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Abstract: The land ecosystem provides essential natural resources for the survival and development
of human beings. Therefore, land ecological security (LES) acts as a vital part of the sustainable
development of human society and economy. This study included a dynamic analysis of land use
change in Chaohu Lake Basin (CLB) in China from 1998 to 2018, evaluating the spatiotemporal
patterns of LES at both the administrative district scale and grid scale (200 m × 200 m). Then,
geographic detector was applied to analyze the influence of the assessment index on LES. The results
show that in the 2008–2018 period, land use changed more significantly compared to the 1998–2008
period. The continuous extension of urban land led to a decrease in the areas of other land use types.
In the CLB (administrative district scale), the LES levels varied throughout the study period. In
Changfeng, Feixi, and the other three regions, the LES has been significantly improved. However,
the LES in six other regions showed different degrees of decline, particularly in Hexian and Urban
Hefei. Simultaneously, the LES showed a gradual improvement at a 200 m × 200 m grid scale
level. The influence of anthropogenic factors on the LES was stronger than natural factors. Findings
from this study provide reliable guidance for improving the ecosystem environment in ecologically
fragile areas.

Keywords: land use change; land ecological security; PSR framework; influencing factors; Chaohu
Lake Basin

1. Introduction

Ecological security is considered to be a fundamental requirement for economic devel-
opment and social progress [1]. However, human activities have led to significant changes
in the ecological environment. Environmental degradation and pollution emissions have
been repeatedly allowed, damaging the region’s natural surface cover, and aggravating
industrial pollution and water pollution. Together, these have compromised worldwide
ecological security [2,3]. Therefore, more attention has been paid to ecological security
issues over time. Ecological security has become a prominent research topic of wide in-
terest [4,5]. The specific concept of ecological security was first proposed by the United
States (U.S.) government [6], which articulated that ecological security is a concept with
multiple meanings and is part of national and public safety [7,8], with a certain political
color [9]. Ecological security can also reflect the integrity and health of the ecosystem,
which is defined as the comprehensive status of the human ecosystem [10].
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Land ecological security (LES) represents the health of the environment and the sus-
tainability of land resources and ecosystems, steadily providing steady ecological services
and filling ecological needs for future generations [11]. Specifically, LES is a complicated
system consisting of land natural ecological security, land economic security, and land
social security [12]. Since the end of the 1970s, LES has attracted great attention from the
government and academia, which has advanced research on the definition of LES and
research on environmental safety and change [13]. With the continuous deepening of
research on LES, scholarly research has focused on the following aspects: land risk assess-
ment [14], land ecosystem health diagnosis [15,16], ecological service value accounting [17],
LES assessment [13], and establishing ecological security patterns [18].

Due to the rapid development of urbanization worldwide, the impacts created by
land use change have gradually emerged. Land use transfer has a great impact on regional
environment and ecosystem services [19,20]. Human activities can directly affect the LES
in a region [21]. Study results have shown that short-term man-made changes in land use
can fundamentally change the ecosystem [22,23]. The land use structure has significantly
changed with the continuous follow-up of urbanization. With the expansion of urban
built-up areas, commercial and industrial demands for land must often be met by adjusting
land use patterns (such as cropland land, forestland, water area, and other land-use) [24].
In addition, the constant increase of urban construction land produces pollutants, which
seriously harm the ecological environment and which may have an unknown impact on
ecological security.

To assess LES, multiple factors including natural, economic, and social factors should
be considered [25]. Recently, ecological security assessments have been closely related
to ecosystem health assessments, ecological risk assessments, and ecosystem service as-
sessments [5]. The research scale of LES assessment has been continuously expanding,
mainly involving cities [5,26], urban agglomerations [27,28], and watersheds [29]. The
models have included Driving Force-State-Exposure-Effect-Action (DSEEA) [30], Pressure-
State-Response (PSR) [31], and Driving Force-Pressure-State-Impact-Response (DPSIR) [32].
There are many assessment model methods, including the mathematical model method [29],
ecological model method [27], and landscape model method [33]. Although there are dif-
ferent framework systems and models to support ecological security assessments, there
remains a need for a complete evaluation index system, evaluation standard, and evaluation
model [34]. The PSR model is a commonly used model in ecological security assessment.
The advantage of this model is that it can deeply reflect the interaction mechanisms between
the natural ecosystem and the social ecosystem [35].

Currently, LES assessments are mainly based on the widely-used index system. How-
ever, choosing different indices and assessment methods may increase the uncertainty of
assessment results [36]. Simultaneously, there remain problems of subjectivity and objec-
tivity in the process of determining the weight [34]; combining subjective and objective
methods can avoid the impact of a single method. In addition, as a considerable part of
the LES assessment, the security threshold will directly affect the accuracy and scientific
nature of the assessment results. However, strong subjectivity in the classification and even
a slight adjustment of the threshold may affect the result of LES assessment [37].

Identifying and determining influencing factors are also core issues in ecological
security research [36]. Current methods for quantitatively determining the relationship
between influencing factors and ecological security include linear regression analysis,
generalized additive models (GAM) [13], BP-DEMATEL analysis [36], the geographical
detector method, and the improved geographical weighted regression (GWR) model based
on the traditional linear regression model. Studies have also combined two of these
approaches [38,39]. LES is affected by multiple factors, but most studies have focused
on natural factors, such as topography, soil, vegetation coverage, etc. They have not
considered the impact of social-economic development and human activities on ecological
security, and have not compared the relative importance of different social and ecological
factors [40,41]. Therefore, quantifying influencing factors remains a practical problem.
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Based on the considerations above, this study analyzed land use change in the Chaohu
Lake Basin (CLB) from 1998 to 2018 with respect to changes in quantity and spatial distri-
bution. The study combined the PSR model, analytic hierarchy process, entropy weight
method, and comprehensive index model to conduct empirical research on the LES assess-
ment of CLB. First, standardized dimensionless values of all indices were constructed, and
the weights of assessment indices were determined, by combining the analytic hierarchy
process and entropy weight method. Based on this, the comprehensive index model was
used to objectively evaluate the LES, and the geographical detector method was applied to
identify the natural and socio-economic factors impacting the spatial change of LES.

