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Abstract: Energy consumption, economics, and environmental impacts of canola production were
assessed using a combined technique involving an adaptive neuro-fuzzy inference system (ANFIS)
and a multi-objective genetic algorithm (MOGA). Data were collected from canola farming enterprises
in the Mazandaran province of Iran and were used to test the application of the combined modeling
algorithms. Life cycle assessment (LCA) for one ha functional unit of canola production from
cradle to farm gate was conducted in order to evaluate the impacts of energy, materials used, and
their environmental emissions. MOGA was applied to maximize the output energy and benefit-
cost ratio, and to minimize environmental emissions. The combined ANFIS–MOGA technique
resulted in a 6.2% increase in energy output, a 144% rise in the benefit-cost ratio, and a 19.8%
reduction in environmental emissions from the current canola production system in the studied
region. A comparison of ANFIS–MOGA with the data envelopment analysis approach was also
conducted and the results established that the former is a better system than the latter because of its
ability to generate optimum conditions that allow for the assessment of a combination of parameters
such as energy, economic, and environmental impacts of agricultural production systems.

Keywords: ANFIS; MOGA; energy; environment; sustainable food production

1. Introduction

The agricultural production sector contributes about 14% of global net carbon dioxide
emissions, hence, this sector is considered as a major emitter of atmospheric greenhouse
gases (GHGs) in recent times [1]. To enable useful decisions for developing economi-
cally viable, energy-efficient, and environmentally friendly production systems, tools are
required to allow evaluations of environmental impacts of agricultural production sys-
tems [2]. Life cycle assessment (LCA) is a comprehensive and internationally recognized
tool for a cradle-to-grave evaluation of the environmental impacts of processes, products,
and services, offering an insight into solutions that are aimed at reducing such impacts in
order to achieve more sustainable production and consumption [3]. Energy, economics,
and environmental life cycle assessments of agricultural and food products have already
been studied in recent works [4–9].

Alternative knowledge acquisition approaches based on artificial neural networks
(ANNs), fuzzy logic (FL), and genetic algorithms (GAs) have the advantages of producing
good results in situations where data is imprecise, noisy, and inconsistent. Hematian et al. [10]
performed a study involving the production of sugar beet and identified ways by which
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energy consumption can be optimized via the application of GA. They alluded to the proof
of concept involving the use of the GA technique for the creation of optimized patterns for
energy use for producing sugar beet. The combined systems of ANNs, FL, and GAs have all
the advantages together, and therefore, they have recently attracted considerable attention.
FL and data envelopment analysis (DEA) techniques were integrated by Sefeedpari et al. [11]
in their study to address the ranking issue of dairy farms for milk production. Using both
FL and ANNs, Jang [12] produced a fuzzy inference system that was implemented in the
framework of adaptive networks, referred to as the adaptive neuro-fuzzy inference system
(ANFIS) approach.

ANFIS applies an ANN learning algorithm to set a fuzzy rule with suitable membership
functions (MFs) considering the input and output data. It is an appropriate solution for func-
tion approximation in which a hybrid learning algorithm is applied to the location and shape
of MFs, which renders it suitable for complex system modeling [13]. Arkhipov et al. [14] used
ANFIS to evaluate the ecological conditions through the bio-indicators; later, this combined
technique was applied to the prediction of crop yields based on different energy inputs [15].
A multi-stage ANFIS technique was applied by Khoshnevisan et al. [16] to estimate potato
yield via the use of varied combinations of energy input parameters.

GA is a branch of evolutionary algorithms (EAs) often implemented to find solutions
for optimization-related problems from methods that are stimulated by natural evolution.
It has been applied in various fields of study by multiple researchers and widely consid-
ered to be an effective technique for optimization-related studies [17,18]. In an LCA study
conducted by Khoshnevisan et al. [19], a multi-objective genetic algorithm (MOGA) and
DEA were used to assess the environmental benefits associated with cropping systems [19].
They relied on mathematical relations for estimating fitness functions. A growing body
of literature has employed the GA technique to solve the allocation problem in life cycle
inventory. One of such body of literature includes the study performed by Cellura et al. [20]
who, without the use of computational methods, attempted to solve multi-output systems
characterized by a rectangular matrix of technological coefficients. Khoshnevisan et al. [19]
used the multi-objective genetic algorithm (MOGA) for solving an optimization problem
based on watermelon yield and environmental impacts. In another engineering applica-
tion of combined approaches, first, the neural fuzzy networks approach was utilized for
modeling fluid dispensing processes for microchip encapsulation, and then the developed
models were applied to formulate a MOGA problem to find the optimum values for the
fluid dispensing process parameters [21].

