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1875/17 Ostrava, Czech Republic; dagmar.dlouha@vsb.cz (D.D.); lukas.pospisil@vsb.cz (L.P.)
* Correspondence: viktor.dubovsky@vsb.cz

Abstract: Evaporation is one of the main components of the water cycle in nature. Our interest
in free water surface evaporation is due to the needs of ongoing hydric recultivation of the former
Ležáky–Most quarry, i.e., Lake Most, and also other planned hydric recultivations in the region. One
of the key components of hydric reclamation planning is the securitization of long-term sustainability,
which is based on the capability to keep the final water level at a stable level. In our work, we are
interested in the evaporation estimation in the area of Lake Most (Czech Republic, Europe). This
lake has been artificially created only a few years ago, and nowadays we are looking for a simple
evaporation model, based on which we will be able to decide which measurement devices have to
be installed at the location to provide more localized data to the model. In this paper, we calibrate
state-of-the-art simplified evaporation models against the Penman–Monteith equation based on the
Nash–Sutcliffe efficiency maximization. We discuss the suitability of this approach using real-world
climate data from the weather station located one km from the area of interest.

Keywords: free water surface; Nash–Sutcliffe efficiency; optimization; water loss; annual evaporation

1. Introduction

Although evaporation is one of the main components of the water cycle in nature—it is
reported that it makes up almost two-thirds of continental precipitation—its measurement
or calculation procedures are complicated and burdened with a high degree of uncertainty.
The measurement is provided by evaporation pans and class A is widely adopted as the
standard pan. An investigation of the uncertainty of such measurement provided in [1]
assumed its precision to be ±0.1 mm. According to the study in [2], the results of monthly
evaporation obtained from two pans at the same locations could vary by up to 4% and
the influence of an installed bird guard fence was estimated to be 7%. The guidelines
detailed in [3] suggested that water turbidity could cause measurements errors of up to
5%. The uncertainty in computed estimates is due to the complexity of evaporation as a
physical phenomenon and several factors that affect this process. Traditionally (see [4]),
computational methods are divided into two classes, namely aerodynamic formulae and
energy budget formulae. However, this classification is quite rough and in practice it is hard
to distinguish mass transfer factors from energy budget ones. Based on meteorological data
needed to compute evaporation estimates, the methods could be classified as temperature-
based, radiation-based, mass transfer-based and combination methods [5,6]. Furthermore,
it is important to note that fumes occur both from the free water level and from the Earth’s
surface, and these processes need to be distinguished. The above stated then leads to the
introduction of terms such as evaporation, transpiration, or evapotranspiration. We also
distinguish whether we are considering a potential (possible) or actual (real) evaporation
rate. Both computational methods and measurement methods deal with potential values,
which in both cases is because there is an effort to simplify the description. The goal of this
work is to deal with the inaccuracy of computed results and their relation with inaccuracy
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in the measurement of physical quantities influencing evaporation. The interest in such
improvements of free water surface evaporation is due to the needs of the ongoing hydric
recultivation of the former Ležáky–Most quarry, i.e., Lake Most (the Czech Republic, central
Europe, 50◦32′13′′ N 13◦38′40′′ E), and also other planned hydric recultivations in the
region. One of the key components of the hydric reclamation planning is the securitization
of long-term sustainability, which is based on the capability to keep the final water level
at a stable level. In this context, note that the usual approach to the water management
of pit lakes is to estimate evaporation using pan coefficient modeling with floating pans.
Additionally, the water temperature or the water temperature profile are monitored. Usage
of such equipment and observation could lead to significant improvements of evaporation
estimates. In [7], a correction of underestimations by 20% was reported. However this
approach is not applicable in the case of currently planned reclamation since open cut
mining operations are still in progress there.

