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Abstract: Nowadays, as a low-carbon and sustainable transport mode bike-sharing systems are
increasingly popular all over the world, as they can reduce road congestion and decrease greenhouse
gas emissions. Aiming at the problem of the mismatch of bike supply and user demand, the operators
have to transfer bikes from surplus stations to deficiency stations to redistribute them among
stations by vehicles. In this paper, we consider a mixed fleet of electric vehicles and internal
combustion vehicles as well as the traffic restrictions to the traditional vehicles in some metropolises.
The mixed integer programming model is firstly established with the objective of minimizing the
total rebalancing cost of the mixed fleet. Then, a simulated annealing algorithm enhanced with
variable neighborhood structures is designed and applied to a set of randomly generated test
instances. The computational results and sensitivity analysis indicate that the proposed algorithm
can effectively reduce the total cost of rebalancing.

Keywords: sustainable transport; bike-sharing rebalancing problem; multi-energy mixed fleets;
traffic restrictions; simulated annealing; variable neighborhood structures

1. Introduction

Nowadays, bike-sharing systems (BSSs), as a low-carbon and sustainable transport
mode, are becoming more and more popular across the global, as they can reduce road con-
gestion and decrease greenhouse gas emissions caused by motorized transportation [1,2].
The first BSS was introduced in Amsterdam in 1965 [3] and there are now more than 1500 ac-
tive BSSs [4] and this number is growing at an increasing rate [5,6]. Recently, some scholars
begin to pay attention to the practical problem of mismatch of bike supply and user de-
mands in the BSS, which is a common challenge to all BSS operators [7]. Some operators
are trying to meet user demand by placing bikes in cities in large numbers, but this creates
congestion on city streets and is not sustainable. In China, the government has introduced
policies to restrict operators from placing too many bikes. Thus, these operators have to
transfer bikes from the surplus stations to the deficiency stations by means of vehicles so
that the BSS can be rebalanced. This problem is known as the Bike-sharing Rebalancing
Problem (BRP) [8].

Originally, the BSS operators employ internal combustion vehicles (ICVs) to do the
rebalancing operations. However, the development of electric vehicles (EVs) has made great
progress over the past few years and many BSS operators are discovering that EVs bring more
advantages than ICVs beyond environmental benefits, such as less maintenance, less noise
pollution and reduced driving cost [9]. The Chinese government has strongly supported
companies to develop sustainable EVs in recent years, providing many policy bonuses for
the purchase and use of EVs. Furthermore, more and more cities have implemented traffic
restrictions on ICVs to reduce carbon emissions and alleviate traffic congestions [10]. In these
cities, ICVs cannot provide services for certain BSS stations in the restricted areas, while EVs
can. Therefore, in many practical situations, a multi-energy mixed fleet, consisting of both
EVs and ICVs, are used to perform the rebalancing operations.
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In this study, the original version of the BRP is extended by assuming the fleet of
vehicles to be multi-energy types. The BRP considering Multi-energy Mixed Fleets and
Traffic Restrictions (BRP-MMFTR) is considered to be an NP-hard problem, for it origi-
nates from the classical Vehicle Routing Problem (VRP). We formulate the BRP-MMFTR
as a mixed integer programming model based on one commodity pickup and delivery
problem [11], with the objective of minimizing the total rebalancing cost of the mixed fleet.
Our model has more complicate constraints than general BRP, such as battery capacity
limits for EVs and traffic restrictions for ICVs. It is therefore more complex and more
difficult to solve. As the size of bike-sharing stations increases, the calculation time will
increase exponentially. Hence, the real-life BRP-MMFTR instances cannot be solved exactly
within acceptable computation time.

To handle BRP-MMFTR in a runtime acceptable to BSS operators, we propose the Sim-
ulated Annealing algorithm with Variable Neighborhood structures (SAVN) to obtain the
optimal solution. To avoid getting into the trap of local optima and enhance the exploratory
capability, several variable neighborhood structures are incorporated in our algorithm.

