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Abstract: One way cities are looking to promote bicycling is by providing publicly or privately
operated bike-share services, which enable individuals to rent bicycles for one-way trips. Although
many studies have examined the use of bike-share services, little is known about how these services
influence individual-level travel behavior more generally. In this study, we examine the behavior
of users and non-users of a dockless, electric-assisted bike-share service in the Sacramento region
of California. This service, operated by Jump until suspended due to the coronavirus pandemic,
was one of the largest of its kind in the U.S., and spanned three California cities: Sacramento, West
Sacramento, and Davis. We combine data from a repeat cross-sectional before-and-after survey
of residents and a longitudinal panel survey of bike-share users with the goal of examining how
the service influenced individual-level bicycling and driving. Results from multilevel regression
models suggest that the effect of bike-share on average bicycling and driving at the population level
is likely small. However, our results indicate that people who have used-bike share are likely to have
increased their bicycling because of bike-share.

Keywords: bike-share; bicycling; before-and-after; travel behavior; vehicle miles traveled; multi-
level model

1. Introduction

By providing a wider array of transportation options such as bike-share services, cities
hope to reduce their dependence on private vehicles and in turn reduce the externalities
associated with them. Innovative micromobility services such as shared electric-assisted
bicycles (e-bikes) and e-scooters, with improved origin–destination convenience stemming
from dockless parking have spread rapidly. Cities across the globe are attempting to
leverage micromobility services to improve transportation sustainability. However, while
the industry has demonstrated record growth rates (e.g., 260-fold increase from 2010 to
2018 in the U.S. [1]), the ability for cities to leverage this growth to serve their goals remains
to be seen.

One of the first major challenges cities face in considering whether to authorize
micromobility services is to estimate the potential demand for such services in their city.
It is clear that micromobility services have substantial potential, with an estimated 84
million trips in the U.S. in 2018 [1], but adoption rates at the city level are difficult to
measure. In addition, it is unclear how many users (and how much frequency of use)
are needed to achieve substantial improvements in transportation sustainability. Surveys
of micromobility users indicate that young men are the most prevalent user group [2–4].
Although the percent of women using e-scooters is relatively greater than for bike share,
the gender gap for micromobility services is persistently as large as that of bicycling more
generally [2,5,6]. In addition to the gender gap, people with lower incomes and people
identifying with races and ethnicities other than white use micromobility services to lesser
degrees [7], although the lack of representativeness of survey data leaves some doubt as to
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the accuracy of published percentages. Even if the lack of diversity in micromobility use is
partially overstated, it still likely poses a barrier to wider adoption and to achieving the
goal set by many cities of improving transportation equity.

Understanding the direct effects of micromobility services on current travel decisions
is another important step for justifying investment in these services. Considering that
reducing car distance traveled is one of the primary ways to increase the sustainability of
transportation systems, planners and policy makers need estimates of how effective micro-
mobility services are at reducing car use and increasing bicycling. Evidence from docked
bike-share services indicate that most trips substitute for other sustainable modes such as
walking and transit [7]. While even small amounts of car substitution can substantially
reduce car travel for large bike-share systems, the process of rebalancing bikes by trucking
them around the city can off-set many of those miles [8]. Many studies of the effect of
bike-share on travel behavior were conducted prior to the rise of ridehailing services (e.g.,
Uber, DiDi). More recent studies have shown that many bike-share and e-scooter share
trips substitute for ride-hail trips in addition to personal vehicle trips, suggesting that
more recent dockless services may improve sustainability more than earlier systems [9].
However, net sustainability effects are still hampered by the use of conventional vans and
trucks for rebalancing [8,10]. Additionally, the sustainability benefits of bike-share are still
likely to be small as long as the many barriers to widespread adoption still exist [11]. Most
importantly, limited bike availability—dictated by fleet size, service boundaries, station
locations, and rebalancing operations—and a lack of safe bicycling environments are still
strong barriers to adoption that are costly to overcome [11].

Beyond the role of micromobility services in reducing car use, some services have been
shown to have other positive effects on travel behavior. For example, the implementation
of bike-share services has consistently been associated with increased bicycling rates across
many cities and countries [12], leading to rising physical activity levels and improvements
in public health for adopters. Micromobility services have a more uncertain relationship
with transit use, however. While mode substitution data are readily gained from travel
surveys, valid data on the use of bike-share to connect to transit have proved difficult
to collect. Results seem to suggest that in cities with high quality transit, micromobility
services can compete with transit [12]. At the same time, in some cases aggregate bike-share
trips have been associated with increased transit use [13]. In cases where bike-share services
are designed specifically to connect to transit, transit connections can be substantial (e.g.,
5.3 million bike-share trips connecting to transit in the Netherlands in 2019 [14]).

While mounting evidence suggests that micromobility services (especially bike-share)
largely increase the sustainability of users’ travel when using the service, less is known
about how micromobility services change travel behavior when not using the service
and how substantial those changes are at the population level. Using the case of the
micromobility service in the Sacramento region, we focus on two analyses that fill these
research gaps. First, we examine who uses the service and compare their characteristics
to a stratified random sample of non-users and to the population at large. Second, we
estimate the effects of the emergence of the dockless electric bike-share on four behavioral
variables: bicycling in the past week, general bicycling frequency, personal weekly vehicle
miles traveled, and household vehicle miles traveled. While micromobility services can
influence travel behavior in many ways, we focus on bicycling because bike-share can
both encourage more bicycling as well as replace it, and we focus on driving because
evidence for bike-share’s role in reducing driving is important for gauging the potential
for bike-share to improve transportation sustainability. Notably, we do not cover the
connection between bike-share and transit because we plan to analyze that phenomenon in
a separate publication.
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2. Materials and Methods
2.1. Sacramento Context

This study examines the use of the Jump-operated electric-assist bike-share service in
the Sacramento, CA region, including the entire city of Davis, most of West Sacramento,
and the downtown and adjacent-to-downtown neighborhoods of Sacramento. The service
extends over an area of approximately 50 square miles, though the service areas are not
all contiguous; Davis, in particular, is separated from West Sacramento by about 10 miles.
While Davis has a rich history of bicycling [15], West Sacramento and Sacramento have not
historically catered to bicyclists. However, recent investments in bicycling infrastructure
in downtown Sacramento and in parts of West Sacramento have indicated a shift in the
priority given to bicycling as a mode of travel in those cities. The flat topography in this
area increases the feasibility of bicycling, but hot summer and wet winter weather can be
a deterrent.