Evaporation influences the global climate and, consequently, each of the areas of
human activity, which is manifested by increased interest in the field of its modeling. In
the conditions of climate change, this task is even more challenging and water resources’
management needs accurate methods providing water loss estimates. In [8], a comparison
of combined, water balance and pan evaporation techniques’ performance was undertaken
and the Penman–Monteith model with local site data was recommended. Similarly, a
study of a drying urban lake—Sukhna Lake in northern India—provided in [9], suggested
site-specific observation for each hydrologic process. On the other hand, the influence
of water dams and reservoirs on agriculture or municipality life was monitored too. An
analysis done in [10] showed that construction of small dams together with their proper
management could lead to an increase in crop yield in targeted area. The research in [11]
presents a representative example of water management in northern Greece. All papers
cited here emphasized the work with local conditions and needs.

As mentioned above, the methods of calculating the rate of evaporation according
to the inputs used can be divided into several groups. Most commonly, the division into
models of temperature, radiation, mass transfer, and combined methods is used. This
wide range of methods reflects the long process of their development, which began with
Dalton’s work in the early 19th century, continued with the classic Penman paper [12],
and developed further in the 1990s, when the aforementioned quantity of used methods
led the Food and Agriculture Organization (FAO) of the United Nations to work towards
determining the most appropriate method, or at a least reference method, that could be
used in the widest possible range of cases under investigation. The collaborative work and
consultation of FAO experts yielded guidelines for computing evapotranspiration [3].

The analysis of the performance of the various calculation methods reveals the need
for formulating a standard method for the computation of evapotranspiration [3]. The
Penman–Monteith method (FAO) is recommended as the sole standard method. It is
a method with a strong likelihood of correctly predicting the evapotranspiration in a
wide range of locations and climates with differing local factors. These include solar
radiation, sunshine duration, wind speed, air humidity, air temperature, and properties of
the observing station/s location [13–15]. The FAO has provisions for the application of the
method in data-poor situations. The use of older FAO or other reference evapotranspiration
methods is no longer encouraged [16,17].

In this paper, we aim to simplify the FAO equation in terms of the number of input
quantities. In Section 2, we shortly review this equation and introduce all the required data
for the computation of evaporation estimation. This section also includes the presentation
of other selected models, which are not considered by FAO to be a standard; however, they
are less complex. Our goal is to use these simpler models to model the evaporation in
the area of Lake Most (see Section 2.8 for area description) by calibrating the parameters
of models in the fitting optimization process against the evaporation estimation by FAO.
This calibration process is described in Section 2.7. The motivation came from the lack of
measuring devices in direct vicinity to the lake. Section 2.9 demonstrates the necessity of
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the presence of measuring devices as close as possible to the area of interest; even a small
change in the measured climate data can cause the overestimation of evaporation.

In our approach, the data that we provide to the FAO equation are measured in the
Kopisty weather station (located approximately 1 km from Lake Most; see Section 2.9 for
details). This distance is sufficient for providing the approximation of climate data in a
wider area including Lake Most; however, the FAO equation is sensitive in terms of input
data.

The construction of a new weather station with all measuring devices necessary for
FAO right next to the lake does not make any sense (because the Kopisty station is only
1 km away); therefore, the simplified model with a smaller amount of input data should be
used.

Our research will be used as a background for the decision process for the installation
of specific measuring devices in the area for obtaining data for the simpler calibrated model.
See Section 3 for our results and Section 4 for the discussion.

Finally, Section 5 concludes the paper. We believe that the presented calibration
methodology can be used as a general tool for solving problems with similar input situ-
ations: the climate measuring devices are located in a wider range of the area of interest
and the problem is to decide which measuring devices should be installed directly at the
location to provide a better (and cheaper) evaporation estimation.

2. Materials and Methods

The FAO Penman–Monteith equation [3] is given by:

EFAO =
0.408∆(Rn − G) + γ 900

Ta+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where EFAO is the intensity of evapotranspiration (kg ·m−2 · s−1), ∆ is the derivative of the
saturated water vapor pressure with respect to the air temperature (kPa · ◦C−1), Rn is the
radiation balance on the surface (kJ ·m−2 · s−1), G is the heat flow in the soil (kJ ·m−2 · s−1)
(e.g., for the water surface G = 0 [18]), es is the saturated water vapor pressure in the air
temperature (kPa), ea is the current water vapor pressure (kPa) (the difference es − ea is
called the saturation supplement), γ is the psychrometric constant (m · s−1) (e.g., if the air
temperature is measured in ◦C and the water vapor pressure is measured in mb or kPa,
then γ = 0.66), Ta is the average air temperature (◦C), and u2 is the air speed measured at
the height of 2 m (m · s−1).