2. Data and Methodology
2.1. Study Area

CLB is in the east Chinese Province of Anhui, located between 116◦24′–118◦0′ E and
29◦01′–33◦16′ N, and covers an area of 2.04 × 104 km2. The study area consists of 11
administrative districts (Figure 1). The industrial structure is dominated by secondary
and tertiary industries. The CLB has been subject to strong human disturbance. It is a key
development zone and a vital ecological protection zone in China.
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Anhui province; (c) 11 regions and their geographical locations in the study area and Landsat 8 false color image with the
fusion of bands 7, 5, 3 in the study area.
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The CLB is one of the five largest freshwater lakes in China. The area has additional
rich water resources, with 33 rivers running into Chaohu Lake. The annual average
temperature is 15–16 ◦C and the annual average rainfall is 1100 mm. The overall topography
of CLB is high in the west and low in the east, with low-lying plains in the middle, and low
mountains and hills all around.

2.2. Data Collection

This study used three categories of data sources: remote sensing (RS) image data,
digital elevation model (DEM) data, and socio-economic data. RS images have significant
benefits when analyzing land use change. Landsat 5 TM (Thematic Mapper) and Landsat 8
OLI (Operational Land Imager) data were acquired for this study at a resolution of 30 m,
for years 2018, 2008, and 1998. All RS image data were downloaded for free from the
United States Geological Survey website (USGS, https://earthexplorer.usgs.gov/). The
images were selected from the spring season, given the clear features, good vegetation
growth, and small cloud cover.

When selecting RS images, it was necessary to integrate two neighbor images to obtain
a complete panoramic image of CLB due to its large geographical area. When using two
neighbor images, it is ideal if they were acquired on the same date. This is, however,
difficult to achieve given image clarity, cloud coverage, and other factors. Nevertheless,
land use change in two consecutive years is considered minor, and the image acquisition
occurred during the spring, which has a small impact on land use classification. Therefore,
this article selected the RS image data presented in Table 1.

Table 1. Landsat image data used in the study.

Year Sensor Acquisition Date (Path/Row)

1998 TM 1998-4-19 (121/38), 1998-4-28 (120/38)
2008 TM 2008-5-16 (121/38), 2009-4-26 (120/38)
2018 OLI 2018-4-10 (121/38), 2018-4/19 (120/38)

Digital elevation model (DEM) data were used to extract terrain information. The
ASTER GDEM with a spatial resolution of 30 m was the main data source for DEM data
(http://www.giscloud.cn/).

Normalized Difference Vegetation Index (NDVI) reflects the vegetation of regional
ecosystem and land use change. NDVI is also a widely applied indicator to quantify
ecological status [42] and higher vegetation means safer ecosystems [43]. We used ENVI
5.3 to calculated vegetation cover from RS images, which was shown in Figure 2:

https://earthexplorer.usgs.gov/
http://www.giscloud.cn/
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Figure 2. Map of Normalized Difference Vegetation Index (NDVI) of the CLB in 1998 (a), 2008 (b), and 2018 (c).

The socio-economic data were collected from the Anhui Provincial Social and Eco-
nomic Statistical Yearbooks. Statistical Yearbooks and socio-economic development Statis-
tics Bulletins for the 11 regions were also used. The data from 1998 to 2018 were selected.
All the collected data were converted to raster data at a raster cell of 200 m × 200 m. The
details of indices are shown in Table 2:
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Table 2. Data resources for the different indices.

Index Data Sources

Per capita cropland area
Socio-economic development Statistics

Bulletins and land use data
Pesticide use per cropland area
Fertilizer use per cropland area

Economic density Statistical yearbook
Land use intensity

Land use dataAnthropogenic disturbance index

Grain yield per capita Statistical yearbook
Mechanization degree of the agricultural area Socio-economic development Statistics

Bulletins and land use dataElectricity consumption per cropland area
Slope DEM

Proportion of water area Land use data
NDVI Remote sensing images

Per capita GDP

Statistical yearbookProportion of tertiary industry
Per capita net income of farmers

Afforestation area

3. Methods
3.1. Land- Use Classification

ENVI 5.3 software was applied to preprocess RS images, including radiometric calibra-
tion, atmospheric correction (FLAASH), geometric correction, mosaicing, and subsetting.
The Random Forest (RF) model [44] was used to review and classify images based on a
random forest classification plug-in named EnMAP-Box. RF, established by Breiman [45],
creates multiple decision trees, combined to calculate a classification by randomly replacing
the resampled data and altering the predictor sets over the different tree induction devel-
opments [46]. The accuracy of the RF classification results depends on the combination
of the number of trees and random features two key parameters [47]. To improve the
accuracy of the RF model, NDVI [48] and Modified Normalized Difference Water Area
Index (MDDWI) [49] two features were applied in the RF model. In addition, we used
out-of-bag (OOB) test to estimate the test set accuracy [50], and we set the number of trees
and random features at 50 and 3 for classification. According to the China land use/cover
remote sensing classification system [51], the land use types were divided into 6 categories:
cropland, grassland, forestland, urban land, water area, and other land-use. Figure 3 shows
the classification results:
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We verified the classification accuracy of RS images by combining ArcGIS with Google
Earth: 500 random points were generated for each phase of the image; these 500 samples
were imported into Google Earth to acquire baseline data. The verification results and
classification results were imported into Matlab to generate a confusion matrix. The
results showed that the overall classification accuracies in 2018 and 2008 reached 88.71%
and 88.17%, respectively. The kappa coefficients were 0.8137 and 0.8102, respectively,
indicating high classification levels that met application requirements [47]. Due to the lack
of high-resolution Google Earth images for 1998, the classification results for that year
were not verified. However, based on the same basic conditions of RS images and the
same classification method, the classification accuracy was considered to be close to 2008
and 2018.

