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Abstract: Estimating and forecasting suspended sediments concentrations in streams constitutes
a valuable asset for sustainable land management. This research presents the development of a
non-linear autoregressive exogenous neural network (NARX) for forecasting sediment concentrations
at the exit of Francia Creek watershed (Valparaiso, Chile). Details are presented on input data
selection, data splitting, selection of model architecture, determination of model structure, NARX
training (optimization of model parameters), and model validation (hindcasting and forecasting).
The study explored if the developed artificial neural network model is valid for forecasting daily
suspended sediment concentrations for a complete year, capturing seasonal trends, and maximum
and baseflow concentrations. Francia Creek watershed covers approximately 3.24 km2. Land cover
within the catchment consists mainly of native and exotic vegetation, eroded soil, and urban areas.
Input data consisting of precipitation and stream flow time-series were fed to a NARX network for
forecasting daily suspended sediments (SST) concentrations for years 2013–2014, and hindcasting for
years 2008–2010. Training of the network was performed with daily SST, precipitation, and flow data
from years 2012 and 2013. The resulting NARX net consisted of an open-loop, 12-node hidden layer,
100 iterations, using Bayesian regularization backpropagation. Hindcasting of daily and monthly
SST concentrations for years 2008 through 2010 was successful. Daily SST concentrations for years
2013 and 2014 were forecasted successfully for baseflow conditions (R2 = 0.73, NS = 0.71, and Kling-
Gupta efficiency index (K-G) = 0.84). Forecasting daily SST concentrations for year 2014 was within
acceptable statistical fit and error margins (R2 = 0.53, NS = 0.47, K-G = 0.60, d = 0.82). Forecasting of
monthly maximum SST concentrations for the two-year period (2013 and 2014) was also successful
(R2 = 0.69, NS = 0.60, K-G = 0.54, d = 0.84).

Keywords: NARX; total suspended sediment; forecasting; Valparaiso; Chile; watershed

1. Introduction

Healthy soils are substrates for the habitats of innumerable living organisms. Besides
supplying basic resources for survival (food, water, nutrients, and raw materials), soils pro-
vide several ecosystem services. Soil erosion and soil loss affect soil health by substantially
modifying soil structure and hence causing significant damage to natural habitats and
biodiversity [1]. Human activities promote soil loss at various levels. For example, urban-
ization has a potential to disturb soil in large areas, which may cause substantial erosion
if the principles of sustainable land use and land cover management are not applied [2].
Exploring scenarios of land management requires having the capacity to estimate and
forecast soil loss under those scenarios. Soil loss (under any land management scenario)
occurs by weathering of soil during or after rain events. Run-off transports the eroded soil
to nearby streams increasing the amount of soil in the water column (suspended sediment
concentration). Total suspended sediment (SST) concentrations in the streams that trans-
port the eroded soil, reflect how a particular land management scenario affects soil loss [3].
Therefore, estimating and forecasting SST concentrations in a stream constitutes a valuable
asset for sustainable land management.
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Estimation of SST concentrations in streams is performed through the use of water
quality models. The development of in-stream water quality models is a time-consuming
and costly process [4,5]. The modeling task is usually initiated with the quantification of
hydrological and hydraulic processes. This entails the development of hydrological models
(to account for non-point sources of water) and hydrodynamic models (to account for in-
stream movement of water). Once the water volumes entering the stream are quantified and
the movement of water within the stream is characterized, the water quality constituents
from non-point sources are calculated, and in-stream concentrations of pollutants are
computed. This latter process requires the linking of hydrologic and hydrodynamic models
to water quality models [6,7]. There are modeling tools that perform joint estimations of
hydrologic, hydrodynamic, and water quality processes, but the modeling sequence does
not change, and the required investment of time and resources is also substantial.

Furthermore, traditional approaches to water resources management and modeling
rely on historical time-series. Climate change introduces additional uncertainty to forecast-
ing methods based on historical data [8]. Non-traditional approaches (deep learning and
fuzzy sets) have been successfully applied to capture complexities introduced by climate
change effects [9,10]. In Chile’s central region, where water scarcity is a prevalent problem,
climate change and its effects have become an important challenge for cities with water
management problems [11].

Moreover, streamflow, sediment, and pollutant transport, are hydrological processes
that strongly depend on precipitation, temperature, topography, land cover, and soil tex-
ture antecedent conditions. The state of those variables in days previous to an event will
determine the hydrological response in streamflow regime, and sediment and pollutant
concentrations. Seasonality is also a factor. Most hydrological variables vary drastically
during the year, with trends particular to dry or wet seasons [3]. In particular, total sus-
pended sediment (SST) in water bodies is strongly dependent on seasonal meteorology [12].
As such, SST concentrations are indicators of several hydrological processes taking place
within a watershed. The presence of SST depends on intensity and duration of rainfall
events, soil matrix, and land surface characteristics (slopes, land use, land cover, stream
flow, etc.) [3], and antecedent conditions of those hydrological variables. For this rea-
son, the estimation or forecasting of SST concentrations and loads in rivers, is key for
implementing sustainable land and water management measures.