The contribution of this paper lies on the following:

• To introduce a new and practical bike-sharing rebalancing problem considering multi-
energy mixed fleets and traffic restrictions;

• To present a mixed integer programming model to formulate the problem above;
• To propose a simulated annealing algorithm with several variable neighborhood

structures to solve it.

The remainder of this paper is organized as follows. Section 2 presents the literature
review on the related problems. Section 3 formally presents a mixed integer programming
formulation for BRP-MMFTR. Section 4 describes the procedure and key components of
SAVN. Section 5 contains the computational experiments and a sensitivity analysis. Finally,
Section 6 presents some concluding remarks about this work.

2. Literature Review

The BRP has been receiving considerable attention from the literatures during the past
decade. Most of studies have focused on optimization models that maximize profits or
minimize costs. Dell’ Amico et al. provide four mixed integer programming models with
the objective of minimizing total costs, where a fleet of capacitated vehicles is employed
to relocate the bikes [12]. Erdoğan et al. and Cruz et al. solve the same model proposed
by Dell’ Amico with a single vehicle, where multi-visit strategy is considered at each
station [11,13]. Duan et al. focus on multi-vehicle BRP with the objective of minimizing the
total travel distance, and a greedy algorithm is proposed [14]. Casazza et al. and Bulhões
et al. incorporate time into the constraints such that each route does not exceed service
time limitation [5,15].

All the problems above need to fully meet the rebalancing demands in the BSS, which is
difficult to achieve in reality. Hence, some researchers are trying to relax these constraints,
and setting the objective to maximize the satisfied rebalancing demand. Papazek et al.
set the primary goal to minimize the absolute deviation between target and final fill levels
for all stations [16]. Gaspero et al. solve the problem with the aim of minimizing the
weighted sum of the total travel time and the total absolute deviation from the target
number of bikes [17], while Raviv and Kolka take it as a penalty cost [18]. Faulty bikes are
considered by Wang and Szeto with the objective of minimizing the total carbon emission
of all vehicles [19]. Usama et al. also consider replacing faulty bikes in the system with the
following objectives: User dissatisfaction and vehicle routing costs [20].

Actually, BRP is a large-scale uncertainty problem, due to the existence of uncer-
tainty of user demand [21]. Hence, some scholars have turned their attention to the BRP
with uncertain user demand. There are roughly three types of methods for dealing with
these uncertainty problems. First, prediction is a common method to resolve uncertainty.
Alvarez-Valdes et al. estimate the unsatisfied demand to guide rebalancing algorithms [3].
Zhang et al. propose a dynamic bike rebalancing method that considers both bike re-
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balancing, vehicle routing and the prediction of inventory level and user arrivals [22].
Second, some scholars divide the uncertainty into multiple independent stochastic scenar-
ios for research. Dell’Amico et al. develop the stochastic programming model with the
objective of minimizing the travel cost and the penalty costs for unfulfilled demands [23].
Maggioni et al. propose the two-stage and multi-stage stochastic optimization models to
determine the optimal number of bikes to assign to each station [24]. Yuan et al. present a
mixed integer programming model with the objective of minimizing the daily costs in-
cluding the capital cost and the expected operating cost [25]. Third, some studies deal
uncertainty directly with dynamic factors. Legros focuses on dynamic rebalancing strategy
in the BSS with the objective of minimizing the rate of arrival of unsatisfied users, and solve
it by a Markov decision process approach [26]. You develops a constrained mathematical
model to deal with a multi-vehicle BRP, aiming to develop dynamic decisions to minimize
the sum of the travel costs and unmet costs under service level constraints over a planning
horizon [27].