3.2. Analysis of Land Use Change
3.2.1. Land Use Dynamic Degree Models

Land use dynamic degree expresses the rate of land use change within a certain
period [52]. The formula is as follows:

K =
Ub −Ua

Ua
× 1

T
× 100% (1)



Sustainability 2021, 13, 358 8 of 28

where K represents the land use dynamic degree (%); Ua and Ub represent the area (km2) of
a certain land use type at the beginning and the end of a certain period, respectively, and T is
the study period (years). K shows whether a single land use type has a negative or positive
change, but does not show the contribution of each land category to the overall change.

Land use integrated dynamic degree describes the overall rate of change in land use
and degree in a certain period [53]. The equation is as follows:

LC =

(
∑n

i=1 ∆LUi−j

2 ∑n
i=1 LUi

)
× 1

T
× 100% (2)

where LC (%) stands for the land use integrated dynamic degree; LUi is the area (km2) of
the land use type i during the monitoring period; ∆LUi−j represents the absolute value of
the area (km2) of the land use type i converted to j-type land use type during the study
period; the units of calculation for the above three parameters are all square km. T is the
scope of the study period (years).

3.2.2. Characterizing Land Use Transition

The changing land use trends in the study area are reflected in the dynamic changes in
the spatial pattern and quantity of different land use types [54]. The transfer matrix depicts
the structural characteristics of the regional land use change and the transfer direction
of each land use type. According to the classification results of 1998, 2008, and 2018, the
overlay analysis function in ArcGIS was used to generate a utilization transfer matrix
for different land use types in 1998–2008, 2008–2018, and 1998–2018, respectively. The
mathematical model of the transfer matrix is as follows [55]:

Sij =


S11 S12 S13 · · · S1n
S21 S22 S23 · · · S2n
S31 S32 S33 · · · S3n
· · · · · · · · · · · · · · ·
Sn1 Sn2 Sn3 · · · Snn

, (3)

in this formula, Sij represents the area (km2), n represents the number of land types; and
i and j represent the land use types at the beginning and end of the study period in the
study area, respectively. Each row element of the transfer matrix represents the flowing
information of land use, and each column element represents the source information. The
transfer matrix shows the land use structure at the beginning and end of the study period,
and reflects the transfer of land use types in different periods.

3.3. Assessment of Land Ecological Security
3.3.1. Establishment of the LES Assessment Framework

Multifarious methods have been used for ecological security assessment: the fuzzy
evaluation method [34], comprehensive index method [56], landscape ecology [30], and
ecological footprint approach [57]. This study constructed a PSR model based on data avail-
ability and relevant policy requirements from three aspects: Pressure, State, and Response.

The PSR model was proposed by David [30]; it has been widely used in resource
sustainable utilization, ecological security assessment, and environmental assessment [29].
There were two reasons to apply the PSR model for this study. First, the PSR model often
provides a clear causal relationship, stressing the interaction between human activities and
the ecosystem [58]. When human activities cause a certain degree of pressure (P) on the
environment, the state (S) of the environment changes to a certain extent, and people can
take certain measures to improve the environment in response (R) to these changes. The
actual conditions of CLB and the scientific and dynamic of index selection were used as the
starting point of selecting an appropriate index system.

We established a PSR assessment framework, including 16 assessment indices (Table 3)
with relevant references. These indices were selected to consider the accessibility and the
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typicality of data. The pressure subsystem describes the influences of different human
activities on the land ecosystem, including population, environment, and economy [59].
The state subsystem depicts the current status or future trends of the land ecosystem.
The response subsystem describes a series of measures that people have taken to repair
ecosystems and mitigate adverse ecological changes [60].

Table 3. LES assessment indices of CLB.

Target Layer Project Layer Number Index Layer Unit Index Attribute References

Land Ecological
Security (LES)

Pressure

X1 Per capita cropland area hm2/capita + [30,35]

X2 Pesticide use per cropland
area kg/hm2 − [59]

X3 Fertilizer use per cropland
area kg/hm2 − [30,59]

X4 Economic density yuan/km2 − [59]
X5 Land use intensity / − [61]

X6 Anthropogenic disturbance
index / − [36]

State

X7 Grain yield per capita kg/capita + [26]

X8 Mechanization degree of the
agricultural area Kw/hm2 + [62]

X9 Electricity consumption per
cropland area Kw h/hm2 + [63]

X10 Slope / − [38,64]
X11 Proportion of water area % + [36]
X12 NDVI / + [30,36]

Response

X13 Per capita GDP yuan + [34,36]

X14 Proportion of tertiary
industry % + [35,36]

X15 Per capita net income of
farmers yuan + [59,64]

X16 Afforestation area hm2 + [30,65]

3.3.2. Determination of the Assessment Unit

Determining the spatial scope of the assessment unit is a starting point when evalu-
ating and analyzing the regional LES. The size of assessment unit often varies with the
amount of data and the size of the assessment area [38]. Most LES assessment studies have
applied the administrative unit as the data carrier, because it is a convenient unit for data
collection. However, we determined that administrative districts are not suitable for spatial
visualization, given the vast expanse of the CLB. Therefore, the administrative district
level and grid level were selected as assessment units to ensure the comprehensiveness of
the assessment. We adopted the GIS spatial overlay method to determine the grid scale.
After several repeated resampling events at different scales and facilitating the calculation,
we decided to vectorize and resample the multi-source data to 200 m × 200 m, using the
nearest resampling method to reflect the spatial internal differences of the LES in CLB.