Most of these studies separately used artificial intelligence techniques for either predic-
tion or optimization of performance parameters in agricultural production systems. To the
best of the authors’ knowledge, there has been no known study involving both modeling
and optimization techniques for an energy, economic, and environmental performance
evaluation of agricultural systems. Therefore, the objective of this study was to evaluate
the performance of an ANFIS–MOGA model to model and optimize the energy, economic,
and environmental life cycle assessment of oilseed production. A multi-stage ANFIS model
was used to estimate energy consumption, cost-effectiveness, and the environmental im-
pacts associated with the production of canola. Then, the developed models were used
to formulate a MOGA in order to determine the optimal combined parameters involving
energy input and output as well as establish any potential benefit-to-cost (B/C) ratio and
minimize environmental emissions from the production process.

The paper is organized as follows: Section 2 provides the methodology used for data
collection and model development, Section 3 provides the comparative results obtained
from different models for the case study, and this work is concluded in Section 4.

2. Materials and Methods
2.1. Sampling and Data Acquisition

The primary data for the energy and economic productivity analyses as well as the
data for life cycle inventory analysis of canola production were collected from farm visits



Sustainability 2021, 13, 290 3 of 16

and structured face-to-face interviews with the canola producers in Mazandaran province,
northern Iran. This region is characterized by a mild and humid climate along the Caspian
shoreline with an annual rainfall that averages around 1200 to 1300 mm. The simple
random sampling method was employed for the purpose of sampling and the sample
size was calculated as 150 farms. In terms of area, the interviewers surveyed 416.60 ha,
representing about 5% of the total planted area in the region.

A methodology involving physical material flows was used for the energy analysis
through which the input and output parameters for crop husbandry were determined.
The energy coefficients used were from published papers [22–26]. The inputs were in
the form of machinery, diesel fuel and lubricants, agrochemicals (herbicides, fungicides,
and insecticides), nitrogen fertilizers, chemical fertilizers (phosphorus (P2O5), potassium
(K2O), sulfur (S)), and farmyard manure (FYM). The outputs were canola grain and straw.
The procedure for the LCA in the present study followed the ISO 14040:2006 standard [27],
and the goal was to examine the environmental profile of canola production and to identify
cost reduction measures as well as increase the environmental sustainability of the product
from a life cycle perspective. The functional unit chosen for the analysis was 1 ha of canola
production during a single production period.

The focus of this study was to apply ANFIS–MOGA for prediction and optimization
of the energy, economic, and environmental indicators associated with the production of
canola, in the agricultural phase, rather than the analysis of the processing phase; hence the
cradle-to-farm gate system boundaries were considered. Figure 1 represents a simplified
diagram that shows the major stages of the product life cycle.

Figure 1. System boundaries, inputs, outputs, and emissions for canola production.

2.2. Inventory Analysis

The inventory data included off-farm raw material inputs and on-farm emissions.
On-farm emissions often involve nitrogen emissions, which usually contribute significantly
to the final results of LCA studies. In the process of synthetic N production from con-
verting atmospheric N2 to a form available to plants (NH4

+ or NO3
−), although nitrogen

availability is not a limiting factor, the use of fossil energy is a limiting factor and it should
be considered [28]. Weeding operations are usually one of the main problems for canola
production in the region. Common herbicides used to suppress the growth of weed by
local farmers include Treflan, Gallant super, and Leontral. Diazinon and Tilt agrochem-
icals are also a common pesticide and fungicide often used to control pests and fungi,
respectively. To model commercial agrochemicals, their corresponding chemical groups
and active ingredient percentages according to inventory data from the Ecoinvent database
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and information from the company were applied. Diesel fuel and lubricating oil used by
tractors and combined harvesters were estimated using data obtained from the operators
of the heavy-duty equipment. The data for transportation was collected by interviewing
local experts.

The inventory data for emissions linked to the application of inputs were determined
according to the methods and coefficients described in [1,28]. Fertilizer application results
in emissions of a variety of gases that not only contribute to global warming, but also
create environmental problems such as acidification, eutrophication, and other conditions
with significant impact on the ecosystem. For instance, most fertilizers contain nitrogen.
Once those fertilizers are applied to agricultural systems, two conditions are likely to occur:
One is that the fertilizer gets absorbed by the plants, and the other is the conversion of the
fertilizer into various forms via an oxidation process. This means that direct field emissions
of gases such as ammonia (NH3), nitrous oxide (N2O), and NOx as well as nitrates (NO3

−)
are likely to occur and may lead to environmental issues mentioned above, including the
contamination of groundwater. The same is true for phosphorous-containing fertilizers that
result in the emission of phosphorus, which is equally responsible for the contamination
of surface water. The models presented in Table 1 were used to calculate indirect N2O
emission from the atmospheric deposition of chemical fertilizers and farmyard manure.