However, none of these literature works considers multi-energy mixed fleets. Goncalves et al.
consider the vehicle routing problem with pickup and delivery, and propose a heterogeneous
vehicle routing model based on ICVs and EVs [28]. Sassi et al. formulate the heterogeneous
electric vehicle routing problem with time dependent charging costs, in which a set of customers
have to be served by a mixed fleet of vehicles composed of ICVs and EVs [29]. A mixed fleet
of ICVs and EVs are also considered in Goeke and Schneider [30]. The authors formulate the
electric vehicle routing problem with time windows and mixed fleet, which is solved through
adaptive large neighborhood search algorithm. Charging times vary according to the battery
level when the EV arrives at the charging station, and charging is always done up to maximum
battery capacity. Macrina et al. present a new variant of the green vehicle routing problem with
time windows and propose an iterative local search heuristic to optimize the routing of a mixed
vehicle fleet, composed of EVs and ICVs [31].

In summary, there are abundant studies about BSS, but no model considers multi-
energy mixed fleets and traffic restrictions. For real-life BSSs in big cities, it is more realistic
and more useful to consider a fleet of EVs and ICVs. Therefore, in this paper, we focus on
a new and practical variant of BRP under the background of multi-energy mixed fleets
(composed of EVs and ICVs) and traffic restrictions to ICVs. Our contribution to the
development and application of the BSS model is twofold. On the one hand, we formulate
BRP-MMFTR as a mixed integer programming model with the objective of minimizing the
total rebalancing cost. On the other hand, because this model is too complex to be solved
accurately, we develop SAVN to solve it. Our work will expand the existing knowledge on
modeling BSS.

3. Model Formulation

3.1. Model Descripion and Notations

As shown in Figure 1, BRP-MMFTR studied in this paper can be described as follows:
There are two types of vehicles available, namely EVs and ICVs. Vehicles start from the
depot with no inventory of bikes, then serve all stations by sequentially loading excess
bikes or unloading insufficient bikes, and finally return to the depot after serving all
stations. Each station can be served by a vehicle only once. During the rebalancing process,
the number of bikes carried by a vehicle cannot exceed its maximal capacity. EVs need
to visit the charging stations during the service process. To reduce the complexity of
our model, the EV battery must be fully charged at any charging station and the depot.
In addition, ICVs are not allowed to enter the traffic restricted area. The objective of BRP-
MMFTR is to minimize the total rebalancing cost including the vehicles’ fixed costs and
traveling energy costs, recharging costs for EVs, and carbon emissions for ICVs.
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Figure 1. A schematic example of BRP-MMFTR.

The assumptions related to BRP-MMFTR are given as follows:

• All stations’ demands are known and fixed;
• The traveling energy costs and carbon emissions are only related to the travel distances;
• The loading and unloading time are neglected;
• The residual charge level of the EV grows linearly with the charging time;
• All homogeneous vehicles run at a uniform speed;
• The number of vehicles in the depot and the number of charging piles in each charging

stations are sufficient;

The notations of sets, parameters, and decision variables used in our model are listed
in Table 1.



Sustainability 2021, 13, 270 5 of 15

Table 1. Description of notations.

Sets Description

0 The depot.
N The set of stations, N = {1, 2, . . . , n}.
A The set of arcs, A = {(i, j)/i, j ∈ N ∪ {0}, i 6= j}.
E The set of charging stations, E = {1, 2, . . . , e}.

K1 The set of ICVs, K1 = {1, 2, . . . , k 1}.
K2 The set of EVs, K2 = {k 1 + 1, k1 + 2, . . . , k2}.
K The set of vehicles, K = K1 ∪ K2.
S The set of auxiliary variables avoiding sub-loops, S ⊆ N.
D The set of stations in restricted area, D ⊆ N.

Parameters Description
Qk The maximal capacity of vehicle k.
Fk The fixed cost of vehicle k.
Ck

ij The unit energy cost from vertex i to vertex j of vehicle k.
dij The distance from vertex i to vertex j.
R The maximum battery level of EVs.

u1
ik The residual charge of EV k when reaching vertex i.

u2
ik The residual charge of EV k when leaving vertex i.