The Jump service was launched in the summer of 2018 with approximately 900 electric-
assist bicycles (e-bikes) as of November 2018. By May 2019, the number of e-bikes increased
to closer to 1000 and 100 e-scooters were also available in Sacramento and West Sacramento
but not Davis. The service was discontinued in March 2020 due to the COVID-19 pandemic.
Because the service was predominantly e-bikes (and not e-scooters) and because we have
collected a much richer set of data about e-bike use, we refer to the service as the bike-share
service and specifically call attention to e-scooter results when relevant. The Jump service
was dockless, meaning the vehicles were locked to themselves rather than to a designated
“dock” and could theoretically be parked anywhere. Although the service was technically
dockless, Jump installed a limited number of docks in the region (including a few charging
stations) to provide locations for rebalancing bikes, and users were sometimes incentivized
to return bikes to the docks. In all three cities, policy dictated that e-bikes and e-scooters
should be parked adjacent to (but not necessarily locked to) public bike racks. However,
enforcement was limited during the study period, meaning that in many cases people
parked the e-bikes and e-scooters in places other than bike racks, as was the case in most
early dockless services across the U.S.

2.2. Survey Data
2.2.1. Household Survey

We implemented a “before” survey of households in April 2016 using a stratified ran-
dom sampling mail-to-web approach. The initial sample for the “before” survey included
5000 addresses in Davis, 2000 addresses in West Sacramento, 5000 address in downtown
Sacramento, and 2000 addresses in the South Natomas neighborhood of Sacramento, all
randomly selected from county databases. We compared the respondents from South
Natomas, which lies outside of the service area, to respondents from the other areas to
examine differences in observed changes given differences in access to the bike-share
service from home. Although we refer to these residents as a control group, they are not a
true control group in that they could certainly use the bike-share service (and some did),
and all of them could have seen the bikes, either parked or in use, when they traveled
into the service area. In the “before” survey (May 2016) we over sampled Davis for a
concurrent research project specific to Davis (see Table 1); these respondents completed an
additional set of questions not asked of the Sacramento and West Sacramento respondents.
In the “after” survey (May 2019), we used approximate response rates from the “before”
survey to get a more balanced (by population size) sample by neighborhood of 11,000 new
addresses. This resulted in the random selection of 1034 address in Davis, 2584 addresses
in West Sacramento, 4429 addresses in downtown Sacramento, and 2953 addresses in South
Natomas (Figure 1). After accounting for undeliverable addresses, we achieved response
rates of 14% and 10% in the “before” and “after” surveys, respectively. The larger “before”
response rate was due to the oversample of Davis residents (where the response rate was
much higher, at approximately 20%).
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Questions in both online surveys asked about access to and use of different transporta-
tion modes, attitudes towards bicycling and other aspects of transportation, experience
with bike-share services in other regions, and socio-demographic characteristics including
income and race/ethnicity. The “after” survey was expanded to include questions about
awareness and use of the bike-share service in the Sacramento region (see Fitch et al. [16]
for further details about the survey).
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Figure 1. Household survey respondents’ home, work, and school locations from both survey from both survey waves combined.

2.2.2. User Survey

We used a two-wave longitudinal survey of bike-share service users to measure the
impact of the service on a user’s travel behavior, as well as attitudes and perceptions. The
first wave survey was implemented in October 2018 and captured user behavior after only
4–5 months of service operation. The second wave survey occurred in May 2019 (nearly
one year following bike share launch) and included a follow up with the initial first wave
user sample and a new sample of users. We made only slight changes to the content of the
second wave survey where necessary (e.g., to include e-scooter-focused questions).

Recruitment for these surveys included the following techniques: (1) intercepting
users at key locations throughout the study area on foot, (2) taping fliers with the URL and
QR code to the survey to bike seats, and (3) for the first wave recruitment only, Facebook
advertisements run by Jump on our behalf (targeted by zip code). We based our field
recruitment strategy (involving the first two techniques) on the goal of maximizing the
number of users intercepted while at the same time attempting to recruit users across
all city geographies and times of day (except for night-time) to ensure that the sample
included people using the service in a variety of different ways. Sample characteristics are
shown in Table 1 and approximate location data shown in Figure 2.
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Table 1. Sample Characteristics.

Variable Household
Survey

Bike-Share User
Survey

Population for
Household

Survey Area 1

Population for
Bike-Share

Service Area 2

Sample Size
Before 1959 434 (wave 1)
After 988 269 + 140 panel (wave 2)

Response Rate Before 14% NA
After 10% NA

User Status
(Household
Survey
wave 2)

Davis 3%

West Sacramento 13%

Sacramento 13%

Student 12% 25% 34% 33%

Races

White 74% 65% 48% 49%
Black 4% 4% 6% 7%
Hispanic 10% 13% 24% 21%
Asian 12% 18% 14% 17%

Age (Mean) 47 years 35 years

Gender Women 55% 54%

Household
Income

Less than 50,000 16% 10% 45% 40%
50,001 to 100,000 28% 26% 26% 29%
100,001 to 200,000 43% 46% 21% 23%
More than 200,000 13% 18% 8% 8%

Annual Household Vehicle Miles
Traveled (VMT)

(Median) 12,000 miles 11,000 miles
(Std. Deviation) 19,841 miles 16,666 miles

1 5-year American Community Survey estimates from block groups in the household survey mail recruitment area. 2 5-year American
Community Survey estimates from block groups in the bike-share service area.
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2.3. Analysis

We separate our analysis into two components, one for each of the research gaps we
identified in the Introduction.
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Analysis 1: How prevalent is bike-share use? And who uses bike-share?
We use descriptive statistics of the household survey data to understand the rate of

adoption and who is using bike-share. We discuss the descriptive statistics in the context
of the sampling strategy and census data to ascertain the generalizability of the results.

Analysis 2: How has bike-share influenced bicycling and driving?
To estimate the effect bike-share has had on bicycling and driving, we pool the house-

hold and user survey data. We then model bicycling and driving as a function of a series
of variables thought to influence those behaviors while focusing on the primary before-
and-after effect of bike-share availability (see Table 2 for dependent variable summaries
and regression model details). We consider two bicycling outcomes, days bicycled in the
last seven days and general bicycling frequency, and two driving outcomes, weekly individual
(respondent) vehicle miles traveled (VMT) and annual household VMT. We estimate each model
using a Bayesian framework with the R statistical package brms [17], which interfaces with
the statistical platform Stan [18]. Because we sampled residents by four neighborhoods
(Davis, West Sacramento, Sacramento, and Natomas), we included neighborhood as a
grouping variable making our models multi-level (see Appendix A for modeling details).
For model inferences we use in-sample model predictions of bicycling and driving, and
provide model parameter summaries in Appendix B.

2.4. Limitations

Several limitations of this study should be noted. As with all surveys, the repre-
sentativeness of the sample is a concern. Most importantly, we oversampled the Davis
population in the “before” household survey for a concurrent project, and this may have
important ramifications on inferences even considering that we use multilevel models to
account for the city-level grouping of our sample. The techniques used to recruit respon-
dents for the user survey may have produced a biased sample. For example, we may have
over sampled bike-share commuters as they were easier to intercept because of predictable
travel patterns. The time lapse between the “before” household survey in 2016 and the
“after” survey in 2019 was longer than intended, given a delay in the implementation of
the bike-share service in the Sacramento region beyond the originally anticipated date.
This time lapse increases the possibility that factors other than the implementation of the
bike-share service affected travel behavior, though the use of a geographic “control” group
helps to correct for any such effects.