At first glance, it is evident that this is a very complicated relationship; for ordinary
users or laypeople it is even possible to talk about a relationship incomprehensible or
ungraspable.

Thus several different equations for evaporation estimation appear in the technical
literature, which deals with finding relationships that are less complicated and computa-
tionally less demanding. However, Equation (1) can still be taken as a standard to which
the results of other methods can be related.

In this paper, we deal with the following equations, selected to represent the entire
variety of usual approaches, i.e., temperature, radiation, mass-transfer, and combined
methods.

We shortly review the Šermer equation [19], the Beran–Vizina equation [20], the
Hargreaves–Samani equation [21], the Schendel equation [22], the Priestley–Taylor equa-
tion [23], the Kharrufa equation [24], and the VUV equation [20].

Some of these equations can produce negative evaporation values. The typical ap-
proach is to map all negative values to zero. In our computations, we follow this standard.

2.1. Šermer Equation and Beran–Vizina Equation

These equations are commonly used in the Czech Republic. They are derived us-
ing the regression between observed/measured vapor and daily mean air temperature.
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The regression is used to find both the linear and exponential models. The following
equations can be found in [20], where the authors compare them against the measurement
performed by a 20 m2 vapor meter in the weather station in Hlasivo located in the South
Bohemian Region.

The Šermer equation [19] is given by:

ES = 100.0452Ta−0.204 (2)

and the Beran–Vizina [20] equation is given by:

EBV = 0.2157Ta + 1.1133. (3)

In the equations, the amount of vapor is measured in mm · d−1 and Ta denotes the
daily mean air temperature measured in ◦C. Equations (2) and (3) have been recently
compared (see [25]).

Equation (2) has a form of an exponential function, and therefore the results attain
only non-negative values. On the other hand, in the case of Equation (3), the value of
EBV ≥ 0 is defined only for days with an average temperature lower than −0.526 ◦C, since
otherwise, the vapor EBV would attain negative values.

In the case of EBV, a value of zero vapor (without the computation) was determined
in 163 cases during the whole monitored period of 2014–2019, i.e., in average 27 days per
year. However, it is necessary to mention that, for instance, during the year 2018, which
had an average temperature of 10.8 ◦C, there was also the largest number of days with an
average temperature below freezing, namely 48 days.

During the calibration process, we suppose the constants in (2) and (3) to be (unknown)
coefficients. We get the parametric models:

ES(θ) = 10θ1Ta+θ2 (4)

and
EBV(θ) = max{0, θ1Ta + θ2, } (5)

where θ ∈ R2 are the parameters of the models that should be optimized.
In the case of (5), we used the maximum to ensure the non-negativity of the evapora-

tion modeled by the parametric model.

2.2. Hargreaves–Samani Equation

This method was proposed by Hargreaves in [26] and gradually extended into its final
form as presented in [21]. Usually, the Hargreaves–Samani equation is presented in the
following form:

EHS = 0.0023Ra
√

Tr(Ta + 17.8), (6)

where Ta denotes the average air temperature (◦C), Tr is the difference between the max-
imal and minimal air temperature during the reporting period (◦C), and Ra denotes the
extraterrestrial radiation.

Although Equation (6) includes the radiation term Ra, the model is classified as a
temperature equation. The reason is that this term denotes only the theoretical value and is
computed using the following formula:

Ra =
24× 60

π
GSCdr(ωS sin(ϕ) sin(δ) + sin ωS cos(ϕ) cos(δ)).

Please note that this equation is based only on the latitude of the considered area ϕ
and the solar declination δ determined by the serial number of the day of the year.

Extraterrestrial radiation Ra is measured in MJ ·m−2 · g−1. For obtaining the result
EHS in millimeters per day, it is necessary to divide the value of Ra by the value of the
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water-specific heat capacity λ = 2.45 MJ · kg−1. Consequently, the Hargreaves–Samani
equation can be found in several equivalent forms:

EHS =


0.0023 Ra

2.45 (Ta + 17.8)
√

Tr

0.0023(0.408Ra)(Ta + 17.8)
√

Tr

0.00094Ra(Ta + 17.8)
√

Tr.