λ The unit charging rate of EV.
r The unit battery energy consumption of EV.
µ The coefficient of safe-residual-charge level of EV.
tk
e The charging time of EV k at charging station e.

Cw The unit cost of charging time.
L The unit carbon emission of ICV.

CL The unit carbon trade cost.
Gi The bike demand at station i.
gk

ij The number of bikes loaded when vehicle k is on arc (i, j).
Decision variables Description

xk
ij Binary variable, 1 if vehicle k traverses arc (i, j), and 0, otherwise.

yk
e Binary variable, 1 if vehicle k is charged at charging station e, and 0, otherwise.

3.2. The Total Rebalancing Cost

The total rebalancing cost of BRP-MMFTR include four parts: Vehicles’ fixed costs,
vehicles’ traveling energy costs, EV recharging costs, and ICVs’ carbon emission costs.
The vehicles’ fixed costs and traveling energy costs are the basic components of objectives
in most traditional VRP models. In the objective of our model, the recharging costs reflect
the additional charging time during the operation of EVs, while the carbon emission costs
are related to the greenhouse gas emission of ICVs.

(1) Fixed costs (C1)
The fixed costs of vehicles are the costs of using vehicles for rebalancing operations.

They are different for EVs and ICVs, and the equation of vehicles’ fixed costs in our model
is shown as follows:

C1 = ∑
k∈K

∑
j∈N, j 6=0

xk
0j · Fk (1)

(2) Traveling energy costs (C2)
The traveling energy costs are composed of two types of costs, that is, fuel costs of

ICVs and electricity costs of EVs. Both of them are only associated with the travel distance.
And the equation of vehicles’ traveling energy costs is shown as follows:

C2 = ∑
k∈K

∑
(i,j)∈A,i 6=j

Ck
ij · dij · xk

ij (2)

(3) Recharging costs (C3)
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The travel distance of an EV is limited by its maximum battery level. Hence, it needs
to be charged when its residual charge level lower than the safe residual charge level.
The recharging cost is only related to the charging time. The equation of recharging costs is
shown as follows:

C3 = ∑
k∈K2

∑
e∈E

Cw · tk
e · yk

e (3)

(4) Carbon emission costs (C4)
In the process of rebalancing, a large amount of CO2 is generated by ICVs from

their fuel consumptions, resulting in greenhouse effect. By reducing the costs of carbon
emissions, the total rebalancing cost is reduced. The equation of carbon emission costs is
shown as follows:

C4 = ∑
k∈K1

∑
(i,j)∈A,i 6=j

L · CL · dij · xk
ij (4)

3.3. Model Establishment

The mixed integer programming model for BRP-MMFTR can be written as follows:

min Z = C1 + C2 + C3 + C4 = ∑
k∈K

∑
j∈N,j 6=0

xk
0j · Fk + ∑

k∈K
∑

(i,j)∈A,i 6=j
Ck

ij · dij · xk
ij

+ ∑
k∈K2

∑
e∈E

Cw · tk
e · yk

e + ∑
k∈K1

∑
(i,j)∈A,i 6=j

L · CL · dij · xk
ij

(5)

Subject to:
∑

j∈N,j 6=0
xk

0j = ∑
i∈N,i 6=0

xk
i0= 1 ∀ k ∈ K (6)

∑
k∈K

∑
j∈N,j 6=i

xk
ij= 1 ∀ i ∈ N (7)

∑
j∈N,j 6=i

xk
ij − ∑

j∈N,j 6=i
xk

ji= 0 ∀ i ∈ N,∀ k ∈ K (8)

∑
i∈S

∑
j∈S

xk
ij ≤ |S| − 1 ∀ S ⊆ N, |S| ≥ 2 (9)