3.3.3. Standardization of the Assessment Index

The data sources of an LES assessment reflect different aspects of nature, society, and
economy, and different dimensions and distributions of the indices make it difficult to
compare them directly [26,38]. This highlighted the need to apply a Range Analysis to
normalize the original data. The indices after normalization ranged from 0 to 1. As Table 3
indicates, for a positive trend index, a higher index value was associated with a better LES
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level. For a negative trend index, a lower index value was associated with a better LES
level. The index was standardized as follows [66]:

x′ ij =
xij − xmin

xmax − xmin
(4)

x′ ij =
xmax − xij

xmax − xmin
(5)

where x′ ij represents the standardized value of each index; xij is the original value of
the j-th index of the i-th assessment unit; and xmax and xmin refer to the maximum and
minimum values of the j-th index, respectively. Equation (4) calculates the positive index,
and Equation (5) calculates the negative index. All aseements indices were exported in
the form of raster type data. The paper presents export results for 2018 to conserve space
(Figure 4). Export results for 1998 and 2008 are presented in Appendix A.
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3.3.4. Determination of Index Weight

When establishing an ecological security assessment index system, it is critical to
determine the weight of each assessment index [67]. This study combined the Analytic
Hierarchy Process (AHP) and Entropy weight method to calculate the weight of the
ecological security assessment index.

The AHP treats complex problems as a system. The model analyzes the factors in the
system and generates an orderly level of interconnection, which combines qualitative and
quantitative methods [68–70]. The AHP consists of three steps [71]. First, experts judge the
relative importance of each index, establishing a relative importance matrix of assessment
indices. Second, the eigenvalues of the matrix and the corresponding eigenvectors are
calculated [72,73]. Third, the total hierarchy is sorted to determine the weight value of each
level factor after the AHP model passes the consistency test.

The entropy weight method is applied to determine the weight of the index according
to the value of index information [56]. This makes the calculated weight more realistic, and
avoids the subjectivity of calculating different indices under objective conditions [74]. The
process is as follows.

According to the definition of entropy, there are n grid units and m assessment indices.
As such, the entropy of the assessment index is:

Hij = −K
m

∑
i=1

(
fij ln fij

)
(6)

where Hij refers to the entropy value of the i-th index; fij = bij/ ∑n
i=1 bij; and K = 1/ ln n.

We assumed that when fij = 0, fij ln fij = 0, bij is the value of the j-th index of the i-
th assessment unit. Then, Formula (7) was used to generate the entropy weight of the
i-th index.

Wi =
1− Hi

m−∑m
i=m Hi

, 0 ≤Wi ≤ 1,
n

∑
i=1

Wi=1 (7)

The comprehensive weight was the coefficient of 0.5 for the AHP and the entropy
weight method [75]. This was used as the weighted multiplication to generate the compre-
hensive weight values of the assessment indices for each period (Table 4).

Table 4. Weights for the assessment index of LES in CLB.

Project Layer Index Layer
Weight

1998 2008 2018

Pressure

Per capita cropland land area 0.0672 0.0812 0.0848
The pesticide use per cropland area 0.0666 0.0675 0.0529
The fertilizer use per cropland area 0.0505 0.0555 0.0681

Economic density 0.0148 0.0164 0.0162
Land use intensity 0.1172 0.1252 0.1213

Anthropogenic disturbance index 0.1169 0.1249 0.1210

State

Grain yield per capita 0.0159 0.0153 0.0144
Degree of agricultural mechanization 0.0565 0.0807 0.0784

Electricity consumption per cropland area 0.0998 0.1109 0.0765
Slope 0.0172 0.0174 0.0174

Proportion of water area 0.0469 0.0498 0.0556
NDVI 0.0553 0.0575 0.0675

Response

Per capita GDP 0.1422 0.0728 0.0578
Proportion of tertiary industry 0.0413 0.0317 0.0479

Per capita net income of farmers 0.0321 0.0331 0.0314
Afforestation area 0.0595 0.0600 0.0887
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3.3.5. Calculating Comprehensive LES Index

The ecological environment is influenced by natural and economic factors [76]. In this
study, the LES comprehensive assessment model was constructed to calculate the index
for CLB. The comprehensive ecological security indices of each subsystem were evaluated
using the weighted summation method:

LES =
n

∑
i=1

SiWi (8)

where Si represents the standardized value of the i-th index, and Wi is the weight coefficient
value of the i-th index. A greater LES value was associated with a higher ecological security
level in the CLB; a lower value was associated with a poorer level of security. Together,
these data and formulas can quantitatively reflect the regional ecological security pattern.

3.3.6. Definitions of LES Level

In an ecological security assessment, thresholds are divided using different approaches,
including the Equal Interval method, Expert method, and Natural Breaks (Jenks). The key
lies in whether the criteria of threshold assessment can distinguish the region’s ecological
security status. Traditionally, the LES index has been generally divided into 5 categories
according to the Equal Interval method: 0–0.2, 0.2–0.2, 0.4–0.6, 0.6–0.8, and 0.8–1.0 [13,15,26].
The comprehensive index of the LES for the CLB was calculated to determine the range
of the index. However, this study found that the calculated ecological security index
range using the traditional security level did not effectively reflect the internal differences
in the CLB. The Natural Breaks (Jenks) was applied to reclassify the index of LES and
the results were adjusted. The results of this revised approach better represented the
internal differences of the LES. Consequently, this method was used to delineate the LES
thresholds. As a data clustering method [77], the Natural Breaks (Jenks) approach reduces
the differences within classes and maximize the differences [78,79]. The LES level [80]
definitions for this study are shown in Table 5.