Table 1. Coefficients for estimating the on-farm emissions related to the application of inputs in canola production.

Characteristics Coefficient (Emissions End Point) [References]

A. Emissions from fertilizers [1][
kg N2O − N

kg Nin f ertilizer and manure applied

]
0.01 (to air)[

kg CO2 − C
kg Urea

]
0.2 (to air)[

kg NH3− N
kg Nin manure applied

]
0.2 (to air)[

kg NH3− N
kg Nin f ertilizer applied

]
0.1 (to air)[

kg NO−
3 − N

kg Nin f ertilizer and manure applied

]
0.3 (to water)[

kg Phosphorus emission
kg Phosphorus in f ertilizer and manure applied

]
0.05 (to water)

B. Indirect N2O from atmospheric deposition of fertilizers [1][
kg N2O − N

kg Nin chemical f ertilizer applied

]
0.01 × 0.1 (to air)[

kg N2O − N
kg Nin manure applied

]
0.01 × 0.2 (to air)

C. Conversion of emissions [1]

Conversion from kg CO2-C to kg CO2
(

44
12

)
Conversion from kg N2O-N to kg N2O

(
44
28

)
Conversion from kg NH3-N to kg NH3

(
17
14

)
Conversion from kg NO3

--N to kg NO3
(

62
14

)
Conversion from kg P2O5 to kg phosphorus

(
62
142

)
D. Emissions from residue burning [30][

kg CH4
kg Residue burned

]
0.005 (to air)[

kg CO
kg Residue burned

]
0.06 (to air)[

kg N2O
kg Residue burned

]
0.007 (to air)[

kg NOX
kg Residue burned

]
0.121 (to air)

Emissions from residue incorporating[
kg N2O − N

kg Nin residue return to soil

]
0.01 (to soil)
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Table 1. Cont.

Characteristics Coefficient (Emissions End Point) [References]

E. Direct NOx emissions from fertilizers and soil [1][
kg NOx

kg N2OFrom f ertilisers and soil

]
0.21 (to air)

F. Emissions from labor (to air) [31][
kg CO2eq

man−h Labor

]
0.7 (to air)

G. Diesel for farm traction and transportation Datasheet for the Ecoinvent database

H. Emissions from chemicals All the active ingredient is emitted to soil [28]

Upon the application of N-containing fertilizers, nitrate (NO3
−) is formed via ammo-

nium (NH4
+) conversion, a nitrification process solely responsible for the natural source

of nitrate in the environment. The NO3
- is easily absorbed by plant roots, yet remains

susceptible to leaching into deeper soil levels where it is unavailable for uptake by plants
or even microorganisms. About 30% of the N content of fertilizers and manure leaches
deeper down into the soil and groundwater. For the calculation of indirect N2O from the
atmospheric deposition of chemical fertilizers and manure, the Intergovernmental Panel
on Climate Change (IPCC) guidelines were followed. The amount of N2O emitted through
atmospheric deposition is a function of the proportion of the applied N that volatilizes as
NH3 and NOx, and the amount converted into N2O.

During the denitrification process, soil NOx finds its way to the atmosphere where
it affects the stratospheric layer of the ozone, a condition known as the greenhouse effect.
About 21% of direct N2O emitted from chemical fertilizers and farmyard manure is in
the form of NOx [1]. Phosphorous from chemical fertilizers and manure contaminates the
surface and groundwater due to leaching, run-off, and soil erosion, and it is a major cause
of freshwater eutrophication [29]. It was assumed that 0.05% of phosphorus content of
fertilizers and manure reaches freshwater resources.

An emission factor of 0.7 (kg CO2e/man-h) [31] was considered to estimate the
environmental emissions associated with labor use in the canola production process. For the
calculation of on-farm emissions of diesel fuel combustion, the “traction” data set was
used. It covers the combustion of diesel-powered tractors at an average load. In addition,
all agrochemicals used for crop production were assumed to end up in the agricultural
soil compartment. Thus, the agrochemicals used as inputs were considered as emissions.
Transformation products from pesticides were excluded from the analysis [1].

Inventory data for the production of inputs (e.g., fertilizer, agrochemicals, and machin-
ery) and field emissions came from the Ecoinvent®3.0 database included in the SimaPro
8.0.3 software (Amersfoort, The Netherlands) [32].

2.3. ANFIS

The ANFIS was initially proposed by Jang in 1993 [12]. The basic structure of a fuzzy
inference system (FIS) is a five-layered feed-forward network as follows (Figure 2) [33].



Sustainability 2021, 13, 290 6 of 16

Figure 2. Schematic diagram of an adaptive neuro-fuzzy inference system [33].