Suspended sediment transport and sediment loads in rivers and streams have become
primary concerns in Chile. Excessive soil and sediment wash-off from the mountains
to rivers and streams have produced infrastructure malfunction with costly social and
economic consequences. For example, in Valparaiso (the second-largest metropolitan
area in Chile and one of the main seaports in the country) the topography of the city is
dominated by several hills that surround the urban center and port. Several creeks drain
waters from the surrounding watersheds to the city and seacoast through stormwater
sewers. These watersheds are being gradually urbanized, and, with those settlements,
the pervious nature of the soil has been modified producing high sediment loads that
overload the storm water system of the city [12]. Sediment transport and deposition have
been a recurring problem for the existing storm water system and costly infrastructure
has been built to remediate the situation [12]. Similarly, excessive sediment and soil wash-
off have also produced problems in other important Chilean cities. The Maipo River,
located in central Chile, is the main source of drinking and irrigation water for the City of
Santiago (Chile’s capital city). However, excessive soil erosion has generated high-turbidity
events with incremental frequency and severity, leading to frequent shutdowns of drinking
water treatment plants [6]. Social and economic consequences have been substantial.
In 2013, nearly 5 million people did not have access to safe drinking water during several
days [13]. Economic activities depending on regular access to drinking water also suffered
consequences. These examples show the need for effective forecasting methods that would
help prevent those consequences. Nevertheless, the necessity for suspended sediment
loads and concentration-forecasting capabilities is more urgent in Valparaiso, since its
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rapid urban growth will only exacerbate the current excessive sediment loading events
cited above.

Artificial neural networks (ANN) have been recently explored as a potential tool
for estimating sediment processes in streams and rivers. Rajaee and Jafari [14] and Afan
et al. [15,16] applied ANN models to simulate river sediment processes. Their results
were somewhat limited in prediction accuracy or time extent of the forecast. In a recent
research, Ghose and Samantaray [17] focused on the prediction of sediment concentrations
using regression and back-propagation neural network models, using daily discharge,
temperature, and sediment concentration as input data. Their results showed promise
although the forecasted sediment loads were not in the form of time-series. Similarly,
Alp and Cigizoglu [18] simulated sediment-load hydrographs using two ANN methods
and compared them with a multi-linear regression method. However, only a few hours
(not months or years) were simulated.

This research presents a non-linear autoregressive neural network (with exogenous
inputs) developed for forecasting sediment concentrations at the exit of Francia Creek
watershed (Valparaiso, Chile). The neural network was built following Wu et al. [19]
methodology for neural network development and assessment. Details are presented on
input data selection, data splitting, selection of model architecture, determination of model
structure, model calibration/training (optimization of model parameters), and model vali-
dation. Also, the developed ANN is assessed to determine if it can be used for forecasting
daily suspended sediments for a complete year.

2. Materials and Methods
2.1. Study Area

The city of Valparaiso is located in the central region of Chile. Its topography is
dominated by 39 creeks (that drain waters from 44 hills that surround the city). The creeks
were formed by natural terrain abrasion resulting from precipitation events. The region is
characterized by dry weather, with few but intense precipitation events occurring mainly
in the winter season (June–August). Baseflow erosion of the silty-clay soil, and oxidation
of the granite rock that supports the soil layers also contribute to sediment concentrations
and loading in the streams. The waters drained by the creeks feed the storm water pipes of
the city system where sediment deposition has been a recurring problem requiring costly
infrastructure implementation to remediate the situation [12]. One of the creeks that has
been identified as critical is Francia Creek (Figure 1).

Francia Creek (Figure 1) watershed covers approximately 3.24 km2 [12]. Land cover
within the catchment consist mainly of native and exotic vegetation, eroded soil, and urban
areas. Soils in the Francia Creek catchment consist of weathered sedimentary rock (sand,
clay, and silt) with a thin organic top layer [20]. The instability of these materials makes
the watershed side slopes susceptible to mass removal processes, mainly because the
sedimentary rock expands and mobilizes when rainfall increases [21]. Hillslopes are
steeper than 40% and they are prone to erodible processes and mudslides during the rainy
season. Water flow in the creek can be strong enough to suspend particles in the water
column and transport them downstream. To avoid the sediment entering the stormwater
sewer network, a sand trap was built at the lowest point of the catchment area (Figure 2).
The sand trap accumulates up to 1500 m3 of sediment annually. The accumulated sediment
is cleaned up once a year and disposed in a sanitary landfill. Figure 2A shows the upstream
side of the sand trap soon after it was cleaned up of debris. Figure 2B shows the sand trap
almost full of debris and sediments after a series of strong precipitation events.
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Figure 1. Study area. Francia Creek watershed (covering 3.24 km2) is located in Valparaiso (Chile).
Dry weather, with few, but intense, precipitation events in June–August, characterize the region.
Native and non-native vegetation are predominant in the watershed. Slopes are greater than 40%.
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Figure 2. Sand trap at Francia Creek watershed exit. (A) Sand trap after clean-up of upstream side. (B) Mudflow filling up
the upstream side of the sand trap after a series of heavy rain events.