Table 5. LES levels classification and the definitions of each level.

Levels of LES 1998 2008 2018 Features of the Ecosystem

Very secure 0.545–0.748 0.529–0.690 0.539–0.697 Quite stable ecosystem, relatively primitive and good
environment, high vegetation coverage.

Relatively secure 0.441–0.545 0.460–0.529 0.484–0.539 Relatively stable ecosystem, slight pollution, and high
vegetation coverage.

Middle 0.386–0.441 0.413–0.460 0.436–0.484 Stable ecosystem, medium vegetation, and serious
pollution.

Relatively insecure 0.336–0.386 0.353–0.413 0.372–0.436 Relatively unstable ecosystem, heavy pollution, and low
vegetation coverage.

Very insecure 0.188–0.336 0.213–0.353 0.231–0.372 Unstable ecosystem, high-density built-up area with
serious pollution, and no vegetation coverage.

3.4. Geographical Detector Analysis

The status of LES is the result of multiple factors, and identifying the influencing
factors is important for formulating LES protection policies. Therefore, the geographical de-
tector was applied to study the factors influencing the spatial differentiation that impacted
the LES, assuming independent variable X and dependent variable Y (comprehensive
index of LES). Wang proposed the geographical detector method [81] as a powerful new
statistical method to measure “factor forces.” Combined with GIS spatial superposition
technology and set theory, this method is applied to detect the spatial heterogeneity of
research objects and to quantify how different factors contribute to the results [81].
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We assumed the study area consisted of N units, and the LES for each unit was defined
as Yi (1 ≤ i ≤ N). The X factor layer was divided into h = 1, . . . , L stratum. There are Nh
units in layer h, and N = ∑L

h=1 Nh. In layer h, the LES of each unit is defined as Yhi (1 ≤
hi ≤ Nh). For the entire study area, the mean and variance of LES are Y = (1/N)∑N

i=1 Yi

and σ2 = (1/N)∑N
i=1
(
Yi −Y

)2, respectively. For layer h, the mean and variance of LES are

Yh = (1/N)∑Nh
i=1 Yhi and σh

2 = (1/N)∑Nh
i=1

(
Yhi −Yh

)2, respectively. We used q to measure
the explanatory power of each impact factor on the ecological security status, and renamed
it as the q-statistic as follows [81]:

q = 1− ∑L
h Nhσh

2

Nσ2 = 1− SSW
SST

(9)

SSW =
L

∑
h=1

Nhσh
2 (10)

SST = Nσ2 (11)

where SSW refers to the within sum of the squares; and SST refers to the total sum of
squares. Generally, the q value ranges from [0, 1]. The larger the q value is, the more
significant the spatial differentiation is, and the stronger the explanatory power of factor
X to Y is [82]. The q value was determined using the F test to determine the significance
level. For this study, at a 1% significance level, factors with q values greater than 0.2 were
selected as the leading influencing factors [83].

4. Results
4.1. Analysis of Land Use Change
4.1.1. Change in the Quantity of Land Use

As shown in Table 6, the land use in the CLB has significantly changed from 1998 to
2018. The significant expansion of urban land led to different degrees of reduction in other
land use types. Figure 5 shows that the urban land and the other land-use significantly
changed from 1998 to 2008, at a dynamic degree of 1.30% and −4.28%, respectively. The
dynamic degree of forestland and water area changes were less than 0, and decreased to a
lower extent compared to the other land-use. From 2008 to 2018, the dynamic degree of
urban land increased from 1.30% to 1.77%, with quickened growth. The dynamic degree
of grassland, cropland, and the other land-use changes showed that a large amount of
ecological land was invaded to expand urban land. Moreover, the changes in the other land-
use showed a slowing in the pace of decline, compared to from 1998 to 2008. Throughout
the study period, cropland, forestland, the other land-use, and the water area all shrank,
while the urban land markedly increased.

Table 6. Characteristic of land use structure in CLB from 1998 to 2018.

Land Use Types
Area (km2) Area of Change (km2)

1998 2008 2018 1998–2008 2008–2018 1998–2018

Cropland 12,854.94 13,168.51 12,459.93 313.57 −708.58 −395.01
Grassland 723.14 810.92 781.06 87.78 −29.86 57.92
Forestland 2963.52 2600.20 2864.26 −363.32 264.06 −99.26
Urban land 2251.11 2543.08 2993.21 291.97 450.12 742.09
Water area 1418.97 1165.55 1210.91 −253.42 45.36 −208.06

Other land-use 179.05 102.48 81.37 −76.57 −21.11 −97.68



Sustainability 2021, 13, 358 14 of 28Sustainability 2021, 13, x FOR PEER REVIEW 15 of 30 
 

 
Figure 5. The land use dynamic degree of each land use type from 1998 to 2018 (a), 2008 to 2018 (b), and 1998 to 2018 (c). 

The integrated dynamic degree of land use provides an overall impression of the in-
tensity of land use types from 1998 to 2018 (Table 7). The land use integrated dynamic 
degree in the CLB was 1.31% from 1998 to 2008, and was 1.42% from 2008 to 2018, showing 
an upward trend. This also indicated that land use changed more strongly compared with 
1998–2008. 

Table 7. Land use integrated dynamic degree (LC) in CLB from 1998 to 2018. 

Period 1998–2008 2008–2018 1998–2018 
LC (%) 1.31 1.42 0.78 

4.1.2. Characterizing the Transfer Direction of Land Use 
We established a land use transfer matrix from 1998 to 2018 using the Tabulate Area 

tool of ArcGIS. The results are shown in Table 8 and Figure 6: 

Table 8. Transfer matrix of land use types in CLB from 1998 to 2018 (km2). 