ANFIS uses a hybrid learning algorithm to identify the membership function parame-
ters of a single output for the FIS of the Sugeno type. A combination of least squares and
backpropagation gradient descent methodologies are implemented to train the member-
ship functions parameters, and consequently to simulate the relationship between a given
set of input and output data. Since the concept of ANFIS has been elaborated in previous
studies [16], only a brief description of this system is presented here. For simplicity, the
abovementioned system is supposed to have two inputs (x, y) and one output (z). Con-
sidering a Sugeno fuzzy model, the fuzzy rules between the input and output data are
generated as follows [34]:

Rule 1: If (x is A1) and (y is B1) then (f 1 = p1x+q1y+r1)
Rule 2: If (x is A2) and (y is B2) then (f 2 = p2x+q2y+r2)

where Ai and Bi represent the fuzzy sets, fi denotes the output, and {pi, qi, ri} denote the
modifiable parameters which are optimized during the training process.

The node functions of each layer for the two-rule ANFIS architecture, as presented in
Figure 2, are briefly described as follows:

Layer 1: Every node i in this layer is an adaptive node with a node function,

O1
i = µAi (x), (1)

where x denotes the input to node i, Ai represents the linguistic label associated with this
node function, and Oi

1 is the membership function of Ai. To the input y, the node functions
in the same layer are of the same function family as x. Generally, µAi (x) is chosen to be
bell-shaped or gauss-shaped between 0 and 1, as follows:

µAi (x) =
1

1 +
[
((x − ci)/(ai))

2
]bi

(2)

or

µAi (x) = exp

{
−
(

x − ci
ai

)2
}

(3)

where {ai, bi, ci} are the premise parameters.
Layer 2: Every node in this layer is a fixed node, operating as a simple multiplier.

The outputs of these nodes are defined as follows:

O2
i = ωi=µAi (x), i = 1, 2, (4)
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Layer 3: In this layer, each node is adaptive, and it is labeled as N. The ith node
calculates the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths.
The outputs of this layer are called normalized firing strengths.

O3
i = ωi=

ωi
ω1 + ω2

, i = 1, 2, (5)

Layer 4: Every node in this layer is an adaptive node with a function as [33]:

O4
i = ωi fi = ωi(pix + qiy + ri), i = 1, 2, (6)

where ωi denotes the output of layer 3, and {pi, qi, ri} represent the consequent parameters.
Layer 5: In this final layer, the single node is fixed and labeled as ∑, which calculates

the overall output as the sum of all incoming signals as follows:

O5
i =

2

∑
i=1

ωi fi =

2
∑

i=1
ωi fi

2
∑

i=1
ωi

(7)

The ANFIS model is characterized by constraints in terms of the number of inputs,
which often does not exceed 5. However, should the number of ANFIS inputs go beyond
5, there is an increase in the rule numbers and computational time. In such an event,
a number of solutions are possible, one of which is to apply the principal component
analysis (PCA) technique, or rely on data clustering to reduce the number of criteria.
Considering the data obtained from the canola production process in the region of study,
eight energy input parameters include labor, machinery, diesel fuel, agrochemicals, nitrogen
fertilizer, other chemical fertilizers, farmyard manure, and seeds. A clustering approach
was proposed to classify the input parameters into four groups. Accordingly, the proposed
model was developed using seven ANFIS sub-networks (Figure 3).

Figure 3. Three-stage ANFIS structure to predict the energy output, economic productivity, and envi-
ronmental emissions of canola production.

In order to evaluate the performance of developed ANFIS models, the quality pa-
rameters, including the root mean square error (RMSE), the mean absolute error (MAE),
coefficient of determination (R2), normalized mean bias error (NMBE), and coefficient of
variation of the root mean square error (CVRMSE), were estimated by considering the
observed and predicted values.
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2.4. Multi-Objective Genetic Algorithm (MOGA)

Genetic algorithms are random search optimization techniques that are based on a
selection strategy linked to the principles of the strongest in retaining genetic information
during specific functions; MOGA utilizes a non-dominated sorting genetic algorithm,
NSGA-II [35], to allow for the identification of feasible solutions.

Following the flowchart of applying genetic algorithms (Figure 4), first the problem
is defined, an initial random population is generated, and fitness functions are evaluated;
then, all individuals in the population undergo the operations of selection, crossover,
and mutation to produce a new population in the next generation. The fitness is evaluated
by calculating the objective functions. Individuals with higher fitness are selected for the
nesting frequency. Consequently, on average, each successive generation’s population
improves until it meets the stopping criteria specified in the problem definition and there-
fore the individual with higher fitness in the final generation is selected as the optimum
solution [35,36]. When solving multi-objective problems, the objective functions of interest
are in competition; as such, they cannot simultaneously attain their high fitness values.
In this case, a non-dominated solution set, also called the Pareto frontier, was employed
instead of a single solution [35].