Two important omissions in the survey were discovered after data collection. First,
we failed to track (due to a coding error) the wave 2 user respondents who were recruited
through the mail from the household survey. Since we encouraged people in the “after”
household recruitment to take the user survey in lieu of the household survey if they
had used bike-share in the region, we may have slightly biased the bike-share effects in
the household survey by reducing the sample of those most impacted by the bike-share.
Although this is a concern, we suspect only a small number of respondents followed
our suggestion. Using data from URL clicks from a URL shortening service (bit.ly), total
responses from the “before” household recruitment, and URL clicks from the wave 2 user
survey, we estimate that approximately 63 bike-share survey responses in wave 2 were
respondents recruited through the household survey.

We estimate 63 responses as an average of two estimation methods. In the first method,
the response rate in the wave 1 bike-share survey is 60% of those who arrived at the opening
survey webpage. Since 108 household respondents said “yes” to having used bike-share
and did not continue with the rest of the survey, we assume those respondents followed
our suggestion for them to take the bike-share survey. If we assume a 60% response rate
for those 108, we get an estimate of 64 responses. In the second method, we calculated the
total number of wave 2 bike-share survey responses that were not from panel members
and not taken on a smartphone (via a QR code); this number was 205. Since 239 people
arrived on the opening survey page from the bit.ly shortened URL link, applying the same
60% response rate leaves 143 estimated responses. If we subtract 143 from 205, we get an
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estimate of 62 responses that are unaccounted for from the field recruitment. We averaged
64 and 62 to arrive at an estimate of 63 responses.

Table 2. Behavioral response variables and models.

Dependent Variable Dependent Variable
Histograms Model Form 1 Predictor Variables

(For All Models)

Days bicycled in the last
7 days
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Because we do not know which of the respondents are those recruited through the
household survey, we cannot know how this problem alters inferences from the before-
and-after analysis, but it likely results in a toward-zero bias in the effects of bike-share on
bicycling and an away-from zero bias in the effects of bike-share on driving. Second, we
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collected data on having ever used the service in the household survey but neglected to
collect bike-share trip frequency. This makes it impossible to know if household survey
respondents who used bike-share differed from respondents to the user survey with respect
to frequency of use of the system.

3. Results
3.1. Bike-Share Adoption and Comparison of Users and Non-Users

The bike-share service adoption rate (those who have used the service, including
scooters as well as bikes) from the second wave of the household survey is higher in
Sacramento (13% of respondents) and West Sacramento (13%) than in Davis (3%). Although
estimating adoption of e-scooters is more uncertain given the smaller sample size of the
“after” survey, 74% of respondents report having used only e-bikes, 25% of respondents
report having used both the e-bikes and e-scooters, and the remaining 1% report having
only used e-scooters.

The socio-demographics of the service users generally align with the non-users with
respect to incomes, race, and gender, according to the “after” household survey (Table 3).
The exception is that users tend to fall into the middle-income categories, and in Davis
the percent of the users that identify as Asian is much larger than for non-users. Age and
student status are more clearly different between users and non-users; service users have
an average age more than 10 years younger than the non-users and are twice as likely to be
students as the non-users, although the student effect is reversed in Davis (a finding to be
discussed further below).

3.2. Bicycling Before-and-After Bike-Share

Summary statistics suggest that several changes may have occurred in bicycling
behavior in the three years between the two household surveys. The self-reported number
of days bicycled in the last 7 days using either a privately-owned bicycle or the bike-share
service dropped from 1.7 days to 1.1 days between 2016 and 2019. However, the household
respondents who reported having used the bike-share service rode a bike on 1.9 days on
average in 2019, which is 84% greater than the overall average in 2019.

The daily bicycling of all user survey respondents is higher than for the household
survey respondents who reported using bike-share: 2.8 days on average in the past 7 days.
The greater bicycling rate of the user survey respondents, in comparison to the users from
the household survey, suggests their responses likely over-estimate the bicycling of the
general population of bike-share users. With that caveat, the distribution of bike-share use
according to the user survey is heavily skewed: the median frequency of bike-share use
in the past 28 days is 5 trips, the mean is 12.3 trips, and the maximum is 218 trips. The
skew in individual-level bike-share frequency indicates that a small group of bike-share
users behave very differently than most users. Given the recruitment methods for the two
surveys, it is not surprising that we were more likely to capture high frequency users in the
user survey than in the household survey.

While these differences in bicycling before-and-after bike-share are notable, they are
unadjusted for a variety of factors other than bike-share that could have caused them, and
unadjusted for the differences in the before and after samples. Multilevel models that adjust
for a series of factors (see Table 2) indicate that differences in bicycling before-and-after
bike-share are likely to be small and in many cases the direction of difference is uncertain
(see Figures 3 and 4). After bike-share, the frequency of bicycling in general (i.e., not just
bike-share) in Davis, Sacramento, and West Sacramento slightly declines (Figure 3), but
that decline is not estimated to be greater than 1 day per week on average in any of the
cities (Figure 4). The Natomas neighborhood (the sample for which includes user survey
respondents living in other neighborhoods outside of the bike-share service area) is the
only area where bicycling is not likely to have decreased after bike-share according to
the models.
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To better understand the effect of bike-share on bicycling, we also use the same mod-
els to predict differences by groups of respondents (Figures 5 and 6). The predictions in
Figure 5 indicate that people who have used bike-share ride a bike at much greater frequen-
cies than those who have never used bike-share. These differences are similar between the
household and user survey respondents, though user survey respondents bicycle at greater
frequencies. The adjusted positive association of using bike-share and general bicycling
is roughly eight times stronger than the negative before-and-after association between
bike-share implementation and population-level bicycling.

These differences in bicycling are also seen in the model predictions of days bicycled in
the past 7 days (Figure 6) where bike-share users are predicted to ride a bike approximately
twice as many days per week compared to their neighbors who have never used bike-share.
Like the effects on general bicycling frequency, using bike-share has a much stronger
positive association with days bicycled (Figure 6) than the negative association with bike-
share implementation on days bicycled for the general population (Figure 4).

Table 3. Sample characteristics of the “after” household survey by city and bike-share use.