Since the erodible processes that have characterized Francia Creek watershed will con-
tinue to occur in the future (due to urban growth and other human activities) quantifying
the risk associated with high sediment loading events would allow the development of
early-warning systems that minimize damage. The initial step in the development of a
warning system is building effective forecasting tools.
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Alarcon and Magrini [12] performed measurements and daily estimations of precipita-
tion, flow, and total suspended sediment concentrations (SST) for Francia Creek watershed
at the upstream section of the sand trap (Figure 3). The figure shows that SST concentra-
tions follow a seasonal pattern—concentration peaks occur during the rainy season (June
to August). SST concentration peaks fluctuate within 1500 to 6660 mg/L and take place
after or during daily precipitation events. Rainfall events accumulating 50 mm to 127 mm
produce peak streamflow ranging from 8 m3/s to 23 m3/s. It should be noted that those
peaks are preceded by lower intensity precipitation events in days previous to the peak
events. Figure 3 also shows measured and estimated SST concentrations corresponding to
days when there was absence of rainfall and Francia Creek only carries baseflow (water
seeping into the stream from the vadose zone even in the absence of rain). Concentrations
ranging between 200 mg/L to 350 mg/L correspond to baseflows ranging between 3 L/s
to 5 L/s. Baseflow is continuous throughout the year.
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Figure 3. Historical data in Francia Creek watershed. Daily time-series of suspended sediments concentrations (SST),
precipitation, and stream flow are shown (1 January 2005–31 December 2014). Sediment concentration peaks occur soon
after intense and consecutive precipitation events.

Figure 4 illustrates the dependence of SST concentrations on antecedent conditions
of precipitation and flow and follows a discussion on a mudflow event that took place
at Francia Creek watershed, on 12 July 2006. SST, flow, and precipitation data for dates
4 July 2006 to 26 July 2006 are shown. On 10 July 2006, a strong precipitation event
(200 mm) generated flows of up to 9.93 m3/s and SST concentrations of 4770 mg/L.
The day after (11 July 2006), the rain continued to fall accumulating 53 mm of precipitation
at the end of the day, generating flows of up to 9.90 m3/s and SST concentrations of up
to 4320 mg/L. On 12 July 2006, it did not rain, but mudflow (generated in Francia Creek
watershed) produced injuries to five people and damaged several cars in areas close to
the watershed exit. In total, twenty people had to be evacuated. Two weeks later (24 July
2006), a precipitation event of almost 160 mm, that produced flows of up to 18 m3/s
and SST concentrations of 5920 mg/L, did not produce consequences. The difference in
this latter event was that precipitation intensity in days before and after the event was
much milder than the recorded peak precipitation of 160 mm. Therefore, the antecedent
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conditions (rainfall and soil status) in days previous to the peak precipitation event, as well
as rainfall and flow occurring in the following day, strongly influenced the generation of
the mudflow incident.
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Figure 4. Time-series of SST, precipitation, and stream flow for dates 4 July 2006 through 26 July 2006. A mudflow event
occurred on 12 July 2020 after two consecutive rain events.

The analysis above illustrates the challenges for predicting or forecasting time-series
of SST concentrations and loadings. The strategies and methodologies for forecasting SST
events should be able to account for antecedent precipitation, flow, and SST concentrations
before the occurrence of a peak SST loading or concentration event.

2.2. Forecasting or Predicting SST Time-Series

Estimating or predicting SST time-series in rivers, lakes, or estuaries is usually per-
formed through hydrological and water quality modeling. Nevertheless, there are other
quantitative approaches developed and oriented towards specific objectives. Event-based
models use simpler formulations for rainfall-runoff generation [22] but are usually de-
veloped for short-term purposes such as flood/flow forecasting and/or infrastructure
designing. Other approaches that do not require information regarding the physical pro-
cess (such as non-parametric algorithms) constitute an alternate method. Continuous
non-parametric hydrological models were shown to be particularly useful for long-term
water resources management (e.g., estimation of design flows, land-use change impacts,
and effects of climate change). Non-parametric models such as antecedent precipitation
indices, regression, artificial neural networks, fuzzy logic, and frequency analysis were
used extensively [22].

The artificial neural network (ANN) approach to time-series prediction is a non-
parametric method. For simple non-linear functions of one or several independent vari-
ables ANN are universal interpolators, but simple ANN configurations have limitations in
modeling seasonal patterns. Special configurations of ANN have been used with success
to predict flows and sediment concentrations for rivers around the world [15]. The most
commonly used models are artificial neural networks with dynamic architecture (DANN),
autoregressive neural networks (ARNN), non-linear autoregressive exogeneous neural
networks (NARX), or hybrid configurations that combine ANN with other modeling
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approaches. Examples of those ANN configurations that reported good predictions of
streamflow under flood and drought conditions are found in [23–26]. Similarly, ARNN
and DANN were used extensively for estimating sediment concentrations (e.g., [27–30]).
However, in most of those ANN applications the validation period of the model output
corresponded to within-year or seasonal events because the input data was partitioned to
capture the seasonality dependence of the input time-series. Also, some of those research
projects scaled the input data for improving predictions. There are no ANN model applica-
tions that simulate continuous daily SST estimations for a whole year, using raw (not scaled)
input data. Due to the strong non-linear SST response to precipitation and flow, non-linear
autoregressive architectures with exogenous inputs (NARX ANN) seem to be the most
appropriate for predicting SST concentrations if continuous daily estimations are desired,
provided that exogenous data are used to capture antecedent hydrological conditions.