(7)

In this paper, we write the parametric form of the Hargreaves–Samani equation:

EHS(θ) = max
{

0,
θ1Ra(Ta + θ2)

√
Tr

λ

}
(8)

with parameters θ ∈ R2. These parameters will be optimized during the calibration process.

2.3. Schendel Equation

In the previous equations, the computation of the rate of evaporation is based on the
measurement of the air temperature. In the case of the Schendel equation, one has to also
provide the measurements of the relative humidity RH. The equation has a simple form
and it can be found in the original paper by Schendel [22] and also in later publications,
e.g., [27,28]. The model is given by:

ESch = 16
Ta

RH
. (9)

The Schendel equation can be written in parametric form:

ESch(θ) = max
{

0, θ1
Ta

RH

}
(10)

with unknown parameter θ ∈ R.

2.4. Priestley–Taylor Equation

A potential evapotranspiration based on the Priestley–Taylor can be considered as a
combined method, which is developed as a combination of the turbulent diffusion method
and the method of energy balance [23]. The basic equation for the computation of the
potential evapotranspiration by the Priestley–Taylor method is given by:

EPT =
1.26∆(Rn − G)

λ(∆ + γ)
(11)

where ∆ is the derivative of the saturated water vapor pressure with respect to the air
temperature (kPa · ◦C−1). Additionally, Rn is the radiation flow intensity measured in W ·
m−2, G is the heat flow intensity at the water surface level (W ·m−2), γ is the psychrometric
constant measured in kPa · ◦C−1, and λ = 2.45 MJ · kg−1 is the value of the water-specific
heat capacity.

In this paper, we optimize the constant parameter in Equation (11), i.e., we consider a
parametric model:

EPT(θ) = max
{

0,
θ1∆(Rn − G)

λ(∆ + γ)

}
, (12)

where θ ∈ R is unknown parameter.

2.5. Kharrufa Equation

For arid areas, Kharrufa [24] published a simple equation:

EK = 0.34pT1.3
a , (13)
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where p is the percentage of total daytime hours for the period used (daily or monthly)
out of total daytime hours of the year. This equation has also been used in a large model
comparison [25].

In the parametric form, we deal with zero evaporation in the case of negative temper-
ature Ta and define:

EK(θ) =

{
0 if Ta > 0,
θ1 pTθ2

a if Ta ≤ 0,
(14)

where θ ∈ R2 are unknown parameters.

2.6. VUV

This formula is presented in the official report Model průběhu meteorologických veličin
pro oblast jezera Most do roku 2050 (The modelling of the course of meteorological quantities
for Lake Most area until 2050) by Adam Beran from Výzkumný ústav vodohospodářský T. G.
Masaryka (VUV, T. G. Masaryk Water Research Institute):

EVUV = 0.2157Ta + 0.726u2 − 1.2259. (15)

All variables in this equation have already been introduced in this paper. This equation has
also been used in a large model comparison [25].

The equation can be written in parametric form as:

EVUV(θ) = max{0, θ1Ta + θ2u2 + θ3}, (16)

where θ ∈ R3 is a vector of unknown parameters.

2.7. The Calibration Process

We optimize the parameters of the models presented in Section 2 against the Penman–
Monteith Equation (1). The difference between the models is measured according to the
standard Nash–Sutcliffe efficiency (NSE) introduced in [29] as an analogy to the coefficient of
determination, and is given by:

NSE(EFAO, E) = 1−


T
∑

t=1
(EFAO〈t〉 − E〈t〉)2

T
∑

t=1

(
EFAO〈t〉 − EFAO

)2

, (17)

where E〈t〉 is a value of the model in time (day) t = 1, . . . , T, and EFAO is a mean value of
the Penman–Monteith model given by:

EFAO =
1
T

T

∑
t=1

EFAO〈t〉.