∑
j∈D,j 6=i

xk
ij= 0 ∀ i ∈ N,∀ j ∈ D,∀ k ∈ K1 (10)

max
{

0, Gi, Gj
}
· xk

ij ≤ gk
ij ≤ min

{
Qk, Qk + Gi, Qk − Gj

}
· xk

ij ∀ i, j ∈ N, i 6= j (11)

∑
k∈K

∑
j∈N,j 6=i

gk
ij − ∑

k∈K
∑

j∈N,j 6=i
gk

ji = Gi ∀ i ∈ N (12)

0 ≤ gk
ij ≤ Qk · xk

ij ∀ i, j ∈ N, i 6= j, ∀ k ∈ K (13)

tk
e = yk

e ·
[(

R− u1
ek

)
/λ
]
∀ k ∈ K2, ∀ e ∈ E (14)

0 ≤ u1
jk ≤ u2

ik − r · dij · xk
ij + R ·

(
1− xk

ij

)
∀ i, j ∈ N, i 6= j,∀ k ∈ K2 (15)

u1
ik ≥ µ · R ∀ i ∈ N, ∀ k ∈ K2 (16)

u2
0k= R ∀ k ∈ K2 (17)

u2
ek = yk

e · R ∀ k ∈ K2, ∀ e ∈ E (18)

u1
ik = u2

ik ∀ i ∈ N,∀ k ∈ K2 (19)

xk
ij, yk

e = [0, 1] ∀ i ∈ N,∀ j ∈ N,∀ k ∈ K,∀ e ∈ E (20)

Objective function (5) minimizes the total rebalancing cost, including vehicles’ fixed
costs, vehicles’ traveling energy costs, EVs’ recharging costs, and ICVs’ carbon emission
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costs. Constraints (6) ensure that each vehicle starts at the depot and returns to the depot
at the end of its route. Constraints (7) guarantee that each station is served exactly once.
Constraints (8) refer to the usual flow conservation. Constraints (9) can avoid subtours
and thus guarantee route-connectivity. Constraints (10) indicate that ICVs are restricted
from entering the restricted area. Constraints (11) give the upper and lower bounds of the
number of bikes loaded by vehicles. Constraints (12) and (13) ensure that the vehicle’s
maximum capacity is not exceeded. Constraints (14) and (15) are the EVs’ charging
functions and power consumption functions, respectively. Constraints (16) indicate the
safe residual charge constraints of EVs. Constraints (17) and (18) show that EVs are fully
charged when leaving the depot or a charging station. Constraints (19) guarantee the
residual charges of EVs are the same after serving a BSS station. Constraints (20) are the
binary decision variables.

4. Simulated Annealing Algorithm with Variable Neighborhood Structures

Simulated Annealing (SA) is a heuristic method to solve various NP-hard optimization
problems. It can expand the exploration capability by accepting worsen solutions with some
probability. This has benefit to reduce the probability of getting trapped in local optima.
In order to improve the search efficiency and get solutions with higher quality, we introduce
the variable neighborhood structures [32] into the framework of SA, and propose SAVN to
deal with the real-life BRP-MMFTR instances. The procedure and key components of our
algorithm are described in detail below.

4.1. The Procedure of Our Algorithm

Given an initial solution, SAVN starts from the initial temperature T0. During the
search process, the algorithm randomly selects a neighborhood structure to transform the
current solution S into a randomly generated feasible neighbor S′. Note that the cost of a
feasible solution S, namely Z(S), is evaluated with the Equation (5). If the cost of S′ is less
than the cost of S, S′ will definitely be accepted. Otherwise, the acceptance probability of S′

is p = exp
(
−Z(S′)−Z(S)

T

)
, where T is the current temperature. For each T, this process is

performed Len times. Then, T decreases by multiplying the cooling rate α.
Repeating the above processes until the stop criterion is met, that is, the unimproved

number of the best solution so far reaches the pre-specified MaxUN. Furthermore, when
T is less than 0.01, T will increase to help the algorithm escape from the local optima [33].
We double Tb first (but no more than T0) and then set T = Tb. The pseudocode of SAVN is
shown in Algorithm 1.