2.3. Selection of Model Architecture

The NARX network is a dynamical neural architecture commonly used for nonlin-
ear dynamical systems. When applied to time-series prediction, the NARX network is
designed as a feedforward time-delayed neural network (TDNN). NARX neural networks
are recurrent dynamic networks, provided with feedback connections which enclose at
least two layers of the network, and can use past values of predicted or true (measured)
time-series [31]. In this research, a NARX configuration, is proposed, in which past val-
ues of the SST time-series, past values of the driving time-series (precipitation and flow),
and current precipitation and flow time-series (exogeneous input) are used to perform the
SST concentration forecast.

2.4. Determination of Model Structure

To forecast a total suspended sediments time-series of size N (SSTN+i, i : 1, 2, 3, . . . ..N)
using a NARX net, based on three time-series that contain past precipitation (P), flow (Q),
and total suspended sediments (SST) data (Pi, Qi, SSTi, i : 1, 2, 3, . . . . . . N), there are
important ANN specifications that have to be predetermined. There are two types of
NARX architectures—closed-loop NARX architecture in which prediction of total sus-
pended sediments is done from the present and past measured values of precipitation and
stream flow, and the past predicted values of total suspended sediments and open-loop
architecture, in which the future value of total suspended sediments, SSTN+i, is predicted
from the observed present and past values of precipitation (PN−k), and stream flow (QN−k),
and the observed past values of total suspended sediments (SSTN−r). In this research,
an open-loop NARX net was used. In the above equations, k and r are the input and
feedback delays, respectively, and represent the number of time-series data that are used
(from each input time-series data) to perform the forecast with the calibrated open network.
Figure 5 presents a conceptual description of the NARX net used in this research.

The reason for using an open network is to avoid uncertainty propagation. In other
fields of research where data uncertainty in the observed data is low, an open loop NARX
is used to train the network, and then a closed-loop architecture (in which the network
generates a forecast using the predicted data as the feedback input) is used for forecast-
ing [32]. However, since observed SST time-series data are usually measured indirectly via
turbidity samplers that allow estimation of SST concentrations, they have an important
(but acceptable) degree of uncertainty [33]. Forecasting SST concentration values using
NARX-forecasted SST concentrations (as it is done in closed NARX nets) may result in
unnecessary propagation of the inherent uncertainty of observed SST data.
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Figure 5. Conceptual description of the open-loop neural network used in this research. The future
value of total suspended sediments, SSTN+i, is predicted from observed present and past values
of precipitation (PN−k ), and stream flow (QN−k ), and the observed past values of total suspended
sediments (SSTN−r ).

In this research, forecasting of SST concentrations was performed without scaling
the input data. Efforts were put on forecasting daily SST concentrations for extended
periods of time (N > 365). However, forecasting of monthly mean and monthly maximum
concentrations was also performed using the developed NARX network. All computations
were performed using MATLAB.

The narxnet MATLAB function, with input and feedback delays, open feedback mode,
and Bayesian regularization training algorithm (trainbr), was used. Bayesian regulariza-
tion is a mathematical method that converts a nonlinear regression into a “well-posed”
statistical problem by minimizing a linear combination of squared errors and weights [34].
The resulting ANN is neither overtrained nor overfit, with a reduced number of effective
network parameters or weights, considerably smaller than the number of weights in a
standard fully connected back-propagation neural net [34].

2.5. Input Data Selection and Data Splitting

In order to explore the effect of training data size to achieve a successful prediction of
SST, the number of years for training and prediction was varied. Table 1 details the process.

Table 1. Training data size and splitting.

Model
Run

Number of Years Used for Training Number of Years Used for Forecasting

Precipitation Flow SST Precipitation Flow Predicted SST

Initial 2005–2012 2005–2012 2005–2012 2005–2012 2005–2012 2013–2014
Final 2011–2012 2011–2012 2011–2012 2011–2012 2011–2012 2013–2014

Initially, precipitation (Pi), flow data (Qi), and total suspended sediment concentra-
tions (SSTi) data from years 2005 to 2012 were used for training the NARX net. Several
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combinations of yearly datasets were tested until optimal statistical indicators of fit be-
tween simulated and observed daily SST concentrations data were achieved. The final
training data set (PN−k, QN−k, and SSTN−r) corresponded to years 2011 and 2012 with
respective input delay, k, and feedback delay, r, which are discussed in subsequent sections
of this paper. For the prediction phase, data from years 2011 through 2012 were used
to predict total suspended sediments, SSTN+i, for years 2013 and 2014. To account for
antecedent conditions of precipitation and flow, PN+i−1 and QN+i−1, data (corresponding
to the forecasted years) was used as exogenous input.

2.6. Model Calibration and Validation

After adopting the type of neural network (NARX) and developing a strategy for data-
splitting, the ANN network was calibrated with several values and combinations of number
of neurons in hidden layer, number of hidden layer nodes, and number of iterations. Other
NARX net parameters were also varied in the training process. Input and feedback delays
partitioned the input time-series data into subsets, during the computation of the forecasted
SST time-series. Physically they represented the set of past precipitation, flow, and SST data
values that determined the forecasted SST concentration. In MATLAB, input delays could
range from 0 to N, while the range of feedback delays is 1 to N. By exploring the behavior
of the observed data through time, initial numerical values of input and feedback delays
were determined. From the initial estimation of the delay values, a heuristic approach
was followed until obtaining a calibrated NARX net. In this research, input delays were
varied from 1:15 to 1:60 and feedback delays from 1:2 to 1:6 (MATLAB notation for these
parameters is used).