1998 
2018 

Cropland Grassland Forestland Urban Land 
Other 

Land-Use Water Area 

Cropland 9839.73 447.04 586.37 1222.81 111.56 252.42 
Grassland 478.23 88.27 140.77 51.06 21.32 1.41 
Forestland 605.60 91.33 2080.07 64.96 16.24 6.05 
Urban land 1813.51 87.27 141.37 892.55 27.86 30.65 

Other land-use 49.74 8.60 13.02 7.20 2.05 0.76 
Water area 68.13 0.63 1.92 12.53 0.01 1127.69 

Figure 5. The land use dynamic degree of each land use type from 1998 to 2018 (a), 2008 to 2018 (b), and 1998 to 2018 (c).

The integrated dynamic degree of land use provides an overall impression of the
intensity of land use types from 1998 to 2018 (Table 7). The land use integrated dynamic
degree in the CLB was 1.31% from 1998 to 2008, and was 1.42% from 2008 to 2018, showing
an upward trend. This also indicated that land use changed more strongly compared with
1998–2008.

Table 7. Land use integrated dynamic degree (LC) in CLB from 1998 to 2018.

Period 1998–2008 2008–2018 1998–2018

LC (%) 1.31 1.42 0.78

4.1.2. Characterizing the Transfer Direction of Land Use

We established a land use transfer matrix from 1998 to 2018 using the Tabulate Area
tool of ArcGIS. The results are shown in Table 8 and Figure 6:

Table 8. Transfer matrix of land use types in CLB from 1998 to 2018 (km2).

1998

2018

Cropland Grassland Forestland Urban
Land

Other
Land-Use

Water
Area

Cropland 9839.73 447.04 586.37 1222.81 111.56 252.42
Grassland 478.23 88.27 140.77 51.06 21.32 1.41
Forestland 605.60 91.33 2080.07 64.96 16.24 6.05
Urban land 1813.51 87.27 141.37 892.55 27.86 30.65

Other land-use 49.74 8.60 13.02 7.20 2.05 0.76
Water area 68.13 0.63 1.92 12.53 0.01 1127.69
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Land use transfers in the CLB from 1998 to 2018 showed the following characteristics
according to Table 8 and Figure 6. (1) Conversion to cropland was the main land use
transfer characteristic. The transfer rates of grassland, urban land, forestland, and the other
land-use type, as well as water area, reached 70.41%, 90.01%, 66.37%, 86.66%, and 63.03%,
respectively. The transformed areas of urban land reached 1222.81 km2. The transfer rates
of forestland, urban land, and water area from 2008 to 2018 improved compared to 1998 to
2008, while the transfer rates of grassland and the other land-use type showed a downward
trend. (2) The cropland was principally transformed into urban land; the transformed
areas accounted for 70.41%, 58.51% and 60.15% in 1998–2008, 2008–2018, and 1998–2018,
respectively. The conversion from cropland to grassland and forestland was relatively high,
accounting for approximately 40% of the total cropland transfer rate.

4.1.3. Land Use Change Spatial Map Analysis

In this study, the thematic change workflow in ENVI 5.3 was used to generate land
use spatial transfer map based on the land use data from 1998 to 2018 in the CLB. Through
this process, the spatial distribution characteristics of the land use type conversions were
revealed and analyzed, which is showed in Figure 7.
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Figure 7. Transfer map of land use from 1998 to 2018 in CLB (the abbreviations Gr, Cr, Ur, Fo and Wa in the legend represent
grassland, cropland, forestland, water area, and the other land-use type, respectively).

The main spatial characteristics of land use type conversions in CLB from 1998 to 2018
(Figure 7) were as follows. The urban land was mainly converted from cropland, grassland,
and forestland. This occurred in Fexi, Urban Hefei, Changfeng, Feidong, and Hexian; and
demonstrates the spreading characteristics from Urban Hefei to the surrounding areas. The
phenomenon of cropland expansion was the most significant trend, and was distributed in
the whole region. Forestland was intensively converted to cropland in Jin′an, Shucheng,
and Lujiang, which lie among high-altitude and high-slope mountains. The increase of
forestland occurred in Lujiang, Feixi, and Wuwei.

4.2. Land Ecological Security Assessment
4.2.1. Overall Characteristics of LES in Municipal Areas

This study used administrative districts as the assessment unit to reflect the ecological
security status of the CLB at a macro scale. Using Formula (7) and the collected statistical
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data, RS data, land use data, and DEM data of administrative districts, we calculated the
county LES. The results are shown in Figure 8.
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Figure 8. The LES index of administrative districts in CLB from 1998 to 2018.

In 1998, there was no significant difference in the LES value at the administrative
district scale in the CLB. The LES levels were higher in Shucheng and Chaohu compared to
other regions. In 2008, the LES levels of most counties had increased to varying degrees;
nevertheless, the LES levels in Hexian and Urban Hefei showed a downward trend. For
example, the LES in Urban Hefei decreased from 0.4174 to 0.3333. In 2018, the LES levels in
most regions showed different trends compared to 2008. In Hexian, Hanshan, Jin’an, and
Feidong, there was a decreasing trend; the other seven regions showed an increasing trend.
The highest comprehensive index value was in Chaohu (0.6216), followed by Shucheng;
Urban Hefei had the lowest value.

4.2.2. Characteristics of Spatial Structure of LES Based on Grid

To further understand the spatial differences of LES in the administrative districts of
CLB, ArcGIS 10.2 was used to describe the spatial situation. Furthermore, we calculated
the number of grid units at each level, as shown in Table 9 and Figure 9.
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Table 9. Proportion of LES levels of CLB from 1998 to 2018.