4.2. Initial Solution Generation

Considering the particularity of BRP-MMFTR, we firstly classify all BSS stations into
two types by region: stations in restricted areas and stations in non-restricted areas. Then a
three-step algorithm is proposed to generate the high-quality initial solution.

Step 1: For stations in the restricted areas, EVs must be employed. We use the insert
algorithm to construct the initial routes for these stations. First, the station with the largest
distance from the depot is selected as the first customer of an EV. Then, if the capacity
constraints are satisfied, the other stations are inserted into the current EV route in turn.
Otherwise, a new EV route will be generated and serve the remainder stations. Repeat this
insertion process until all stations in the restricted areas are serviced.

Step 2: For the stations in non-restricted areas, we first judge whether a station can be
inserted into the existing EV routes. For the stations that can be inserted, we insert them
to the positions with the lowest incremental cost in the existing EV routes. For the other
stations, we employ the same insert algorithm to generate some new ICV routes.

Step 3: Charging stations are allocated to EV routes. If the residual charge level of an
EV is enough, this step can be skipped. Otherwise, when the residual charge level of an EV
is lower than the designated safe-residual-charge level, the nearest charging station will be
inserted into the EV route to increase its mileage.
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Algorithm 1 The procedure of SAVN

1

Parameters: S∗ (the best solution so far), T0 (the initial temperature),
Tb (the temperature with which S∗ is found), MaxUN (the maximum
unimproved number of the best solution), Len (maximum number of
iterations at the current temperature), Nk (the neighborhood
structures, k = 1, · · · , kmax), α (the cooling rate)

2 Construct S as an initial solution
3 S∗ = S, T = T0, Tb = T0, count = 0
4 while count < MaxUN
5 for n = 1 to Len
6 Select randomly a neighborhood structure Nk
7 Generate a feasible solution S′ from S with Nk
8 if Z(S′) < Z(S)
9 S = S′

10 else
11 Set S = S′ with probability p = exp

(
− Z(S′)−Z(S)

T

)
12 end
13 if Z(S) < Z(S∗)
14 S∗ = S, Tb = T, count = 0
15 else
16 count = count + 1
17 end
18 end
19 T = α ∗ T
20 if T < 0.01
21 Tb= min{2∗Tb, T0}, T = Tb
22 end
23 end
24 Return S∗

4.3. Neighborhood Structures

Four neighborhood structures are employed in our algorithm. In the procedure of
SAVN, when a new solution is needed, one of these four structures is randomly selected
with equal probability. As shown in Figure 2, all structures are described by an instance
with 5 stations.

Figure 2. The neighborhood structures.

Neighborhood structure (a): A randomly selected station is relocated to another
position in the current solution.

Neighborhood structure (b): Two randomly selected stations exchange their positions.
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Neighborhood structure (c): Two randomly selected segments exchange their posi-
tions, and their lengths are at most 3.

Neighborhood structure (d): A pair of stations is randomly selected and all the stations
between them, including themselves, are reversed.

5. Computational Results

5.1. Parameters and Experimental Data

We have implemented SAVN using MATLAB R2018a, and all computational exper-
iments have been carried on an Intel Core i5-8259U with 2.3 GHz CPU and 8 GB RAM
running the macOS Catalina operating system.

The test instances of BRP-MMFTR are generated randomly. The BSS stations’ co-
ordinates are randomly generated in the range of abscissa [0,200] and ordinate [0,150].
The coordinate range of the traffic restricted area is the abscissa [80,160] and the ordinate
[30,60]. The rebalancing demand of each BSS stations is randomly generated between
[−20,20]. The depot coordinate is (100,75).