During NARX training, the general practice is to divide the data into three subsets—a
training set (used for computing the gradient and updating the network weights and
biases), a validation set (for comparing NARX generated output to the validation set),
and a test set (that provides an additional check on que quality of the NARX output) [35].
Nevertheless, since in this research an actual validation of the NARX model was performed
with observed SST time-series data that were independent from the time-series used during
training, the preliminary validation that MATLAB performs was used only as an indicator
of the ANN training quality. In this context, training set ratios were varied from 1/60 to
1/95, validation set ratios from 1/5 to 1/40, and test ratios from 1/5 to 1/20 (MATLAB
notation for these parameters is used).

Statistical indicators of fit between forecasted and observed data and corresponding
statistical errors were computed to quantify the quality of simulated data. The follow-
ing indicators were used for assessing statistical fit: coefficient of determination (R2);
Nash–Sutcliffe coefficient (NS), Kling-Gupta efficiency index (K-G), and Willmott’s index
of agreement (d). The root-mean-squared-error to standard deviation ratio (RSR) was calcu-
lated to quantify statistical errors, and percent bias (PBIAS) was computed to determine the
bias of simulated data with respect to observed data [25]. Table 2 summarizes the statistical
indicators used.

Model validation was performed at daily and monthly levels. The hindcasting and
forecasting capabilities of the NARX net was assessed. The acceptable ranges or threshold
values of the statistical indicators were defined after thorough review of the literature.

Moriasi et al. [36] states that if the statistical fit indicators (for monthly SST simulations)
are within the following ranges, the simulation is satisfactory: RSR < 0.70, −30% < percent
bias (PBIAS) < 55%, R2 > 0.5, and NS > 0.50. However, the statistical indicators’ ranges need
to be modified appropriately for shorter simulation time-steps. It is recommended to extend
the acceptability ranges corresponding to monthly simulations by 20% to apply them to
daily simulations. [36]. Nevertheless, the literature shows that the modeling community
reports much wider and flexible ranges when assessing the quality of simulated data,
which reflects the degree of difficulty on modeling and simulating SST concentrations.
The following NS ranges for daily sediment concentration simulations are reported in
Moriasi et al. [36]: −2.5 < NS < 0.11 for calibration and −3.51 < NS < 0.23 for validation.
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The following ranges were found by Ang and Oeurng [26]: NS > 0.38, PBIAS < 5.1%,
and RSR < 0.79, for calibration. For validation: NSE > −6.61, PBIAS < −78.38%, and
RSR < 2.67 are reported [37]. Kling-Gupta efficiencies within the range 0.5 < K-G < 1.0 are
usually considered acceptable ([38].

Table 2. Formulae for calculation of indicators of statistical fit, error, and bias. The table includes acceptability ranges for
daily-step simulations.

Indicators of Fit Formulae Range

Root-mean-squared-error to standard deviation ratio,
RSR = RMSE

STDEVObs

√
∑n

i=1(YObs
i −YSim

i ).2√
∑n

i=1(YObs
i −YMean

i ).2
RSR < 0.79

Percent bias, PBIAS ∑n
i=1(YObs

i −YSim
i )∗100

∑n
i=1(YObs

i ).
−18% < PBIAS < 18%

Correlation coefficient, R
√

∑n
i=1(YSim

i −YMean
i ).2

∑n
i=1(YObs

i −YMean
i ).2

R > 0.71

Coefficient of determination R2 R2 > 0.50

Nash–Sutcliffe efficiency, NS 1− ∑n
i=1(YObs

i −YSim
i ).2

∑n
i=1(YObs

i −YMean
i ).2

NS > 0.50

Kling-Gupta efficiency, K-G 1−

√(
YMean

Sim
YMean

Obs
− 1
)2

+
(

STDEVSim
STDEVObs

− 1
)2

+ (R− 1)2 K-G > 0.50

Willmott’s index of agreement, d 1− ∑n
i=1(YObs

i −YSim
i ).2

∑n
i=1(|YSim

i −YMean
Obs |+|YObs

i −YMean
Obs |).2

d > 0.65

YObs
i = Observed SST concentration

YSim
i = Simulated SST concentration

YMean
Obs = Mean of observed SST concentration

YMean
Sim = Mean of simulated SST concentration,

n = Total number of daily SST concentrations

In this research, the acceptability ranges for the indicators of statistical fit (NS, R2,
and K-G) were set up so that the prediction capabilities of the NARX model are better than
satisfactory. The upper limit for the estimators of fit is 1.0, corresponding to perfect fit
between simulated and observed data. On the other hand, correlation coefficient values
greater than 0.7 are considered acceptable (R > 0.7); therefore, the acceptability range for the
coefficient of determination would be: R2 > 0.5. Moreover, Knoben et al. [38] (after perform-
ing a random sampling experiment) report that K-G = 0.5 correspond (in average) to NS
= 0.5. Based on these considerations, Table 2 shows the statistical indicators acceptability
ranges and formulae used in this research.