The optimal parameters solve the optimization problem:

θ∗ = arg max
θ

NSE(EFAO, E(θ)) (18)

where E is any of the parametric models presented in Section 2.
The NSE measures the difference between models in the following way: if the variance

between models is equal to zero, then the NSE is equal to one. Conversely, if one model
produces a variance equal to the variance of the second one, then it results in an NSE of
zero. Practically, NSE = 0 indicates that the models have the same predictive skill as EFAO
in terms of the sum of the squared error. For the application of NSE in regression, the
NSE is equivalent to the coefficient of determination and it ranges between 0 and 1, and in
general, a model is satisfactory if NSE > 0.5, see [30].
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The Nash–Sutcliffe efficiency is widely used in different branches of hydrology, e.g.,
in [31,32] NSE was used to evaluate performance of hydrological and hydraulic models of
flash-floods.

Similarly to our work, in an evaporation study of Lake Van [33], NSE was applied as
a comparative criterion of assorted computational methods and the Bowen ratio energy
budget method and furthermore was used to choose the best-fit and reasonably accurate
model. Also in [34], the open-water evaporation estimate method was recommended based
on an analysis of NSE.

Finally, NSE could support the choice of a suitable replacement for the FAO Penman–
Monteith potential evapotranspiration estimates in case of insufficient meteorological data.
That was the aim of study [35], where three radiation-based and five temperature-based
methods were compared with the estimates given by the FAO Penman–Monteith equation.
The requirement of 0 ≤ NSE ≤ 1 was stated there for a model to be considered good.

Usually the NSE coefficient is not used solely but other statistical performance indi-
cators, such as relative error (RE), root mean square error (RMSE), mean absolute error
(MAE), Pearson’s correlation coefficient (r), coefficient of determination (R2), or percent
bias (PBIAS) are added.

In this study the NSE criterion is complemented by percent bias (PBIAS) since it is
easy to compute, and additionally to NSE information it measures the average tendency of
the model values to be larger or smaller than observed values, i.e., corresponding to FAO
values in our case.

The value of PBIAS is given by:

PBIAS(EFAO, E) = 100

T
∑

t=1
E〈t〉 − EFAO〈t〉

T
∑

t=1
EFAO〈t〉

. (19)

From the form of Equation (19) it can be seen that the PBIAS value is positive for
overestimating models and negative for underestimating ones.

It is important to note here that the value of PBIAS is not included in the optimization
process. The NSE values for each method are maximized and then the PBIAS of the
calibrated method is computed.

Since usually the implementations of optimization algorithms solve the minimization
problem, we decided to solve the problem equivalent to Equation (18) given by:

θ∗ = arg min
θ

T
∑

t=1
(EFAO〈t〉 − E(θ)〈t〉)2

T
∑

t=1

(
EFAO〈t〉 − EFAO

)2
. (20)

We have implemented the proposed methodology in the R programming language [36]
and for every selected model, we found the optimal parameters by solving Equation (20) us-
ing the nlminb algorithm from the optim command. This algorithm uses PORT routines [37]
and our numerical experiments proved the suitability and stability of our approach during
the solution of both linear and non-linear models.

2.8. Lake Most

Our area of interest is Lake Most; see Figure 1. It was created by the hydric recultivation
of the Ležáky-Most quarry, which is situated in the central part of the North Bohemian
brown coal basin. The area formed during the period of tertiary stretches from the flow of
the Ohře River in the southeast to the Ore Mountains in the northwest.

The rehabilitation and reclamation of the former surface quarry Most-Ležáky are
secured by the state enterprise Palivový kombinát Ústí (PKU). The project is the part of the
revitalization of the area affected by mining with a total area of 1254 ha. For the final
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remediation, two possible scenarios were considered: dry and wet, i.e., with the flooding
or without the flooding of the remaining excavation. Based on understandable reasons,
the wet scenario has been implemented—in this case, there is no necessity for additional
extraction of already recultivated soil. Such a step would have a much larger impact
on the surrounding environment. Therefore, the hydrological recultivation was the only
practically viable solution for dealing with the remains of the mining activities in the area.

Figure 1. Lake Most and the surrounding area.