Level
Percentage (%)

1998 2008 2018

Very secure 2.96 5.40 12.54
Relatively secure 14.26 27.54 33.08

Middle 27.80 21.11 28.62
Relatively insecure 35.93 36.73 15.88

Very insecure 19.05 9.22 9.87
Total 100.00 100.00 100.00
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The LES in the CLB showed a positive trend from 1998 to 2018. In 1998, approximately
35.93% of the CLB was at the “very insecure” level; approximately 27.80% was at the
“middle” level; and only 2.96% of the study area was at the “very secure” level. In 2008,
the “very insecure” level decreased to 9.22% from 19.05%. The “relatively secure” area
expanded from 14.26% to 27.54%. The areas designated as the “middle” level and above
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significantly increased from 45.02% to 54.05%. The “middle” areas increased to 28.62%
in 2018 and the “very secure” areas expanded significantly. The “relatively secure” level
accounted for 33.08% of the study area, which was a significant change from 2008.

In terms of spatial structure, 19.05% of CLB was at the “very insecure” level in 1998,
with a small spatial difference between the northern and southern regions. The horizontal
distribution of LES was lower in the west compared to the east. In 2008, the LES of the
western and eastern regions significantly changed; the LES of the southern regions also im-
proved. The areas of the “relatively secure” level continued to expand, and the areas at the
“relatively secure” level exhibited a spatial evolution from decentralization to aggregation.
Compared with 2008, the LES of the eastern and western CLB decreased in 2018, while the
LES of the northern and southern regions continued to rise. The advantage of the “very
secure” level gradually emerged. Generally speaking, the LES in CLB significantly changed
in the northern and southern regions from 1998 to 2018, with a significant broadening
of the ecological security level. The change in the LES pattern was relatively slow in the
southwest region. This is because the Dabie Mountains were less disturbed by human
activities and had higher vegetation coverage; as such, the LES was relatively high and did
not significantly change.

4.3. Identification of Influencing Factors of LES

This study classified the input data and applied the Natural Breaks method in ArcGIS
to convert the influencing factors from continuous variables to discrete variables. The
fishnet tool was adopted to extract raster data to the point. The sampling interval was set at
3 km to generate 2437 uniform distribution points covering different land use types and LES
levels in the CLB. Then, we extracted the attributes of each index using the Extract Multi
Values to Point tool in ArcGIS 10.2. The power of determinant values (q) was calculated
using the geographical detector method (Figure 10).
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In 1998, the influence of the explanatory power on the LES of each index factor in
the CLB was ranked as follows: the highest q value was for X5 (0.3775), followed by X15
(0.3754), X6 (0.3549), X9 (0.3528), X13 (0.3244), X16 (0.3010), X3 (0.2543), and X2 (0.2217).
In 2008, the q value of X5 ranged from 0.3775 to 0.2613, indicating a more powerful effect
compared to other indices. The influences of the X5, X6, and X9 on LES gradually weakened
from 1998 to 2008. The factors X2, X15, and X16 had significant impacts on LES with q
values of 0.2285, 0.2443 and 0.2510, respectively. In 2018, the X16 factor had the strongest
influence on LES, with a q value of 0.3101; X15 was a close second, with a q value of 0.3093.
Factors X1 and X5 also had strong influences on LES. Meanwhile, the q value of X1 reached
its highest values during the study period.

5. Discussion
5.1. Driving Forces of Land Use Change in CLB

Breaking from the traditional assessment of watershed ecological security, this study
first analyzed the impact of land use change on the regional ecological environment,
providing support for studying the impact of human activities on the LES [64]. From 1998
to 2018, significant changes have occurred to the land use in the CLB: the urban land in
the built-up areas increased significantly during the study period; and areas of cropland,
forestland, and water area were continuously occupied. A previous study of Zhoushan also
found that urban areas had invaded a large amount of productive land, with results that
were similar to this study [63]. Although both the transition of the natural environmental
and social-economic activities drove changes in land use [1], social-economic activities had
a greater impact in a short term. The land use integrated dynamic degree was essentially
consistent with the dynamic changes in urban land. This illustrated that the urbanization
and expansion of built-up areas were principal forces driving land use in CLB.

Since the reform and opening up, CLB counties have invested significant effort to
develop the economy and accelerate urbanization by relying on their resource advantages.
This has greatly improved people’s living standards. However, the conflicts between eco-
nomic development, population, resources, and the ecological environment have become
increasingly prominent [84], and the area of ecological scale land has been continuously
reduced. Meanwhile, due to the increasing anthropogenic activities in the CLB, the lake
has suffered from critical pollution and eutrophication [85].

5.2. Analysis of the LES Pattern in CLB

Concrete assessment units must be established before conducting an LES assessment.
This study selected the administrative district scale and a grid scale of 200 m × 200 m to
conduct the LES assessment. The administrative district scale facilitates the determination
of ecological protection and construction achievements, and facilitates a horizontal com-
parison with other internal regions. Compared with the LES assessment at a large grid
scale, a smaller scale [13,86] was able to better reflect the spatial differences of regional
LES changes [38]. In addition, the entropy weight method and the AHP were combined to
determine the weight, instead of using objective or subjective methods to determine the
weight alone [87,88].

At the administrative district scale, Chaohu and Shucheng experienced an improve-
ment of the ecological environment from 1998 to 2018, with a consistently high LES level
due to the high vegetation coverage and abundant rivers in these regions. This finding was
consistent with the study of Hu et al. [76]. The level of ecological security of Urban Hefei
changed significantly; while the urbanization level in some areas increased, there was an
insufficient emphasis on the natural environment. Therefore, more attention needs to be
paid to ecologically restoring these counties to improve the ecosystem level.