Summarizing, the quality of the NARX output was categorized as having good
statistical fit with observed data according to the following criteria:

• Monthly time-step simulations: RSR < 0.7, −15% < PBIAS < 15%, R2 > 0.6, NS > 0.6,
and K-G > 0.6.

• Daily time-step simulations: RSR < 0.79, −18% < PBIAS < 18%, R2 > 0.5, NS > 0.5,
and K-G > 0.5.

• In cases in which simulations for SST produced unbalanced performance ratings,
the Willmott’s index of agreement (d) was calculated, and if most statistical indicators
were on the acceptable ranges, the simulation was rated “satisfactory”. Since in
this research, d is used as a deciding qualifier of statistical fit, its threshold values
of acceptability are more stringent than those of R2 and NS indicators–for monthly
simulations d > 0.78 and for daily simulations d > 0.65.

• Ranges for PBIAS and RSR were assigned after [36].
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3. Results
3.1. NARX Training

Training of the NARX net was a trial-and-error process, as in any hydrological model
calibration methodology. Daily precipitation, flow, and SST data for years 2011 and 2012
were used for calibration. The network architecture (number of nodes and hidden layers)
was modified sequentially, along with several combinations of other training parameters.
The number of nodes in the hidden layer was varied within the range of 5 to 100. Similarly,
the number of iterations was varied from 50 to 1000. Other NARX net parameters were
also varied in the training process—input delays were varied within the 1:15 to 1:60 range.
The ranges of variation for feedback delays were from 1:2 to 1:6. Training set ratios were
varied from 1/60 to 1/95, validation set ratios from 1/5 to 1/40, and test ratios from 1/5 to
1/20. Table 3 summarizes the final values adopted for all training parameters. MATLAB
notation for all parameters is used.

Table 3. Training data size and splitting.

Non-Linear Autoregressive Exogenous Neural Network
(NARX) Feature Adopted Value

Number of layers 3 (input, hidden, output)
Number of nodes in hidden layer 12

Architecture Open loop
Number of iterations 100

Input delays 1:30
Feedback delays 1:3

Train ratio 70/100
Value ratio 15/100
Test ratio 15/100

Training algorithm Bayesian regularization

3.2. Calibration Results

As stated in previous sections, daily precipitation, flow, and SST data for years 2011
and 2012 were used for training of the neural network. Figure 6 illustrates the good quality
results achieved during this model development phase. The figure compares simulated
daily SST data to observed daily SST data (from 1 January 2011 to 31 December 2012), at the
Francia Creek watershed exit. Scatter plots of measured versus simulated data are also
shown, including statistical fit parameters (NS, PBIAS, RSR, R2, and K-G).

Figure 6 shows that the trained NARX successfully captured seasonal SST trends, peak
values and daily baseflow SST concentrations. Table 4 shows that training of the NARX net
(with daily data from years 2011 and 2012) was successful. All the statistical indicators are
shown to be well within acceptable ranges for daily simulations. Consequently, the simu-
lated output has a particularly good statistical fit with the observed data. Nevertheless,
results during training of a neural network are usually characterized by good indicators
of statistical fit and low statistical error. The actual test of a neural network is during the
validation phase, in which the NARX predictions are compared to independent datasets of
observed SST concentrations.

3.3. Validation Results

Validation of the neural network was undertaken in two steps: (a) assessing its capability
to hindcast past observed data for years 2008 through 2010 (daily baseflow, monthly mean,
and monthly maximum SST concentrations) and, (b) evaluating its potential to forecast daily
SST concentrations, and monthly maximum and monthly mean SST concentrations.
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Figure 6. NARX training results. Daily SST concentrations and flow data for years 2011 and 2012 were used for training.

Table 4. NARX net calibration/training results.

Comparison
Period

Indicator Ranges for Daily SST Simulation

RSR < 0.79 −18% < PBIAS < 18% R2 > 0.5 NS >0.5 K-G > 0.5

2011 0.26 −0.28% 0.94 0.93 0.94
2012 0.32 9.99% 0.94 0.90 0.88

3.3.1. Hindcasting SST Concentrations

Figure 7 shows simulated SST concentrations for daily baseflow during years 2008
and 2010. The scatter plots associated with the daily comparison charts for SST concen-
trations and Table 5, show that the neural network provided particularly good quality
hindcasting of daily baseflow SST concentrations. All statistical indicators of fit were
greater than 0.73 (NS = 0.74 R2 = 0.82, K-G = 0.83). Error indices (PBIAS and RSR) were also
optimal—percent bias (PBIAS) was smaller than 14% and RSR (root mean square error
normalized by the standard deviation of observed concentrations) was smaller than 0.52.
Therefore, the neural network is able to hindcast concentration values occurring in Francia
Creek under baseflow conditions (i.e., absence of rain).

The NARX net capability of hindcasting mean and maximum concentrations was
explored at monthly time-step. Figure 8 shows comparison charts of simulated and
observed monthly mean and maximum SST concentrations. The neural net acceptably
hindcasts the monthly mean SST concentrations. Table 6 summarizes the statistical fit and
error indicators for the monthly simulations.

Table 5. Hindcasting of daily SST concentrations for years 2008–2010.