However, several technical provisions had to be implemented before the residual pit
flooding, e.g., a substantial sealing of the bottom of the future lake, construction of an
underground sealing wall, and strengthening of the shoreline. Because of all of these steps,
the Most Lake can be considered as a long-term sustainable closed system that does not
have any natural inflow and outflow. The filling the residual pit of the lake was originally
performed using a feeder from the Nechranice industrial water supply system from the Ohře
river during the years 2008–2014. From 2014, the water level has been kept at the same
level by the same water supply. The current area of the lake is 309.4 ha with the volume
of the water being 70.5 million m3 and a maximum depth of 75 m. Until September 2020,
the waterworks was operated in verification mode. Nowadays, the lake is dedicated to
a recreational area and therefore, the dispersion of the water level around a stable value
has to be kept within reasonable small values. Only in such a case would the visitors of
the area be able to use and enjoy the built beaches, swimming floating piers, and other
buildings by the lake.

The income side of the water balance is therefore made up of only precipitation and
inlet water, the volume of which is precisely measured by water meters. Losses in the
balance represent evaporation from free levels. If we consider that rainfall tributaries from
the surroundings/lake basins and the infiltration to the bottom and banks are in balance,
the lake can be seen as a 309.4 ha evaporometer.

More information about the evaporation on Lake Most can be found in [38].

2.9. Data Set

The equations and models presented in Section 2 require input consisting of time-
series measurements of several quantities, namely air temperature, relative humidity,
atmospheric pressure, wind speed, daily length of sunshine, and radiation. In the case of
Lake Most, we have the advantage of the presence of a weather station Kopisty, which is
located approximately 1 km from the considered area. The administrator of the weather
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station is the Institute of Atmosphere of the Czech Academy of Science, which provides us with
all the necessary data since January 2014 in the form of measurement records in 10-min
intervals.

In comparison with the average temperature and precipitation in the Czech Republic,
the area of the planned hydric reclamation is located in an area with a temperature strongly
above average and precipitation strongly below normal levels, and with the number of
hours of sunshine below the typical value in the Czech Republic [39].

Each area has its specific conditions and they are different even within one area of
interest. The main reason why it is important to have the exact measured climate data in
a sufficiently long time-series is presented in Figure 2. This graph shows the percentage
increase in annual total evaporation calculated by the Penman–Monteith Equation (1) in
the theoretical situation where we simulate the average temperature increase by 1 degree
and 3 degrees. These results demonstrate the importance of exact input climate data.

Figure 2. The percentage increase of annual total evaporation calculated by the Penman–Monteith
equation in the theoretical situation where we simulate the average temperature increase by 1 degree
and 3 degrees using data from Lake Most.

3. Results

In Table 1, the summary of annual evaporation totals is given to illustrate how a
wide range of computed results could be. For example, in the year 2018 one could expect
evaporation between 826 mm (VUV equation) and 1022 mm (Šermer equation estimate);
such a huge difference is crucial when planning the flooding of the former mine. In the
case of Lake Most, with a surface area 309 ha, the difference of (nearly) 200 mm means
(approximately) 600,000 m3 of water to be purchased.

We summarize the results of our calibration process in Table 2. Here we compare the
models with original values proposed by authors and our new optimal values obtained
through the solution of Equation (20). For obtaining these values, we used only the years
2014–2018. The rest of the time-series was used for validation.
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Table 1. Evaporation in the years 2014–2019 computed using various models presented in this paper.
For the computation, we used original values of constants in the equations. Please note the significant
differences between models.

EFAO ES EBV EHS ESch EPT EK EVUV

Ye
ar

2014 751 869 872 871 821 877 908 763
2015 832 937 875 913 932 904 924 810
2016 772 872 844 874 832 877 896 744
2017 802 881 857 893 870 884 917 823
2018 879 1022 916 967 1007 976 1020 826
2019 842 958 904 894 951 934 967 832

The improvement of NSE values for original and calibrated models on both the train-
ing and validation parts of the data is presented in Table 3. The improvement is compared
also in the form of scatter plots and the graphs of cumulative values in Figures 3–9, and in
the form of annual total evaporation in Figure 10.

Table 2. Comparison of original models and calibrated models. We denote the calibrated models
with optimal parameters by E∗ = E(θ∗).