Variable Davis West
Sacramento

Sacramento
(Downtown)

Natomas
(Control)

Student
Users 0% 14% 5% 14%
Non-users 20% 6% 7% 8%

Races

White
Users 60% 74% 75% 50%
Non-users 73% 75% 79% 62%

Black
Users 0% 0% 5% 13%
Non-users 1% 4% 2% 14%

Hispanic Users 0% 26% 10% 37%
Non-users 11% 13% 10% 13%

Asian
Users 40% 0% 10% 0%
Non-users 15% 8% 9% 11%

Age (years) (Mean)
Users 45 42 41 34
Non-users 49 52 52 50

Gender Women
Users 50% 38% 51% 43%
Non-users 53% 56% 56% 56%

Household
Income 1

Less than 50,000
Users 0% 14% 4% 0%
Non-users 3% 16% 9% 11%

50,001 to
100,000

Users 50% 14% 22% 75%
Non-users 24% 35% 27% 34%

100,001 to
200,000

Users 50% 71% 61% 25%
Non-users 46% 35% 52% 44%

More than
200,000

Users 0% 0% 13% 0%
Non-users 27% 14% 12% 11%

Annual
Household
Vehicle Miles
Traveled (VMT)

(Median)
Users 12,000 16,500 10,000 12,000
Non-users 10,000 13,250 10,000 16,000

(Std. Deviation)
Users 6569 9942 19,126 9973
Non-users 11,998 17,809 14,211 21,958

1 Percentages are column-wise proportions of the factor category by users and non-users separately. This means user and non-user
percentages can be compared within the city for each factor level.
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3.3. Driving Before-and-After Bike-Share

After pooling the household and user survey data, simple before-and-after measure-
ments of self-reported personal weekly VMT show an increase (median increased by
10 miles) while annual household VMT shows a decrease (median decreased by 1000 miles).
However, inter-person (or household) variation in VMT is large (standard deviations of
121 miles for personal weekly VMT and 10,600 miles for annual household VMT). City
level variation in VMT is also large with Davis and Sacramento residents reporting less
VMT than residents from West Sacramento and Natomas.

Model predictions of VMT, however, show that on average bike-share had a negligible
effect on resident VMT across all neighborhoods (Figures 7 and 8). Residents of Sacra-
mento are the only group with predicted VMT lower after bike-share, but only for annual
household VMT (not personal weekly VMT) and it is of a small magnitude (Figure 8). The
models similarly predict little difference in respondent weekly VMT and annual household
VMT for bike-share users and non-users (Figures 9 and 10). In general, the precision of
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each prediction reflects the sample size of the group, with large group sizes showing much
less uncertainty in mean VMT compared to smaller groups (e.g., household recruited
bike-share users).
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While our models predict negligible association between bike-share use and annual
household VMT, in some cases substantial differences in personal VMT are estimated based
on how we sampled users. In all neighborhoods, predicted weekly VMT was greater for
intercept-recruited bike-share users, compared to household-recruited bike-share users
(Figure 9). In Natomas, the effect of sampling was a doubling of VMT. This suggests that
not only were intercept-recruited bike-share users bicycling more frequently (see above),
but they were also driving greater distances than household-recruited bike-share users.
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4. Discussion
4.1. Bike-Share Adoption

Adoption of bike-share was substantial across the region, particularly given the
relatively short time period between the launch of the service and the implementation of
the “after” household survey. According to the household survey, 13% of the population
in West Sacramento and Sacramento had used the bike-share at least once. On the other
hand, only 3% respondents in Davis said they had used bike-share, a surprising result
given the high level of bicycling in Davis in general. The low adoption in Davis might
be due to the under-sampling of the student population, who are, anecdotally, the most
prevalent bike-share users in Davis; only 21% of respondents in the “after” household
survey were students, who make up around 36% of the population in Davis based on
the 5-year estimates from the American Community Survey. However, none of the UC
Davis students who responded in the “after” household survey had used bike-share and
only 25% of the Davis respondents to the user survey were students, so it is possible that
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person-level adoption is, in reality, much lower in Davis, where bike ownership is high and
where residents may have seen less need to use bike-share than in the other neighborhoods.

The younger average age of users compared to non-users may be due to numerous
factors such as targeted marketing of the service, smartphone technology adoption, or
attitudes toward bicycling safety, among others. Bike-share services have historically
attracted young users [19]. The high share of students among users outside of Davis may
be driven by Sacramento State University and Sacramento City College, both located within
the Sacramento service area. For other socio-demographic strata (race, income, etc.), the
shares of users and non-users are consistent across groups, though the sample size in some
demographic groups is quite small.

Indeed, the surveys underrepresent low-income (< USD 50,000) households, and Black
and Hispanic residents (see Table 1). It is telling that we only received a single survey
from members of the Boost bike-share subsidy program that provides access to the service
for low-income residents (people that are eligible for SMUD Energy Assistance Program,
Women, Infants, and Children (WIC), Sacramento Housing and Redevelopment Agency
(SHRA), PG&E CARE, and Cal Fresh can participate in the Jump Boost Plan). Nonetheless,
a greater percentage of respondents from carless households have used the bike-share
service (15% compared to 11% for car households), which may contribute to transportation
equity if the lack of car access is a constraint and not a choice. The lack of low income,
Black, and Hispanic representation in our surveys suggests that inferences about who is
using bike-share may be biased due to survey self-selection.

4.2. The Effects of Bike-Share on Travel Behavior

Bicycling appears to have declined between 2016 and 2019, based on both unadjusted
differences (after–before) and on modeled effects of bike-share (Figures 4 and 5). The model
predictions indicate that bicycling frequency, measured in two ways, was 5–10% lower
after bike-share on average (with a large predicted range). Bicycling rates were mostly
stagnant across the country from 2001 to 2017 [20], so it is surprising to find a decline in
bicycling in the Sacramento region, particularly since bicycling infrastructure expanded in
the region from 2016 to 2019. This bicycling decline warrants further investigation since it
is unlikely to have been caused by the emergence of bike-share (see below).

While population-level measures of bicycling may be declining in the Sacramento
region, our models predict that people who have used the bike-share service (at least once)
bicycle at much greater frequencies than non-users, depending on neighborhood. The
model of general bicycling frequency predicts that people who have used the bike-share
(at least once) are on average 40–67% more likely to ride nearly every day depending on
neighborhood (also see Figures 8 and 9 for a latent variable representation of this difference).
The model of days bicycled in the last 7 days predicts a doubling of bicycling days per
week for bike-share users relative to non-users. Because little attention has been given to
the relationship between bike-share use and general bicycling [7], these predictions offer an
important first step for quantifying how much bike-share might increase bicycling. While
these results suggest that bike-share may increase bicycling for those who use it, it is also
possible that those who bicycle more in general are more likely to use bike-share. Because
our data come from repeat cross-sectional surveys rather than a longitudinal survey, we
cannot directly assess which direction of causality is stronger, but both are likely to operate
to some degree.