Comparison
Period

Indicator Ranges for Daily SST Simulation

RSR < 0.79 −18% < PBIAS < 18% R2 > 0.5 NS > 0.5 K-G > 0.5

2008–2010 0.51 −13.40% 0.82 0.74 0.83
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mean and maximum SST concentrations.

Table 6. Hindcasting of monthly mean and maximum SST concentrations for years 2008–2010.

Monthly SST
for 2008–2010

Indicator Ranges for Monthly SST Simulation

RSR < 0.70 −15% < PBIAS < 15% R2 > 0.6 NS > 0.6 K-G > 0.6

Mean 0.74 −15.24% 0.64 0.55 0.72
Maximum 0.55 1.52% 0.69 0.69 0.71

Table 6 shows that monthly mean SST concentrations hindcasted by the NARX net for
years 2008 to 2010 are acceptable. Statistical indicators of error and bias (RSR and PBIAS)
are slightly off from the acceptable ranges, but the statistical indicators of fit efficiency and
correlation are good (R2 = 0.64, NS = 0.55, K-G = 0.72). However, since NS is slightly lower
than the required minimum value (Table 6), the Willmott’s index of agreement is calculated
to further ascertain on the statistical fit of the simulated SST concentrations. The resulting
index of agreement is d = 0.86 which confirms the good quality of the monthly SST mean
concentrations forecasting.
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The neural network estimations for monthly maximum SST concentrations are very
good. RSR = 0.55 indicates low RMSE or residual variation and therefore an accurate
model simulation. Similarly, PBIAS = 1.52% indicates a low biased model simulation,
with simulated data slightly overestimating observed data. The statistical indicators of fit
(R2 = 0.69, NS = 0.69, and K-G = 0.71) categorize the NARX net output as a good estimation
of monthly maximum SST concentrations. Therefore, the neural network performance in
hindcasting was successful.

3.3.2. Forecasting SST Concentrations

The NARX net forecasting capabilities was initially assessed for monthly maximum
and monthly minimum SST concentrations, to verify if the neural network was proficient
in capturing seasonal concentration trends and values. The evaluation included the com-
parison of simulated and observed data for two years hindcasts—2013 and 2014. Predicting
seasonal and interannual variation in SST concentrations is key in the understanding of
erosion and sediment transport processes at watershed scale. Depending on the season of
the year, weathering could be more important than sediment transport, and vice versa.

Figure 9 and Table 7 show a comparison of NARX-estimated monthly SST concentra-
tions for years 2013 and 2014. As shown, monthly mean SST concentrations estimations are
barely acceptable. Statistical errors for monthly mean estimations are contradictory—while
PBIAS = 3.29% indicates low deviation from observed data, RSR = 0.79 shows that the
normalized root mean square error is slightly higher than the desired range (RSR < 0.7).
The statistical indicators of fit are also contradictory. While the Kling-Gupta efficiency value
indicates good fit (K-G = 0.65), the coefficient of determination R2 = 0.43 is not satisfactory.
To settle this apparent contradiction, the Willmott’s index of agreement, d, was calculated.
The computation of this statistical indicator of fit produced a value of d = 0.79, indicating
good fit between simulated and observed SST concentrations. If simulation for one out-
put variable produces unbalanced performance ratings (as in this case), then, the overall
performance should be described conservatively as satisfactory [25].
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Figure 9. Forecasting of monthly mean and maximum for years 2013 and 2014. The neural network forecast of monthly
maxima is shown to be successful while monthly means forecasting is less effective but acceptable.
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Table 7. Forecasting of monthly mean and maximum SST concentrations for years 2013–2014.

Monthly SST
for 2013–2014

Indicator Ranges for Monthly SST Simulation

RSR < 0.70 −15% < PBIAS < 15% R2 > 0.6 NS > 0.6 K-G > 0.6

Mean 0.79 3.29% 0.43 0.34 0.65
Maximum 0.62 18.87% 0.69 0.60 0.54

On the contrary, forecasting of monthly maximum SST concentrations is shown to
be successful (Table 7, Figure 9). Only PBIAS is slightly higher than the required thresh-
old (15%) and Kling-Gupta is slightly below 0.6. All other statistical (RSR, R2, and NS)
indicators are within the acceptable ranges. The statistical fit of simulated SST concentra-
tions to observed data is further reinforced by the calculation of the Willmott’s index of
agreement—d = 0.84 (indicating good statistical fit). Therefore, the NARX model is able to
forecast the monthly maximum SST concentrations for years 2013 and 2014.

Forecasting of SST concentrations for years 2013 and 2014 was also performed at daily
time-step. Figure 10 shows a comparison of daily simulated SST concentrations to daily
observed SST data. A scatter plot of observed versus simulated data is included, showing
statistical indicators of error and fit for the simulated SST concentrations.
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Figure 10. Forecasting of daily SST concentrations for years 2013 and 2014. The statistical indicators for the NARX net
forecast show that prediction of daily SST concentrations for 2013 and 2014 is limited. However, if 2014 is analyzed
separately, the daily SST concentrations forecast is successful.

