 (R = 0.83). This trend can also be found at site 2 among
PM2.5 (R = 0.92) and PM10 (R = 0.9). This can be attributed to cooking activities in site 1 and
vehicular pollution at site 2, which both contribute to increasing levels of SO2, PM2.5, and
PM10 [17,65,66]. Both sites 1 and 2 have the same degree of negative correlation between
O3 and humidity (R = −0.78). The higher O3 concentrations can be due to increased
solar irradiation corresponding to low relative humidity-high temperature surroundings.
The temperature values recorded at site 2 shows strong correlations with O3 (R = 0.78),
SO2 (R = 0.8), PM2.5 (R = 0.88), and PM10 (R = 0.9). An increase in temperature results
in dry air, which might aggregate higher concentrations of PM2.5, and PM10 in a city
environment. The relationship between temperature and O3, SO2, and PM2.5 is similar with
the results observed by Mahmoud while exhibiting stronger degrees of correlation [67].
O3 has a strong correlation with PM2.5 (R = 0.8) and PM10 (R = 0.82) at site 2. There is
a moderate correlation between temperature and TVOC (R = −0.65) at site 1. Similarly,
temperature and TVOC share a moderate correlation (R = −0.72) at site 2. The similar
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negative correlation between TVOC and temperature within an office space was observed
by Otolorin et al. [68]. Site 1 displays a moderate correlation between humidity and SO2
(R= −0.62), while site 2 exhibits a comparatively stronger correlation (R= −0.8). SO2 has
the tendency to react with water vapor present in building walls and furniture, which may
lead to decreasing concentrations of SO2 as the humidity increases [12,13,20]. There is a
moderate correlation (R = 0.58) between humidity and CO2 at site 1 and a strong correlation
(R = 0.78) at site 2. Site 1 has a low correlation between NO2 and CO2 (R = 0.47), while site
2 exhibits a relatively stronger correlation (R = 0.77). This might be due to human activities
in site 1 and traffic-related pollution at site 2. This correlation between NO2 and CO2 is
consistent with the study performed by S.H. Hwang [69]. There is a strong correlation at
site 2 between humidity and NO2 (R = 0.98) and a relatively weaker correlation at site 1
(R = 0.45). At site 1 there is a moderate correlation between CO2 and O3 (R = −0.5) while
site 2 displays a stronger correlation (R = −0.9) and this may be because of insufficient
ventilation [6,15,70]. Site 2 registered a moderate correlation between humidity and TVOC
(R = 0.72). The NO2 values of site 2 show a moderate correlation with TVOC (R = 0.73) and
have a relatively stronger correlation with humidity (R = 0.98). This may be attributed to
the presence of high-emitting building materials and fuel-burning household appliances at
the residential unit [17,20,66].
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5. Conclusions

In this paper, a comprehensive environmental monitoring system is presented which
detects most of the critical indoor air pollutants. Multiple independent sensors were
selected accounting for repeatability, tolerance, and response time. These individual sen-
sor modules were integrated onto a Python-powered Raspberry Pi platform to form a
single LCAQS system to measure, analyze, and determine indoor air quality. The multi-
sensor module recorded environmental parameters such as temperature, relative humidity,
PM2.5, PM10, NO2, SO2, CO2, CO, O3, and TVOC in real-time at regular 10-min intervals.
The logged data was extracted from the LCAQS system and transferred to a computer
using an open-source network file transfer application, PuTTY.

It was observed that both PM2.5 and PM10 concentrations were significantly higher
in the residential apartment unit (site 1) than at the office space (site 2) while the former
recorded maximum values of 50.5 and 80.9µg/m3, respectively. Sites 1 and 2 registered
to mean NO2 levels of 41.8 and 60.3 ppb, respectively, while site 2 displayed a wider
range of observed data between 43.8 and 132 ppb. The highest difference in concentration
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levels was observed with CO2, as site 1 (2195 ppm) exhibited CO2 values that were
more than five times greater than those of site 2 (432 ppm). Although both sites 1 and 2
displayed comparatively close levels of SO2 at 39.9 and 29.6 ppb, respectively, the maximum
concentration was observed at site 1 at 161 ppb. The mean O3 concentration recorded at site
1 at 12.1 ppb was significantly higher compared to site 2 at 2.37 ppb. Both sites registered
the same maximum TVOC value of 250, while site 1 displayed a slightly higher average
value of 139.2 to that of site 2 at 121.

Spearman rank-order analysis indicates that PM2.5, and PM10 has a strong correlation
with SO2 at both site 1 and site 2. The potential reason for this can be cooking activities
in site 1 and vehicular pollution at site 2, which both contribute to increasing levels of
PM2.5, PM10, and SO2. O3 concentrations at site 2 exhibit a strong correlation with PM2.5
and PM10. NO2 and CO2 show a relatively stronger correlation at site 1 when compared
to site 2, and this might be due to human activities in site 1 and combustion-related
pollution at site 2. Similarly, NO2 and TVOC display moderate correlation at site 2. There
is a moderate correlation between CO2 and O3 at site 1, while site 2 shows a relatively
stronger correlation, and this might be due to insufficient ventilation. The possible effect of
an increased number of human occupants on environmental pollutants can be witnessed at
site 2, which displays strong temperature and humidity correlation with O3, SO2, PM2.5,
and PM10 when compared to site 1.

The constituent sensors of the custom-built LCAQS system utilized in this study rely
on factory calibration. It is a challenge to individually calibrate all the sensors owing
to limited availability and high cost of calibration equipment in the market for certain
pollutants. Owing to the latter, limited efforts have been taken to validate the obtained
results with a reference monitor. For future studies, sensor parameters such as such as
precision, short and long term drift, and power supply effect can be tested by devising
operational rigidity experiments on the sensors to ensure the accuracy of obtained results.
Furthermore, the correlation values derived in this paper may need to be examined further
to arrive at a conclusive inference. This can be achieved by monitoring air quality for
longer periods across different locational settings accounting for varied surrounding-
related influences. Moreover, Principal Component Analysis (PCA) can be undertaken to
reduce the multicollinearity of measured parameters. Also, mixed-effect linear regression
models are suggested to better study the association between indoor air pollutants and
building characteristics.
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