Bike-share use could cause individuals to bicycle more in two basic ways. First,
an individual’s use of bike-share could directly cause an increase in bicycling if they
regularly incorporate the bike-share service into their daily travel routine. Other user
survey responses indicated that the median number of bike-share trips per respondent
was five trips in 28 days and that 84% of bike-share trips substituted for modes other than
bicycling [16]. This result is consistent with other studies that indicate that bike-share rarely
replaces personal bike trips [12], and that bike-share users tend to self-report that they
increase their bicycling as a result of using bike-share [21]. Five trips in four weeks, with
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84% of those trips representing new bicycle trips, is roughly equivalent to an increase in
one day of bicycling per week assuming respondents were not otherwise bicycling on that
day. Second, bike-share use could spur more personal bicycling. Many causal mechanisms
could explain this effect including the visibility of the shared bikes acting as a reminder
that bicycling is an option, an increase in perceived safety from seeing people on shared
bikes, or possibly through people trying the bike-share service and then in turn shifting to
a personal bike. The fact that the bikes in the Sacramento system were e-bikes might also
have had an effect, given that awareness of e-bikes increased after the system opened [22].
Because we did not collect data on these potential causes, further research is needed to
understand to what degree the model predictions are causally linked from bike-share use
to general bicycling, rather than the opposite.

Models of the effect of the bike-share on driving are all fairly inconclusive about
the direction and uncertain about the magnitude of any effect bike-share may have had.
The predictions suggest that the effect is likely to be small in Sacramento and Davis (less
than 25 miles per week) but larger in West Sacramento and Natomas (less than 50 miles
per week) (Figure 7). Similarly, annual household VMT may not be associated with bike-
share given that our models predict the difference before and after bike-share to be within
4000 miles per year (Figure 8). Only Sacramento residents were predicted to have decreased
VMT after bike-share, but the effect is small (1000 miles) and unlikely to have been caused
by bike-share given the other results. The Natomas intercept-recruited bike-share users
were the only group predicted to have a substantial difference in personal VMT—higher
than before bike-share, and higher than the other neighborhoods. This is likely an artifact
of the recruitment method for the intercept survey, which resulted in a sample for that
combined “after” household and wave 2 user surveys that included a wider range of
residential locations (owing to the user surveys) than the sample in the “before” survey,
which was limited to the selected neighborhoods (see Figure 2). In general, the lack of a
clear relationship between bike-share and driving is not surprising given other studies
showing that car substitution is rare [7,12]. However, it is somewhat more surprising in this
study because bike-share users self-reported that 35% of their bike share trips substituted
for car use (private car and ridehailing) [16].

Given that (a) most bike-share users use bike-share infrequently (median of 5, mean
of 12.4 trips in 28 days), (b) bike-share trips are short (mean of 2.1 miles), and (c) about
35% of bike-share trips replace car trips [16], it is unlikely that any predicted differences
in VMT from our models are caused by bike-share trips substituting for car trips. Using
these mean estimates, we would expect an average bike-share user to reduce their vehicle
miles by only 9.1 miles per week as a result of using bike-share. This effect is well within
the uncertainty in our models of personal VMT, suggesting that more precise data on
VMT is needed to understand any link between bike-share and VMT. In addition, it may
be that bike-share has other indirect effects on driving (e.g., attracts people to live in the
bike-share service boundary and reduce driving because of increased accessibility), but
like the hypothesized indirect effects on bicycling, this is speculative given that we lack
data on these causal pathways.

5. Conclusions

Bike-share services have the potential to increase bicycling and decrease driving.
However, few studies have attempted to quantify the effects of bike-share services on
general bicycling and driving at an individual level. Our results suggest that the dockless
e-bike share in the greater Sacramento region is unlikely to have affected average bicycling
and driving for residents who live within the bike-share service region. However, our
results also suggest that people who have used bike-share ride a bike at substantially
greater frequencies: 40–67% more daily bicycling and double the number of days bicycled
per week compared to people who have not used bike-share. Because the percent of
bike-share trips replacing personal bicycling trips is small, the more frequent bicycling by
bike-share users is likely to be at least partially caused by bike-share.
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More broadly, our study provides more evidence that bike-share services are increasing
bicycling and because of that they still hold potential to help reduce car use. However,
demand for these services must grow for them to have lasting impacts on transportation
sustainability. Barriers to bike-share adoption are numerous, but limited bike availability
and poor bicycling infrastructure are likely the most important barriers that must be
removed to increase the contribution of bike-share to transportation sustainability [11].
Additionally, pairing policies that improve bike-share with policies that demote car use
(e.g., car free zones, parking pricing) are likely to be more effective at increasing bike-
share demand. This combination of policies has worked in some cities to increase general
bicycling [23], and recent efforts like those in Paris, France [24] include micromobility
services as a key component in the goal to shift from cars to bikes and scooters.

Further investigations into improved operations and bike-share effects on travel behav-
ior more broadly are likely to improve our understanding of what makes for a successful
micromobility service. Improved (and more costly) study designs such as longitudinal
panels are needed to provide more certainty about the causal effects of micromobility ser-
vices on travel behavior. Additionally, evaluations of policies and practices are of growing
importance as micromobility services become more widespread and as a result more varied.
Studies that can identify policies and practices that best increase micromobility demand
while at the same time curtailing car use can provide important guidance for ensuring that
micromobility services increase transportation sustainability.
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Appendix A

We modeled four behavioral outcome variables (days bicycled in the last 7 days, usual
bicycling frequency, personal weekly VMT, household annual VMT). Each type of response
variable required a different model form as outlined below. Although the survey includes
before-and-after data, the data do not represent two measurements for each person (i.e.,
it is not a longitudinal panel). Without panel data, inferences about “change” are heavily
dependent on assumptions that the before and after populations are the same. Rather than
assume that the samples are the same before and after the bike-share, we chose to “adjust”
the effects by considering a suite of covariates in multivariable models. In addition, we
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merged data from the user survey (targeted recruitment of bike-share users) to increase
the sample size of users. Like our adjustments for the other covariates, we include an
indicator variable for responses from this non-probability-based recruitment to adjust for
any recruitment bias. Overall, the models help represent the effect of the bike-share on
each outcome given the uncertainty of the sameness of the two samples. In the statistical
models, a multi-level structure is used for each neighborhood area (Davis, West Sacramento,
Sacramento, Natomas (Sacramento control)) because of the sampling design. These varying
effects help account for the differences in targeted addresses across the four areas before
and after the bike-share (e.g., in Davis we over sampled in wave 1 for a concurrent project).
We also allowed the effect of the bike-share to vary across these areas by including “varying
slopes” for the following binary indicator variables: after bike-share, user survey respondent,
respondent had ever used bike share.

For each model parameter, we chose priors by simulating outcome data from our
priors alone and ensured that they simulated data in a reasonable range for each outcome.
These simulations helped define priors that were “weakly informative” in that they guard
against overfitting to the data by using our domain knowledge. For example, when
modeling days biked in last 7 days, since we knew from prior surveys that most people do
not bicycle at all, we set priors that simulated data such that it was rare for the model
to predict a negligible portion “zero” counts, while at the same time making it rare to
predict all of the responses to be “zero” counts. In another example, for the VMT data,
we knew it was rare for weekly VMT to be more than a few thousand miles, so we settled
on priors that ensured this. Our general process for selecting priors was as follows: (1)
use the default prior the R package brms [18], (2) plot simulated data as histograms for
30 datasets, (3) adjust the priors and re-plot the histograms to ensure the simulations result
in a reasonable range for each outcome (allowing a few extremes but not always resulting
in extremes). Repeat steps 2 and 3 as needed. Below are the general model forms for each
analysis including their priors.