Table 2 shows an example instance with one depot, 18 BSS stations and five charging
stations. And Table 3 displays the parameters of EVs and ICVs. The other parameters used
in BRP-MMFTR instances are as follows: R = 75 kW·h, r = 0.5 kW·h/km, µ = 0.3,
λ = 0.5 kW·h/min, Cw = 0.4 CNY/min, CL = 0.06 CNY/kg [34], and L = 5 kg/km.
Through preliminary tests, the parameters of SAVN are set as follows: T0 = 50, α = 0.96,
MaxUN = 50, and Len = n2 (where, n is the number of BSS stations).

5.2. Comparisons of Computational Results

To verify the effectiveness of our SAVN, we compare it with SA and VNS (Vari-
able Neighborhood Search) on the instance depicted above. Note that both SA and VNS
use the same parameters of our SAVN. All the three algorithms were executed 10 times to
weaken the randomness of the heuristic algorithm.

Figure 3 illustrates the vehicle routes obtained by SA, VNS and SAVN, respectively.
The red lines represent the route of the ICV, while the blue lines represent the route of the
EV. It can be observed that the solution obtained by SAVN has fewer detours, which make
the vehicle’s travel distance smaller than those obtained by SA and VNS. Furthermore,
its traveling energy costs, recharging costs and carbon emission costs can be also decreased.

Table 2. Information of the depot, BSS stations and charging stations.

X-Axis Y-Axis Demand Index

Depot 100 75 0 0

BSS stations

86 143 −6 1
75 35 3 2
86 57 6 3
99 36 11 4

132 25 6 5
138 44 −7 6
108 18 −9 7
100 98 −15 8
172 60 6 9
123 55 3 10
110 128 16 11
34 35 8 12

161 112 −14 13
140 103 7 14
191 71 −12 15
76 101 7 16
48 118 5 17
19 65 −4 18

Charging stations

30 66 C1
48 35 C2

126 73 C3
52 101 C4

145 27 C5
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Table 3. Parameters of EVs and ICVs.

Vehicle Type Maximum Mileage/km Capacity Fixed Cost/CNY Traveling Energy
Cost/(CNY·km−1)

EV 150 15 150 0.8
ICV 500 25 200 1.5

Figure 3. Cont.
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Figure 3. Optimal vehicle routes obtained by three algorithms. (a) SA (b) VNS (c) SAVN.

Figure 4 displays the comparison results of these algorithms. The X-coordinate is the
number of iterations and the Y-coordinate is the total rebalancing cost. It can be seen that
the final solution obtained by SAVN is better than SA and VNS, although in the early stage
of the search process, SAVN may be inferior to VNS. This is due to the better optimization
performance of SAVN, which can better escape from the trap of local optima. Hence,
our SAVN can be regarded as an effective algorithm to solve BRP-MMFTR.

Figure 4. Comparison of total rebalancing cost.

Table 4 lists the components of the total rebalancing cost in the BRP-MMFTR optimal
solution obtained by SA, VNS, and SAVN. Obviously, for these three algorithms, SAVN is
the best and SA is the worst for the total rebalancing cost. Although the electricity costs
of EV obtained by SAVN is slightly worse than that of VNS, the fuel cost of ICV has been
drastically reduced. In this way, SAVN’s traveling energy cost is less than VNS, because it
is the sum of the electricity cost of EV and the fuel cost of ICV. Similarly, although SAVN’s
recharging costs is higher than VNS for its EV has a longer travel distance, its carbon
emission costs is lower. For practical BSS operators, SAVN’s solution is significantly better
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than VNS, because it employs EVs to perform more rebalancing operations. As we know,
EVs are environmentally friendly and they will replace ICVs in the near future.

Table 4. Components of the total rebalancing cost in the optimal solution.

Costs/CNY SA VNS SAVN

Fixed cost 350 350 350
Electricity cost of EV1 691 478 546

Fuel cost of ICV2 281 437 227
Recharging cost 571 414 524

Carbon emission cost 56 87 45
Total rebalancing cost 1949 1766 1692

Traveling energy cost is the sum of Electricity cost of EV1 and Fuel cost of ICV2.