Figure 4. The flowchart for the development of adaptive neuro-fuzzy inference systems and the
application of multi-objective genetic algorithm.

In this study, three objective genetic algorithms were applied to maximize the energy
output and B/C ratio, and to minimize the environmental emissions associated with
canola production. The fitness functions were obtained by a three-stage ANFIS method
(Figure 4). The minimum and maximum values of energy consumption by different inputs
were considered limits for problem formulation.

2.5. Optimization Performance Evaluation

The performance of the application of the combined ANFIS–MOGA method was
evaluated using the DEA technique. Efficiency of a decision-making unit (DMU) in DEA
is defined as technical efficiency, pure technical efficiency, and scale efficiency, which is
estimated by dividing the technical efficiency score by the pure technical efficiency score.
The conceptual framework for DEA models is described in a previous study [37].

For conducting life cycle assessment, the SimaPro 8.0.3 software (Amersfoort, The Nether-
lands) was used. The programming part for modeling with multi-stage ANFIS and opti-
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mization by MOGA was performed in a MATLAB 8.5 (R2015b) environment. The Effi-
ciency Measurement System (EMS) version 1.3 (Dortmund, Germany) was employed for the
DEA models.

3. Results
3.1. Energy Use, Economics, and Environmental Impacts of Canola Production

Labor, machinery, diesel fuel and lubricant, agrochemicals (herbicides, fungicides, and
insecticides), nitrogen fertilizer, other chemical fertilizers (including phosphorus, potas-
sium, and sulfur), farmyard manure, and canola seeds all made up the input parameters
of the oilseed canola production in the region. Irrigation water and electrical energy were
not applied to canola production in the region of study. Statistical information for energy
inputs as well as certain indices of energy consumption are presented in Table 2. The re-
sults revealed that 5188 to 27,887 MJ ha−1 (average 15,209 MJ ha−1) energy was consumed
for canola production, whereas the output energy was estimated to be 56,696 MJ ha−1.
The minimum and maximum values for the input parameters were considered the lower
and upper bounds for MOGA problem definition.

Table 2. Energy use and energy output of canola production in the studied region.

Average Standard
Deviation Minimum Maximum

A. Energy inputs (MJ ha−1)
1. Labor 143 93 35 737
2. Machinery 1121 267 494 1930
3. Diesel fuel and lubricant 5217 1269 2469 8772
4. Agrochemicals 385 231 0 1278
5. Nitrogen 7147 3099 0 16,824
6. Other chemical fertilizers 865 389 0 2171
7. Farmyard manure 298 796 0 4500
8. Seeds 33 8 25 72
B. Energy indicators
1. Total energy input (MJ ha−1) 15,209 4299 5188 27,887
2. Output energy (MJ ha−1) 56,696 17,192 23,205 107,016
3. Yield (kg ha−1) 2077 630 850 3920

An economic evaluation of the production of canola was conducted by estimating the
total production revenue, B/C ratio, and variable and fixed costs of production (Table 3).
The total cost of production was estimated to be USD 707 ha−1, and the contributions of
variable and fixed costs were estimated to be 69.4% and 30.6%, respectively. A division of
the total production revenue by the total cost of production resulted in a B/C ratio of 1.60.

Table 3. Economic analysis of canola production.

Economic Indices (Unit) Average (%)

a. Sale price (USD kg−1) 0.54
b. Total production revenue (USD ha−1) 1111
c. Variable cost of production (USD ha−1) 491 (69.4%)
d. Fixed cost of production (USD ha−1) 216 (30.6%)
e. Total cost of production per area unit (USD ha−1) 707 (100%)
f. Total cost of production per mass unit (USD kg−1) 0.34
g. Benefit to cost ratio 1.60

The environmental life cycle assessment was conducted by following the CML-IA [38]
method. The impact categories included abiotic depletion (fossil fuels), global warming
(GWP100a), ozone layer depletion (ODP), human toxicity, terrestrial ecotoxicity, freshwa-
ter aquatic ecotoxicity, marine aquatic ecotoxicity, photochemical oxidation, acidification,
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and eutrophication. GWP was estimated to be 2454 kg CO2eq ha−1 (Table 4), and it
was mainly due to chemical fertilizer application in the field, as well as diesel fuel burn-
ing for farm operations. Acidification and eutrophication impacts of canola production
were estimated to be for 48.4 kg SO2eq ha−1 and 37.34 kg PO4

3−eq ha−1, respectively
(Table 4). Marine aquatic ecotoxicity for canola production was estimated to be 873,286.3 kg
1,4-DBeq ha−1 (Table 4). These results correlate favorably with previous findings in the
literature [39–41], thus further support the idea that fertilizers contribute significantly
to environmental emissions during agricultural practices. In a previous study in Chile,
the acidification potential for the production of canola and sunflowers was reported as
16 kg SO2eq ha−1 and 23 kg SO2eq ha−1, respectively. In addition, the eutrophication
potential for the production of rapeseed and sunflowers totaled 7.2 and 9 kg PO4eq ha−1,
respectively.