Days biked in last 7 days
yi ∼ Zero − Inflated Binomial( 7 , pi , ki )

logit(pi)
= αp + αp_city[i] + βpA_city[i]Ai + βpS_city[i]Si + βpU_city[i]Ui +

M
∑

m=1
βpmXmi

logit(ki)
= αk + αk_city[i] + βkA_city[i]Ai + βkS_city[i]Si + βkU_city[i]Ui +

M
∑

m=1
βkmXmi

αp_city
βpA_city
βpS_city
βpU_city

 ∼ MVNormal




0
0
0
0

 , Σp




αk_city
βkA_city
βkS_city
βkU_city

 ∼ MVNormal




0
0
0
0

 , Σk


Σp

=


σp_α 0 0

0
. . . 0

0 0 σp_βU

Ωp


σp_α 0 0

0
. . . 0

0 0 σp_βU


Σk

=


σk_α 0 0

0
. . . 0

0 0 σk_βU

Ωk


σk_α 0 0

0
. . . 0

0 0 σk_βU


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Priors(
αp, αk

)
∼ Normal( 0 , 1.5 )(

βp1, . . . , βpm, βk1, . . . , βkm
)

∼ Normal( 0 , 0.5 )(
σp_α, . . . ,σpβU

,σk_α, . . . ,σk_βU

)
∼ HalfStudentT( 3 , 0 , 0.5 )(

Ωp, Ωk
)

∼ LKJcorr( 2 )
where yi is the response from 0 to 7 days for respondent i, pi is the linear model for the
probability of bicycling each day out of 7 days, and ki is the linear model for the probability
of not bicycling at all (zero inflation). αp and αk are the intercepts, αp_city[i] and αk_city[i]
are vectors of intercepts that vary by city, βpA_city[i] and βkA_city[i] are vectors of slope
parameters for the effect of Ai (a vector of zeros and ones indicating “after bike-share”) that
vary by city, βpS_city[i] and βkS_city[i] are vectors of slope parameters for the effect of Si (a
vector of zeros and ones indicating sub-sample recruited non-probabilistically in the user
survey) that vary by city, βpU_city[i] and βkU_city[i] are vectors of slope parameters for the
effect of Ui (a vector of zeros and ones indicating having used bike-share) that vary by city,
βpm and βkm are the slopes for their products of Xmi (predictor variables, m), Σp and Σk
are the covariance matrices factored as diagonal matrices of city level standard deviations
(σp_α, . . . ,σpβU

,σkα
, . . . ,σk_βU ) and correlation matrices (Ωp, Ωk) for the aggregate binomial

(p) and zero-inflated Bernoulli (k) processes, respectively. Each correlation matrix has
six parameters representing the correlations between the four city-varying parameters.
This equation is slightly generalized from the actual model because the R package brms
automatically parameterizes models (for efficiency reasons) by centering all variables and
converting the correlation matrices to Cholesky factors prior to estimation [18].

Bicycling Frequency as ordered categories:
{Never, Not used in the last year, A few times
per year, A few timers per month, A few times

per week, Every day or almost every day}

log
(

Pr(yi<k)
1−Pr(yi<k)

) = αk + αcity[i] − βA_city[i]Ai − βS_city[i]Si −

βU_city[i]Ui −
M
∑

m=1
βmXmi

αcity
βA_city
βS_city
βU_city

 ∼ MVNormal




0
0
0
0

 , Σ


Σ

=
σα 0 0

0
. . . 0

0 0 σβU

Ω


σα 0 0

0
. . . 0

0 0 σβU


Priors

(α1, . . . , αk) ∼ Normal( 0 , 1.5 )
(β1, . . . , βm) ∼ Normal( 0 , 0.5 )(
σα, . . . ,σβU

)
∼ HalfStudentT( 3 , 0 , 0.5)

Ω ∼ LKJcorr(2)

where log
(

Pr(yi≤k)
1−Pr(yi≤k)

)
is the log-cumulative-odds that response value yi is equal to or less

than a possible response category k (Never, . . . , Every day or almost every day). αk are
the threshold intercepts for the k thresholds between the k + 1 response categories. αcity[i]
is the vector of intercepts that vary by city, βA_city[i] are vectors of slope parameters for
the effect of Ai (a vector of zeros and ones indicating “after bike-share”) that vary by city,
βS_city[i] are vectors of slope parameters for the effect of Si (a vector of zeros and ones
indicating sub-sample recruited non-probabilistically in the user survey) that vary by city,
βU_city[i] are vectors of slope parameters for the effect of Ui (a vector of zeros and ones
indicating having used bike-share) that vary by city. βm are the slopes for their products of
Xmi (predictor variables, m), Σ is the covariance matrix factored as a diagonal matrix of city
level standard deviations (σα, . . . ,σβU ) and correlation matrix Ω. The correlation matrix
has six parameters representing the correlations between the four city-varying parameters.
Each βmXmi term is subtracted from the intercepts to ensure a positive βm value indicating
that an increase in Xmi results in an increase in the average response. This is because
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a decrease (hence subtraction) in the log-cumulative-odds for every outcome below the
maximum results in a shift of probability toward the higher response categories.

Weekly personal VMT and annual household VMT
yi ∼ Hurdle gamma( pi , θi , k)

logit(pi)
= αp + αp_city[i] + βpA_city[i]Ai + βpS_city[i]Si + βpU_city[i]Ui +

M
∑

m=1
βpmXmi

log(θi)
= αθ + αθ_city[i] + βθA_city[i]Ai + βθS_city[i]Si + βθU_city[i]Ui +

M
∑

m=1
βθmXmi

αp_city
βpA_city
βpS_city
βpU_city

 ∼ MVNormal




0
0
0
0

 , Σp




αθ_city
βθA_city
βθS_city
βθU_city

 ∼ MVNormal




0
0
0
0

 , Σθ


Σp

=


σp_α 0 0

0
. . . 0

0 0 σp_βU

Ωp


σp_α 0 0

0
. . . 0

0 0 σp_βU


Σθ

=


σθ_α 0 0

0
. . . 0

0 0 σθ_βU

Ωθ


σθ_α 0 0

0
. . . 0

0 0 σθ_βU


Priors

αp ∼ Normal(−3 , 1 )
αθ ∼ Normal( log(yi), 0.7 )(

βp1, . . . , βpm, βθ1, . . . , βθm
)