Table 8 summarizes error and fit statistical indicators obtained for the simulated daily
SST concentrations, comparing them to acceptable ranges for daily level. The statistical
indicators of fit are contradictory—while K-G has an acceptable value (0.5), R2 and NS
present values lower than the acceptable threshold. Indicators of statistical error are also in
disagreement—PBIAS = 3.41 reveals low levels of bias, while RSR = 0.89 is higher than the
acceptable value (0.79). As in previous cases, the Willmott’s index of agreement (d) was
calculated for having more insight into the quality of simulated values. The resulting value
is d = 0.68. Therefore, the daily forecasting of SST concentrations for years 2013 and 2014 is
satisfactory.

Table 8. Forecasting of daily SST concentrations for years 2013–2014.

Comparison
Period

Indicator Ranges for Daily SST Simulation

RSR < 0.79 −18% < PBIAS < 18% R2 > 0.5 NS > 0.5 K-G > 0.5

2013–2014 0.89 3.41% 0.28 0.21 0.50
2014 0.91 −15.86% 0.53 0.47 0.60

Baseflow 0.54 3.6% 0.73 0.71 0.84

If Figure 10 is explored further, it shows that the daily simulation of SST concentrations
corresponding to 2014 approximates observed data better than in year 2013. Therefore,
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statistical indicators for 2014 were calculated separately. Table 8 shows the resulting values.
As shown, statistical indicators of fit for year 2014 improved greatly (R2 =0.53, NS = 0.47,
K-G = 0.60). Moreover, the additional calculation of Willmott’s index of agreement yielded
d = 0.82. Therefore, the statistical indicators for year 2014 reveal that forecasting for that
year alone was of acceptable quality.

Forecasted daily SST concentrations for daily baseflow (during years 2013 and 2014)
is shown in Figure 11. The figure and corresponding statistical indicators (Table 8) are
shown to be very good. All statistical fit indicators are greater than 0.7 (R2 = 0.73, NS = 0.71,
K-G = 0.84). Likewise, indicators of statistical error are well below the acceptable maximum
values—PBIAS = 3.6% < 15%, RSR = 0.54 < 0.79. Moreover, the NARX net is able to
capture daily SST concentration peaks occurring during the period of analysis. Therefore,
the forecasting of daily SST concentrations occurring under baseflow conditions is of very
good quality.
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4. Discussion

This research shows that forecasting total suspended sediment (SST) concentrations
can be performed using a non-linear autoregressive artificial neural network with exoge-
nous inputs (NARX). Although the modeling strategy and the resulting neural network
were applied to estimate SST concentrations occurring at Francia Creek (Valparaiso, Chile),
the NARX could be adjusted (via re-training) to estimate SST concentrations in other
streams and watersheds. The NARX developed in this study was able to predict daily
and monthly SST concentrations for years 2013 and 2014, based on precipitation and SST
concentrations from previous years (2011 and 2012). The daily SST concentrations were
more accurately forecasted for baseflow conditions. Indicators of statistical fit between
forecasted and observed data were R2 = 0.73, NS = 0.71, and K-G = 0.84, which indicate
very good quality prediction levels of daily SST concentrations under baseflow conditions.
Indicators of statistical error were below the acceptable maximum values—PBIAS = 3.6%
< 15%, RSR = 0.54 < 0.79, which demonstrates that the simulated daily SST data had low
residual variation and low bias, characteristics of accurate forecasting.

When comparing simulated and observed daily SST concentrations for a complete year,
the NARX network produces a satisfactory forecasting of daily data. For year 2014, the sta-
tistical indicators of fit were R2 = 0.53, NS = 0.47, K-G = 0.60, Willmott’s index of agreement
d = 0.82. Therefore, the statistical indicators of fit were within acceptable margins. The fore-
casted SST concentrations underperformed in statistical error (RSR = 0.91 > 0.79) but over-
performed bias indicators (PBIAS = −15.86% is within the range: −18% < PBIAS < 18%).

Predicting daily SST concentrations for two years decreases the forecasting quality of
the neural network. Predictions for 2013 and 2014 yielded the following indicators of statis-
tical fit: K-G = 0.5, R2 = 0.28, NS = 0.21, Willmott’s index of agreement, d = 0.68. Indicators
of statistical error were PBIAS = 3.41 (low bias), RSR = 0.89 > 0.79. Therefore, the daily
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forecasting of SST concentrations for years 2013 and 2014 was satisfactory. However,
monthly maximum SST concentrations for the two-year period (2013 and 2014) were well
captured by the NARX network: RSR = 0.62 > 0.6, PBIAS = 18.87% < 20%, R2 = 0.69 > 0.6,
NS = 0.60 > 0.6, K-G = 0.54 > 0.5, d = 0.84 > 0.8.

In consequence, the NARX network successfully forecasted daily SST concentrations
for baseflow conditions for two years (2013 and 2014). Also, the neural network was able
to forecast (within acceptable statistical fit margins) daily SST for up to one continuous
year (2014). At a monthly level, the NARX network was able to predict maximum SST
concentrations for two years (2013 and 2014).

The results reported in this paper are relevant to sustainable land management as
they provide a forecasting methodology applicable to other watersheds. Nevertheless,
the NARX-based forecasting model developed in this research is more site-specific than
physically based models (such as the SWAT-MUSLE applications reported in [39]), and it
may require substantial adjustments if meteorological conditions and flow regimes are
very different to those encountered in this study.
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