Table 4. Environmental impacts of canola production in the studies region (Functional unit: 1 ha).

Impact Category Unit
Average

Characteristics
(Unit ha−1)

Weighted
Emissions
(pPt ha−1)

1. Abiotic depletion kg Sb eq 6.5E-3 31.2
2. Abiotic depletion (fossil fuels) MJ 14,585.1 38.4
3. Global warming (GWP100a) kg CO2 eq 2454.0 58.6
4. Ozone layer depletion (ODP) kg CFC-11 eq 5.7E-5 0.2
5. Human toxicity kg 1,4-DB eq 466.2 180.9
6. Freshwater aquatic ecotoxicity kg 1,4-DB eq 1413.2 199.3
7. Marine aquatic ecotoxicity kg 1,4-DB eq 873,286.3 1502.0
8. Terrestrial ecotoxicity kg 1,4-DB eq 28.2 8.6
9. Photochemical oxidation kg C2H4 eq 1.1 30.8
10. Acidification kg SO2 eq 48.4 202.6
11. Eutrophication kg PO4

3− eq 37.3 235.9
Total - 2488.7

Total environmental emissions weighted score was estimated to be 2488.7 pPt ha−1.
Additionally, marine aquatic ecotoxicity, eutrophication, and acidification were estimated
to be 1502.0, 235.9, and 202.6 pPt ha−1, respectively.

3.2. ANFIS Modeling

To identify the best combination of input variables in sub-network models, the ANFIS
program written in MATLAB was run several times. The results showed that a combination
of input variables did not affect the results of the predicted model, even though different
combinations of input variables were used. The same was true for the prediction of the
three indices mentioned above. The triangular membership function was considered for
this analysis.

The results of the three-stage ANFIS modeling are listed in Table 5. The findings
are a representation of the model configuration and error analysis. Output energy was
considered an exogenous parameter and showed R2 values that correlated the predicted
output energy by a coefficient of determination of 0.90. These results indicate that a three-
stage ANFIS technique can be used to precisely predict energy output. The CVRMSE in
the final stage was 9%, and the estimated NMBE for the final ANFIS model was found to
be 0.7% overestimating. Using the B/C ratio modeling by the three-stage ANFIS, it can
be noted that the R2 value for both the observed and predicted B/C ratio was 0.87. It is
also glaring that the RMSE in the third level decreased to 0.15. Additionally, the CVRMSE
percent for the final ANFIS model decreased to 9% and the NMBE was estimated to be
0.34% underestimating. To model a final score of environmental emissions, the results
revealed that the coefficient of determination for observed and predicted values was found
to be 0.92, an indication that environmental emissions can be accurately predicted using the
three-level ANFIS. The results for error analysis also indicated that the three-stage ANFIS
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method is capable of closely predicting the final score of environmental emissions from
canola production.

Table 5. Results of the three-level ANFIS for modeling energy, economic, and environmental indices of canola production.

Parameters
Output Parameter

Output Energy Benefit to Cost Ratio Environmental
Emissions Score

Type of membership
function

Input Gbell Gbell Gbell
Output Linear Linear Linear

Number of
membership function

Input 7 7 7
Epoch 32 32 32

Error analysis

R2 0.90 0.87 0.92
Root mean square error

(RMSE) 5.35 0.15 266.92

Mean absolute error
(MAE) 3.63 0.1 184.15

Coefficient of variation
of the root mean square

error (CVRMSE) (%)
9 9 11

Normalized mean bias
error (NMBE) (%) 0.7 -0.34 -0.26

The results obtained further strengthened our confidence in the three-stage ANFIS
model, which was able to provide a precise estimation of the output parameters on the
basis of the energy inputs. The correlation coefficient and RMSE for the final ANFIS model
were found to be 0.99 and 0.03, respectively.

3.3. Multi-Objective Optimization

The best combinations of energy requirements from different inputs for 30 individual
inefficient farmers obtained by application of ANFIS–MOGA are presented in Table 6.
Using this information, it is possible to advise a farmer on how to improve operating
practices by following target energy requirements from different inputs in order to max-
imize output energy and the B/C ratio, and to minimize environmental emissions from
production. This gives the average energy usage in optimal conditions (MJ ha−1), the total
input and output energy, as well as the energy ratio and B/C ratio, including the final score
of the environmental emissions from production. Therefore, the dissemination of these
results can offer information that can facilitate better farm management practices and help
improve the performance of farmers for canola production. As evident in Table 6, although
the total energy input varied from 8151 to 19,853 MJ ha−1, the output energy ranged from
46,193 to 75,251 MJ ha−1 and the B/C ratio ranged from 1.95 to 5.44. In addition, the final
scores of the environmental emissions from the canola production process were estimated
to be in the range of 334 to 3184 pPt ha−1.