∼ Normal( 0 , 0.5 )(
σp_α, . . . ,σpβU

,σθα
, . . . ,σθ_βU

)
∼ Normal( 0 , 1 )(

Ωp, Ωθ

)
∼ LKJcorr( 2 )

k ∼ HalfStudentT( 5 , 0 , 2)
where yi is the vehicle miles traveled (including zeros) for respondent i, pi is linear model
for the probability of zero vehicle miles traveled (hurdle), and θi is the linear model for
vehicle miles traveled. αp and αθ are the intercepts, αp_city[i] and αθ_city[i] are vectors of inter-
cepts that vary by city, βpA_city[i] and βθA_city[i] are vectors of slope parameters for the effect
of Ai (a vector of zeros and ones indicating “after bike-share”) that vary by city, βpS_city[i]
and βθS_city[i] are vectors of slope parameters for the effect of Si (a vector of zeros and ones
indicating sub-sample recruited non-probabilistically in the user survey) that vary by city,
βpU_city[i] and βθU_city[i] are vectors of slope parameters for the effect of Ui (a vector of zeros
and ones indicating having used bike-share) that vary by city, βpm and βθm are the slopes
for their products of Xmi (predictor variables, m), Σp and Σθ are the covariance matrices fac-
tored as diagonal matrices of city level standard deviations (σp_α, . . . ,σpβU

,σθα
, . . . ,σθ_βU )

and correlation matrices (Ωp, Ωθ) for the Bernoulli (p) (hurdle) and gamma (θ) processes,
respectively. Each correlation matrix has six parameters representing the correlations
between the four city-varying parameters. Like the zero-inflated binomial model, this
equation is slightly generalized from the actual model parameterization used the R package
brms [18].
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Appendix B. Model Parameter Summaries

Table A1. Multi-level zero-inflated binomial model of bicycling days in last 7 days parameter
summaries.

Parameter Description Parameter Mean sd

Count Binomial Model pi
Intercept αp 0.598 0.257

After bike-share (0/1) βp1 −0.052 0.164
User survey (0/1) βp2 0.021 0.228

Ever used bike-share (0/1) βp3 0.286 0.193
Age (z-score) βp4 −0.008 0.043
Woman (0/1) βp5 −0.352 0.055

One Adult HH (0/1) βp6 −0.220 0.071
No children HH (0/1) βp7 0.051 0.061

Two or more HH cars (0/1) βp8 −0.431 0.063
No College Degree (0/1) βp9 −0.100 0.096

Working (0/1) βp10 −0.099 0.070
Student (0/1) βp11 0.141 0.134

>USD 50,000 HH income (0/1) βp12 −0.291 0.110
Physical condition, cannot ride bike (0/1) βp13 −0.532 0.140
Student × >USD 50,000 HH income (0/1) βp14 0.132 0.157

Zero-Inflated Bernoulli Model ki
Intercept αk 0.591 0.461

After bike-share (0/1) βk1 0.107 0.225
User survey (0/1) βk2 −0.297 0.294

Ever used bike-share (0/1) βk3 −0.908 0.298
Age (z-score) βk4 0.125 0.066
Woman (0/1) βk5 0.486 0.096

One Adult HH (0/1) βk6 0.439 0.127
No children HH (0/1) βk7 0.178 0.111

Two or more HH cars (0/1) βk8 0.062 0.116
No College Degree (0/1) βk9 −0.279 0.164

Working (0/1) βk10 −0.248 0.125
Student (0/1) βk11 −0.818 0.212

>USD 50,000 HH income (0/1) βk12 −0.227 0.165
Physical condition, cannot ride bike (0/1) βk13 0.941 0.186
Student × >USD 50,000 HH income (0/1) βk14 0.430 0.258

Neighborhood Level Variation
Count Binomial Model

Std. dev. Intercept σp_α 0.383 0.196
Std. dev. Ever used bike-share σp_βA 0.240 0.208

Std. dev. User survey σp_βS
0.372 0.256

Std. dev. After bike-share σp_βU 0.267 0.194

Zero-Inflated Bernoulli Model
Std. dev. Intercept σk_α 0.759 0.321

Std. dev. Ever used bike-share σk_βA 0.340 0.324
Std. dev. User survey σk_βS

0.309 0.273
Std. dev. After bike-share σk_βU 0.392 0.242

Varying parameter correlations by neighborhood
Count Binomial Model

Cor. Intercept and Ever used bike-share Ωp1 0.044 0.380
Cor. Intercept and User survey Ωp2 −0.131 0.355

Cor. Ever used bike-share and User survey Ωp3 −0.061 0.379
Cor. Intercept and After bike-share Ωp4 0.169 0.354

Cor. Ever used bike-share and After bike-share Ωp5 −0.028 0.372
Cor. User survey and After bike-share Ωp6 −0.109 0.367
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Table A1. Cont.

Parameter Description Parameter Mean sd

Zero-Inflated Bernoulli Model
Cor. Intercept and Ever used bike-share Ωk1 −0.038 0.376

Cor. Intercept and User survey Ωk2 0.082 0.378
Cor. Ever used bike-share and User survey Ωk3 −0.044 0.384

Cor. Intercept and After bike-share Ωk4 −0.186 0.343
Cor. Ever used bike-share and After bike-share Ωk5 0.030 0.374

Cor. User survey and After bike-share Ωk6 −0.022 0.374

Table A2. Multi-level ordered logit model of general bicycling frequency parameter summaries.

Parameter Description Parameter Mean sd

Intercept [1] α1 −1.575 0.384
Intercept [2] α2 −0.659 0.383
Intercept [3] α3 0.150 0.383
Intercept [4] α4 1.061 0.383
Intercept [5] α5 2.207 0.385

After bike-share (0/1) β1 −0.086 0.197
User survey (0/1) β2 0.469 0.236

Ever used bike-share (0/1) β3 0.884 0.247
Age (z-score) β4 −0.140 0.053
Woman (0/1) β5 −0.537 0.075

One Adult HH (0/1) β6 −0.254 0.102
No children HH (0/1) β7 −0.173 0.085

Two or more HH cars (0/1) β8 −0.153 0.093
No College Degree (0/1) β9 0.084 0.134

Working (0/1) β10 0.343 0.099
Student (0/1) β11 0.916 0.187

>USD 50,000 HH income (0/1) β12 0.251 0.141
Physical condition, cannot ride bike (0/1) β13 −1.076 0.169
Student × >USD 50,000 HH income (0/1) β14 −0.560 0.217

Neighborhood Level Variation
Std. dev. Intercept σα 0.738 0.283

Std. dev. Ever used bike-share σβA 0.283 0.254
Std. dev. User survey σβS

0.266 0.223
Std. dev. After bike-share σβU 0.325 0.219

Varying Parameter Correlations by Neighborhood
Cor. Intercept and Ever used bike-share Ω1 −0.153 0.368

Cor. Intercept and User survey Ω2 −0.140 0.368
Cor. Ever used bike-share and User survey Ω3 −0.015 0.373

Cor. Intercept and After bike-share Ω4 −0.165 0.342
Cor. Ever used bike-share and After bike-share Ω5 0.034 0.371

Cor. User survey and After bike-share Ω6 0.023 0.377
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Table A3. Multi-level hurdle-gamma model of respondent weekly VMT parameter summaries.