Original Model Calibrated Model

Šermer ES = 100.0452Ta−0.204 E∗S = 100.03862Ta−0.1704

Beran–Vizina EBV = 0.2157Ta + 1.1133 E∗BV = 0.239Ta − 0.6103

Hargreaves–Samani EHS(θ) =
0.0023Ra(Ta+17.8)

√
Tr

λ EHS(θ)
∗ = 0.002201Ra(Ta+13.94)

√
Tr

λ

Schendel ESch = 16 Ta
RH E∗Sch = 13.58 Ta

RH

Priestley–Taylor EPT = 1.26∆(Rn−G)
λ(∆+γ)

E∗PT = 1.05∆(Rn−G)
λ(∆+γ)

Kharrufa EK = 0.34pT1.3
a E∗K = 0.6392pT0.9922

a

VUV EVUV =
0.2157Ta + 0.726u2 − 1.2259

E∗VUV =
0.2404Ta + 0.03841u2 − 0.6853

Table 3. Comparison of the Nash–Sutcliffe efficiency (NSE) for the model with original constants and the calibrated models. The value
closer to 1 is better.

Training Validation All

Original Calibrated Original Calibrated Original Calibrated %

Šermer 0.6157 0.7597 0.6440 0.7772 0.6210 0.7629 +23%
Beran–Vizina 0.7326 0.7795 0.7342 0.7809 0.7330 0.7798 +6%
Hargreaves–Samani 0.8819 0.9522 0.9157 0.9426 0.8881 0.9505 +7%
Schendel 0.7621 0.8317 0.7902 0.8642 0.7673 0.8377 +9%
Priestley–Taylor 0.9045 0.9989 0.9099 0.9990 0.9055 0.9989 +10%
Kharrufa 0.6396 0.8632 0.6659 0.8618 0.6445 0.8630 +34%
VUV 0.6284 0.7799 0.6561 0.7835 0.6336 0.7806 +23%

Finally, in Table 4 we present the annual evaporation totals computed by the calibrated
models and their comparison with EFAO results. It can be seen how the range of computed
results was narrowed down when the equations with calibrated coefficients were used.
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Table 4. Evaporation in the years 2014–2019 computed using the calibrated models presented in
this paper.

EFAO E∗
S E∗

BV E∗
HS E∗

Sch E∗
PT E∗

K E∗
VUV

Ye
ar

2014 751 751 727 732 697 731 744 726
2015 832 792 726 767 791 753 748 727
2016 772 749 703 735 706 731 728 703
2017 802 755 720 751 739 736 744 722
2018 879 851 790 818 854 813 800 790
2019 842 809 809 754 807 778 778 761

Figure 3. Comparison of the original Šermer equation and the calibrated model in the form of a
scatter plot (left) and cumulative evaporation values (right).

Figure 4. Comparison of the original Beran–Vizina equation and the calibrated model in the form of
a scatter plot (left) and cumulative evaporation values (right).
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Figure 5. Comparison of the original Hargreaves–Samani equation and the calibrated model in the
form of a scatter plot (left) and cumulative evaporation values (right).

Figure 6. Comparison of the original Schendel equation and the calibrated model in the form of a
scatter plot (left) and cumulative evaporation values (right).

Figure 7. Comparison of the original Priesley–Taylor equation and the calibrated model in the form
of a scatter plot (left) and cumulative evaporation values (right).
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Figure 8. Comparison of the original Kharrufa equation and the calibrated model in the form of a
scatter plot (left) and cumulative evaporation values (right).

Figure 9. Comparison of the original VUV equation and the calibrated model in the form of a scatter
plot (left) and cumulative evaporation values (right).

Figure 10. Cont.
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Figure 10. Comparison of the Penman–Monteith equation, the original equations and the calibrated
models in form of annual total evaporation.

4. Discussion

The calibration process improved the NSE value of all models, see Table 3. The method
minimizes the sum of squares of differences between model values and FAO values divided
by a constant (see (20)) and, therefore, the differences were minimized and consequently
the scatter plots are more clumped around the equality line; see Figures 3–9. This property
is typical for NSE, see [30]. The cumulative evaporation values show that all original
models overestimated and all calibrated models underestimated the total evaporation.