We estimated the spatial differentiation of LES within the CLB. From 1998–2008,
expanded areas of the CLB became “relatively insecure” instead of the dominant “very
insecure” designation in 1998. This expansion extended across the northern and southern
areas of the CLB, particularly in the southern areas, where the area denoted “relatively
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insecure” had grown substantially. From 2008 to 2018, the areas denoted as “middle” and
“above” levels in the CLB continuously expanded, changing from “relatively insecure” to
“middle” in grid units in Chaohu, Lujiang, Wuwei, and Changfeng. Despite the increasing
level of urbanization, more attention and investment were placed in ecological protec-
tion [28]. The government gradually began to balance urbanization and environmental
protection, strengthening the implementation of ecological protection measures. Mean-
while, rapid urbanization in China led to the continuous expansion of urban land, which
promoted the degradation of LES to different degrees [12]. In this study, the variations in
LES were similar to the expansion of urban land; this result was consistent with the study
of Li et al. (2020) [28]. The CLB was the main urbanization area in Anhui Province from
2003 to 2013 [89]. As urbanization accelerated, the built-up area expanded; however, the
expansion of urban areas into suburban areas are expected to affect regional ecological
security [28]. The regions with high LES were stably distributed in areas with fewer human
activities and abundant vegetation, lakes, and other abundant water resources. This was
consistent with the general research results [5,28,90].

5.3. Analysis of Influencing Factors of LES

The relationship between LES and its influencing factors is complex [13]. In this study,
human factors had a stronger impact on the LES in the CLB than natural factors. These
human factors included the electricity consumption per cropland area, pesticide use per
cropland area, land use intensity, anthropogenic disturbance index, per capita net income
of farmers, and afforestation area.

The anthropogenic disturbance index has been shown to have an essential influence
on the regional LES [59]. Similarly, the anthropogenic disturbance index performed signifi-
cantly in this study, indicating the impact of human activities on the ecosystem. Land use
and land cover change (LULCC) can be measured through land use intensity, which has
also been shown to influence the ecosystem [61,91]. Recently, the land use pattern in CLB
has experienced the conversion of cropland to industrial land [85], producing significant
environmental waste. Pesticide and fertilizer pollution in the ecological environment has
been manifested in the pollution of soil, water, and air. Studies have also shown that
environmental pollution is an important factor affecting the regional LES [92–94]. A similar
study showed that the index of environment pollution treatment investment, a positive
influencing factor, was concentrated in regions with poor ecological conditions in the study
area. A higher factor index was associated with improvements to the ecological environ-
ment [59]. The factor of the pesticides per cropland area also strongly influenced the LES
of the CLB. As agricultural modernization has continued, agricultural development has
increased in scale and industrialization. As the main land use type in CLB, cropland has
been associated with environmental pollution caused by pesticide and fertilizer use, which
does not support the stability of the regional LES.

The CLB has experienced rapid development, with changes to its resources and
economy. Simultaneously, the increase in the effective area of cropland will consume
more electricity through agricultural irrigation [95]. Therefore, this factor influenced the
LES, explaining the high spatial variability in LES from 1998 to 2018. The q values of the
factor afforestation area indicated an intense effect on LES. Urban green infrastructure is
considered to be the “natural life support system” of a city [96]. The afforestation areas
of the whole Anhui Province have reached 1.43 × 106 acres, because the government has
steadily advanced actions to promote greenness and efficiency, and human activities have
led to large-scale afforestation. The factor of the per capita net income of farmers describes
the living standards of farmers and population distribution in the study area [59]. The
results of the geographical detector method indicated that this factor had a prominent
impact on the LES.

The impact of natural factors on the LES in CLB was not significant. The impact
of soil erosion factors and the distance between residential areas on ecological security,
selected by Liu et al. [38] using the OLS-GWR model, showed significant spatio-temporal
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heterogeneity. Moreover, the soil erosion factor had the most significantly negative impact
on ecological security. However, this factor was not considered in this study’s assessment
index system. Furthermore, the NDVI of natural factors did not strongly influence the LES,
which is consistent with previous studies [36,59].

5.4. Limitations

Like all studies, this one had some limitations. First, we were unable to collect
sufficient data at a small scale, because some of the data were only available at the scale of
the administrative district. For example, indices related to pesticide and fertilizer use are
only available at the administrative district level. This resulted in a low spatial position
accuracy. To facilitate calculations, the assessment scale used for the study was based
on a 200 m × 200 m grid unit. In the future, resampling could be considered to conduct
the research at a finer level of precision [59]. Secondly, the relationship between natural
factors and land use is seldom considered in the analysis of land use change, which can
be further discussed in future. Finally, although the geographical detector can measure
the explanatory power of factors, it cannot explain whether the influence is positive or
negative. Future studies should further identify this information.

6. Conclusions

This study generated land use information from 1998 to 2018 using RF classification
and analyzed the land use change in the CLB. After that, we mapped the land use spatial
patterns at an administrative district scale and grid scale. Further, the contribution of the
index factors to the distribution of the LES pattern were assessed, using the geographic
detector method. From our results, we conclude that:

• The significant expansion of urban land led to different degrees of reduction in other
land use types. In addition, more significant land use change occurred from 2008
to 2018 compared to 1998–2008 in the CLB. The cropland was the main converted
direction of other land use types and urban land was mainly converted from cropland,
grassland, and forestland.

• In the CLB (administrative district scale), the LES levels varied throughout the study
period. The LES improved significantly in five regions, namely Changfeng, Lujiang,
Wuwei, Chaohu and Feixi. However, the LES in other six regions showed different
degrees of decline, especially in Hexian and Urban Hefei. At the grid scale, the LES in
CLB showed a gradual improvement trend.

• Anthropogenic factors, such as electricity consumption per cropland area, pesticide
use per cropland area and anthropogenic disturbance index had stronger impacts on
LES than natural factors (e.g., NDVI).

The research results of this paper contribute to future quantitative analyses of the LES
pattern of the CLB. At the same time, we quantified the impact of each assessment index
factor on LES, providing insights for local governments to optimize urban planning and
improve the ecological environment.
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