Parameter Description Parameter Mean sd

Zero-VMT Binary Model (Hurdle) pi
Intercept αp −0.082 0.420

After bike-share (0/1) βp1 −0.074 0.333
User survey (0/1) βp2 −0.058 0.456

Ever used bike-share (0/1) βp3 0.369 0.462
Age (z-score) βp4 −0.234 0.105
Woman (0/1) βp5 −0.223 0.150

One Adult HH (0/1) βp6 −0.503 0.184
No children HH (0/1) βp7 0.514 0.208

Two or more HH cars (0/1) βp8 −1.564 0.190
No College Degree (0/1) βp9 −0.806 0.205

Working (0/1) βp10 −0.498 0.186
Student (0/1) βp11 −0.179 0.277

>USD 50,000 HH income (0/1) βp12 −1.174 0.214
Student × >USD 50,000 HH income (0/1) βp13 0.370 0.347

Greater Than Zero-VMT Gamma Model θi
Intercept αθ 4.185 0.203

After bike-share (0/1) βθ1 0.031 0.117
User survey (0/1) βθ2 0.466 0.215

Ever used bike-share (0/1) βθ3 −0.208 0.198
Age (z-score) βθ4 −0.016 0.030
Woman (0/1) βθ5 −0.152 0.043

One Adult HH (0/1) βθ6 0.330 0.061
No children HH (0/1) βθ7 −0.100 0.048

Two or more HH cars (0/1) βθ8 0.372 0.057
No College Degree (0/1) βθ9 −0.030 0.086

Working (0/1) βθ10 0.246 0.061
Student (0/1) βθ11 −0.217 0.129

>USD 50,000 HH income (0/1) βθ12 0.140 0.090
Student × >USD 50,000 HH income (0/1) βθ13 0.026 0.151

Neighborhood Level Variation
Zero-VMT Binary Model (Hurdle)

Std. dev. Intercept σp_α 0.423 0.311
Std. dev. Ever used bike-share σp_βA 0.433 0.365

Std. dev. User survey σp_βS 0.394 0.344
Std. dev. After bike-share σp_βU 0.439 0.356

Greater Than Zero-VMT Gamma Model
Std. dev. Intercept σθ_α 0.271 0.193

Std. dev. Ever used bike-share σθ_βA 0.219 0.224
Std. dev. User survey σθ_βS 0.253 0.231

Std. dev. After bike-share σθ_βU 0.147 0.160

Varying parameter correlations by neighborhood
Zero-VMT Binary Model (Hurdle)

Cor. Intercept and Ever used bike-share Ωp1 0.021 0.384
Cor. Intercept and User survey Ωp2 −0.013 0.388

Cor. Ever used bike-share and User survey Ωp3 −0.068 0.386
Cor. Intercept and After bike-share Ωp4 0.008 0.380

Cor. Ever used bike-share and After bike-share Ωp5 0.006 0.380
Cor. User survey and After bike-share Ωp6 −0.031 0.383

Greater Than Zero-VMT Gamma Model
Cor. Intercept and Ever used bike-share Ωθ1 0.056 0.377

Cor. Intercept and User survey Ωθ2 −0.055 0.381
Cor. Ever used bike-share and User survey Ωθ3 −0.068 0.386

Cor. Intercept and After bike-share Ωθ4 0.026 0.372
Cor. Ever used bike-share and After bike-share Ωθ5 −0.018 0.378

Cor. User survey and After bike-share Ωθ6 −0.024 0.382
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Table A4. Multi-level hurdle-gamma model of annual household VMT parameter summaries.

Parameter Description Parameter Mean sd

Zero-VMT Binary Model (Hurdle) pi
Intercept αp −0.910 0.439

After bike-share (0/1) βp1 0.031 0.322
User survey (0/1) βp2 0.384 0.537

Ever used bike-share (0/1) βp3 0.741 0.533
Age (z-score) βp4 −0.141 0.126
Woman (0/1) βp5 −0.115 0.184

One Adult HH (0/1) βp6 −0.151 0.206
No children HH (0/1) βp7 0.750 0.296

Two or more HH cars (0/1) βp8 −3.620 0.451
No College Degree (0/1) βp9 −0.429 0.259

Working (0/1) βp10 −0.637 0.225
Student (0/1) βp11 −0.057 0.314

>USD 50,000 HH income (0/1) βp12 −1.478 0.245
Student × >USD 50,000 HH income (0/1) βp13 0.259 0.409

Greater Than Zero-VMT Gamma Model θi
Intercept αθ 8.745 0.124

After bike-share (0/1) βθ1 0.006 0.107
User survey (0/1) βθ2 −0.051 0.176

Ever used bike-share (0/1) βθ3 −0.022 0.165
Age (z-score) βθ4 −0.062 0.024
Woman (0/1) βθ5 0.025 0.035

One Adult HH (0/1) βθ6 0.001 0.047
No children HH (0/1) βθ7 −0.046 0.038

Two or more HH cars (0/1) βθ8 0.724 0.042
No College Degree (0/1) βθ9 0.002 0.063

Working (0/1) βθ10 0.176 0.045
Student (0/1) βθ11 0.208 0.100

>USD 50,000 HH income (0/1) βθ12 0.254 0.068
Student × >USD 50,000 HH income (0/1) βθ13 −0.210 0.119

Neighborhood Level Variation
Zero-VMT Binary Model (Hurdle)

Std. dev. Intercept σp_α 0.248 0.254
Std. dev. Ever used bike-share σp_βA 0.515 0.404

Std. dev. User survey σp_βS 0.571 0.427
Std. dev. After bike-share σp_βU 0.329 0.296

Greater Than Zero-VMT Gamma Model
Std. dev. Intercept σθ_α 0.098 0.114

Std. dev. Ever used bike-share σθ_βA 0.171 0.191
Std. dev. User survey σθ_βS 0.175 0.193

Std. dev. After bike-share σθ_βU 0.153 0.153

Varying parameter correlations by neighborhood
Zero-VMT Binary Model (Hurdle)

Cor. Intercept and Ever used bike-share Ωp1 −0.025 0.389
Cor. Intercept and User survey Ωp2 −0.029 0.386

Cor. Ever used bike-share and User survey Ωp3 −0.051 0.373
Cor. Intercept and After bike-share Ωp4 −0.032 0.395

Cor. Ever used bike-share and After bike-share Ωp5 −0.032 0.380
Cor. User survey and After bike-share Ωp6 −0.051 0.384

Greater Than Zero-VMT Gamma Model
Cor. Intercept and Ever used bike-share Ωθ1 −0.032 0.382

Cor. Intercept and User survey Ωθ2 −0.011 0.380
Cor. Ever used bike-share and User survey Ωθ3 −0.074 0.388

Cor. Intercept and After bike-share Ωθ4 0.042 0.379
Cor. Ever used bike-share and After bike-share Ωθ5 −0.073 0.385

Cor. User survey and After bike-share Ωθ6 −0.045 0.388
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