This property can also be seen from the annual total evaporation, see Figure 10. For
every year, we have computed the percentage of the difference between FAO values and
model values, i.e., PBIAS, and plotted these values on the top of the bars in Figure 10. The
differences in average PBIAS values for the original and calibrated models are presented in
Table 5.

Table 5. Comparison of average PBIAS for annual total evaporation between original and calibrated
models, see Figure 10. For the comparison, we also included the percentage of NSE improvement
from Table 3. In our calibration process, we focused only on NSE values and therefore, the value of
PBIAS can be worse.

E∗
S E∗

BV E∗
HS E∗

Sch E∗
PT E∗

K E∗
VUV

PBIAS original 13.5% 8% 10.9% 10.9% 11.8% 15.5% −1.7%

PBIAS calibrated −3.4% −9.1% −6.4% −5.9% −6.8% −6.8% −9.1%

NSE improvement 23% 6% 7% 9% 10% 34% 23%

5. Conclusions

In this paper, we examined and discussed the calibration of selected evaporation
models against the Penman–Monteith equation in terms of the Nash–Sutcliffe efficiency
maximization.

From our results, found using data from our area of interest (Lake Most), we suggest
approximating the Penman–Monteith equation by using the calibrated Hagreaves–Samani
equation. This choice is supported by the presented comparison of scatter plots of evapo-
ration values and cumulative evaporation graphs. The calibration improves the value of
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optimized fitting criteria; however, the choice of the optimal simplified model depends not
only on the ability to approximate the evaporation values in terms of the selected statistical
measure but also on the input measurement requirements. In the case of the suggested
Hagreaves–Samani equation, one has to provide measurements of air temperature and
extraterrestrial radiation, which is computed from the latitude of the considered area and
the serial number of the day of the year.

Additionally, we observed that the calibration based on the Nash–Sutcliffe efficiency
can simultaneously degrade the value of other statistical measures, namely percentage bias.
This value is directly connected with the estimation of annual total evaporation. From all
considered models in this paper, the calibrated Hagreaves–Samani equation is not only
able to approximate the evaporation in terms of optimal Nash-Sutcliffe efficiency, but the
decrease of percentage bias is also small, as well as the demand on input data. However,
the final decision is dedicated to the securer of the area.

In this paper, we examined the calibration of seven models of different types; however,
our methodology can be easily applied to any state-of-the-art method.

In our ongoing research, we will extend our comparison through the consideration of
other stochastic measures to examine how the choice of objective measures in the calibration
process influences the properties of calibrated models. Additionally, we will focus on the
examination of the presented calibration process and calibrated models using real-world
measurements of evaporation on Lake Most.
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Abbreviations
The following abbreviations are used in this manuscript:

EFAO Penman–Monteith method recommended by Food and Agriculture Organization
for the United Nations (1),

ES Šermer Equation (2),
EBV Beran–Vizina Equation (3),
EHS Hargreaves–Samani Equation (7),
ESch Schendel Equation (9),
EPT Priestley–Taylor Equation (11),
EK Kharrufa Equation (13),
EVUV the equation recommended by T. G. Masaryk Water Research Institute (15),
NSE Nash–Sutcliffe Efficiency (17),
PBIAS Percentage Bias (19),



Sustainability 2021, 13, 313 16 of 17

∆ the derivative of the saturated water vapor pressure with respect to the air temperature
(kPa · ◦C−1),

Rn the radiation balance on the surface (kJ ·m−2 · s−1),
G the heat flow in the soil (kJ ·m−2 · s−1),
es the saturated water vapor pressure in the air temperature (kPa),
ea the current water vapor pressure (kPa),
γ the psychrometric constant (m · s−1),
Ta the average air temperature (◦C),
u2 the air speed measured in the height of 2 m (m · s−1),
Tr the difference between the maximal and minimal air temperature (◦C),
Ra the extraterestrial radiation (MJ ·m−2 · g−1),
λ water specific heat capacity (MJ · kg−1),
RH the relative humidity () ,
p percentage of total daytime hours for the period used (daily or monthly) out of total

daytime hours of the year.
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