The results of the multi-objective optimization of the parameters under study (energy,
economic, and environmental indices) are presented in Table 7. Energy consumption by
nitrogen fertilizer and diesel fuel, the major energy consumption inputs in the current
situation, decreased by 9.9% and 2.4%, respectively, whereas an increase of 7.4% was
recorded for machinery energy. A simultaneous increase in machinery use and decrease in
diesel fuel consumption can happen by applying better machinery management; therefore,
proper matching of the tractor and the efficient operation of farm tractors are necessary
for optimum agricultural production conditions (e.g., maximizing the fuel efficiency and
tractive efficiency, applying “gear-up, throttle-down” practices, and selecting an optimum
travel speed [42]). In addition, the use of labor and agrochemicals in the optimum situation
increased by 21.1% and 17%, respectively. These inputs are usually applied in weeding
operations. Manure application showed an increase from 298 to 112 MJ ha−1. The results
of the ANFIS–MOGA application revealed that when total energy input increases by



Sustainability 2021, 13, 290 12 of 16

1.7%, the total output energy increases by about 6.2%, and consequently the energy ratio
increases by 8.7%. On the other hand, the B/C ratio increases from 1.60 to 3.90, and the
final score for environmental emissions decreases by 19.8%, should the farmers adhere to
the recommendations of this assessment. Hematian et al. [10] studied the optimization of
energy consumption for sugar beet production by applying GA. They reported an optimum
situation of a 22% reduction in the total energy requirement for sugar beet production.

Table 6. Neuro-fuzzy-genetic results of the optimization of the energy, economic, and environmental life cycle assessments for
canola production.
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Table 7. Results of the multi-objective optimization of energy, economic, and environmental indices using the ANFIS–MOGA approach.

Current Situation Optimum Situation Difference Difference (%)

A. Energy inputs (MJ ha−1)
1. Labor 143 173 30 21.1
2. Machinery 1121 1204 83 7.4
3. Diesel fuel and lubricant 5217 5094 −123 −2.4
4. Agrochemicals 385 450 65 17.0
5. Nitrogen 7147 6441 −706 −9.9
6. Other chemical fertilizers 865 947 82 9.5
7. Farmyard manure 298 1123 826 277.2
8. Seeds 33 37 3 9.9
B. Energy and environmental indices
1. Total energy input (MJ ha−1) 15,209 15,469 260 1.7
2. Energy ratio 3.73 4.05 0.32 8.7
3. Output energy (MJ ha−1) 56,696 60,225 3530 6.2
4. Environmental final score (pPt ha−1) 2489 1995 −494 −19.8
5. B/C ratio 1.60 3.90 2.30 144.3
6. Yield (kg ha−1) 2077 2206 129 6.2
7. Economical productivity (kg $−1) 0.14 0.15 0.01 6.0
8. Energy intensity (MJ kg−1) 7.32 7.06 −0.26 −3.6
9. Net energy (MJ ha−1) 41,487 44,756 3269 7.9

3.4. Optimization through DEA Approach

The DEA approach was undertaken in order to determine farm efficiency from the
energy, economic, and environmental perspectives. The results for efficiency estimation,
presented in Table 8, show that the average technical efficiency varied from 0.64 to 1,
with an average value of 0.91 and standard deviation of 0.1. This implies that if the farmers
operate efficiently from a technical and scale point of view, an average of 9% energy inputs
could be saved without any alterations in output parameters related to energy, economic,
or environmental emissions.

Table 8. Efficiency scores of canola farms by applying the data envelopment analysis (DEA) approach.

Particular Average SD Min Max

Technical efficiency 0.91 0.10 0.64 1
Pure technical efficiency 0.95 0.06 0.74 1

Scale efficiency 0.96 0.06 0.73 1

The mean pure technical efficiency of farms was found to be 0.95, an indication that
about 5% of energy inputs could be saved through efficient technical farm operations.
Scale efficiency was calculated as 0.96, a value that corresponds to a total energy input
savings of 4% at constant output parameters, should the farmers operate at an optimum
scale. In a previous study [43] the technical, pure technical, and scale efficiencies of
horticultural crop production enterprises were reported as 0.75, 0.80, and 0.94 for tomato
production and 0.81, 0.89, and 0.91 for asparagus production, respectively.

The optimum energy requirements and the energy savings of the various input pa-
rameters based on the results of the pure technical efficiency estimation are given in
Table 9. Under optimum conditions, nitrogen fertilizer and diesel fuel energy decreased by
7% and 12%, which corresponds to input parameters to the values of 6665 and 4589 MJ ha−1,
respectively. In addition, labor and machinery energy requirements were estimated as 117
and 1007 MJ ha−1, respectively. In view of this, the parameters with the highest ineffi-
cient use of energy in the canola production system included labor, machinery, diesel fuel,
and agrochemicals. Under optimum production conditions, the total energy input de-
creased by 9%, corresponding to 13,838 MJ ha−1, and output energy decreased by 8%,
an amount that corresponds to 52,380 MJ ha−1 of energy. Similarly, the B/C ratio and
total environmental emissions decreased by 18% and 5%, respectively. Chauhan et al. [44]
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alluded that a total energy input of 1093.8 MJ ha−1 (11.6%) could be saved from the pro-
duction of paddy. Similar results on total energy saving were also reported for wheat
production, with about 9.8% and 7.1% savings, respectively [45].

Table 9. Results of the optimization of energy, economic, and environmental indices using the
DEA approach.

Optimum Situation Difference Difference (%)

A. Energy inputs (MJ ha−1)
1. Labor 117 −26 −18
2. Machinery 1007 −114 −10
3. Diesel fuel and lubricant 4589 −628 −12
4. Agrochemicals 339 −46 −12
5. Nitrogen 6665 −482 −7
6. Other chemical fertilizers 819 −46 −5
7. Farmyard manure 272 −26 −9
8. Seeds 30.9 −2.5 −7
B. Energy and environmental indices
1. Total energy input (MJ ha−1) 13,838 −1370 −9
2. Energy ratio 3.79 0.06 1
3. Output energy (MJ ha−1) 52,380 −4315 −8
4. Environmental final score (pPt ha−1) 2377 −112 −5
5. B/C ratio 1.32 −0.28 −18
6. Yield (kg ha−1) 1919 −158 −8
7. Economical productivity (kg $−1) 2.44 −0.52 −18
8. Energy intensity (MJ kg−1) 7.21 −0.11 −2
9. Net energy (MJ ha−1) 38,542 −2945 −7

In summary, the results of the DEA showed that there was a decrease in the inefficient
use of energy input and output, as well as in the B/C ratio and the total environmental
emissions of the canola production process. With regard to the ANFIS–MOGA model,
the results indicated that optimum production conditions were achieved under different
circumstances of the same parameters with only the final score of the environmental emis-
sions reported to have decreased. The results of the comparison between the two methods
indicated that the ANFIS–MOGA method is more advantageous in finding the practi-
cal and reasonable optimum solutions for the combination of mixing energy, economic,
and environmental aspects of farming systems. Hence, the method is considered useful
for modeling and optimizing agricultural production systems from an energy, economic,
and environmental point of view.

4. Conclusions

This study proposed a combined method of ANFIS and MOGA for the modeling
and prediction of energy, economic, and environmental emissions from the agricultural
production of canola in the Mazandaran province of Iran. The potential application of this
combined system for optimizing agricultural inputs in the production process of canola
was investigated using data obtained from farm visits and face-to-face interviews of the
canola producers. The multi-stage ANFIS system was used to predict output parameters
from energy inputs to establish the optimum inputs necessary for canola production.
Consequently, a MOGA approach was applied to determine the best combination of output
energy, B/C ratio, and total environmental emissions. The modeling results indicated that
a three-stage ANFIS structure comprising four ANFIS models in the first stage, two ANFIS
models in the second stage, and one final model in the third stage had the best performance
for the prediction, showing R2 values of 0.90, 0.87, and 0.92 for the prediction of output
energy, B/C ratio, and environmental emissions final scores, respectively.

The results of the MOGA application showed that optimum production condition is
achieved when the total energy input increases by 1.7%, total output energy increases by
6.2%, and consequently the energy ratio increases by 8.7%. Conversely, the B/C ratio equally
increases from 1.60 to 3.90 and the final score of environmental emissions decreases by 19.8%,
should the farmers, as previously stated, follow the recommendations of this study.
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A comparison of the results of the ANFIS–MOGA method to those of the DEA re-
vealed that the former has superior performance because of its ability to find the practical
and reasonably optimum solutions for the combination of mixing energy, economic, and
environmental aspects. In light of this conclusion, it is therefore suggested that the ANFIS–
MOGA method can be used for the modeling and optimization of performance parameters
in agricultural production systems. It can also be extended to the system-level evaluation of
other agricultural, food, and biobased products from energy, economic, and environmental
perspectives and different geographic regions.

Some of the limitations of this work include collection of data from different geo-
graphic locations, and evaluation of model performance in real agricultural enterprises.
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