5.3. Computational Results of More Instances

To further verify the effectiveness and universality of SAVN, we tested the three
algorithms in further instances. Theywere evaluated by nine test instances (three types,
three instances per type), displayed in Table 5. The three types are small-size (n = 20),
medium-size (n = 50) and large-size (n = 100). The instances are also generated randomly
according to the method introduced in Section 5.1.

Table 5. Nine instances of three types.

Instances
Small-Size Medium-Size Large-Size

1 2 3 4 5 6 7 8 9

n 20 20 20 50 50 50 100 100 100

Depot (100,75)
Abscissa range [0,200]
Ordinate range [0,150]
Demand range [−20,20]

To provide reliable statistics, each algorithm is executed 10 times for each instance.
And the average CPU time (t/s), the average total rebalancing cost (TRC) and the standard
deviation (Sd) are displayed in Table 6. The best values are marked with bold fonts.

Table 6. Comparative results on nine instances.

Instances Stations
SA VNS SAVN

t/s TRC Sd t/s TRC Sd t/s TRC Sd

1 20 6.8 3071 29 8 2721 41 5.5 2669 13
2 20 8.4 2992 18 9.6 2917 33 9.4 2848 6
3 20 4.4 2402 30 7.4 2301 38 6.7 2162 16
4 50 44.6 5625 66 89.5 5220 58 115.6 5093 32
5 50 39.3 5452 58 88.3 4861 35 97.8 4720 31
6 50 32.4 6684 109 90.6 6214 60 66.4 6045 39
7 100 129.2 10733 144 508 9532 154 378.6 9072 63
8 100 185.6 10361 111 540.4 9510 80 394 9299 56
9 100 174.3 9920 105 448.5 8177 72 572.9 8032 13

Small 20 6.5 2821.7 25.6 8.3 2646.3 37.3 7.2 2559.7 11.7
Medium 50 38.8 5920.3 77.7 89.5 5431.7 51 93.3 5286 34

Large 100 163 10351.3 120 499 9073 102 448.5 8801 44

The best values are marked with bold.

From Table 6, we can draw some conclusions as follows: For the average CPU time,
SA has obvious advantages, but its solution quality is the worst. In addition, the calculation
time of SAVN and VNS is difficult to distinguish the pros and cons. For the average
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total rebalancing cost, the solution obtained by SAVN can reduce 9.2% compared to SA
or 3.4% compared to VNS in the small-size instances, 10.7% or 2.7% in the medium-size
instances, and 15% or 3% in the large-size instances. With the number of stations increases,
the solution quality of SAVN is getting better and better. Hence, from the perspective of
solution quality and CPU time, SAVN can obtain a better solution than SA and VNS.

Furthermore, the standard deviation can reflect the stability of the algorithm. And the
smaller the standard deviation is, the better the stability of the algorithm is. From Table
6, it is observed that the standard deviation of SAVN is the smallest in all the instances.
Therefore, SAVN is more stable than the other two algorithms.

5.4. Discussion on the Value of µ

Parameter µ (the coefficient of safe-residual-charge level of EV) directly affects the
charging time and then the recharging costs and the total travel distances. Hence, it is
important to set a suitable value for µ. If the value of µ is set too low, there will be a
probability of failing to drive to the nearest charging station. If the value of µ is set too high,
the EV may frequently go to the charging station, which will cause a waste of energy and
charging time. In this section, the sensitivity analysis of µ is analyzed using the 18-station
instance in Section 5.2. The different values of µ are from 0.15 to 0.5 in increment of 0.05.

The SAVN is run 10 times for each µ and the trends of change with the increase of
µ are illustrated in Figure 5. Obviously, the total rebalancing cost shows a clear trend of
decreasing and then increasing. µ = 0.3 is the point with the lowest total rebalancing cost.
In summary, parameter µ plays an important role in BRP-MMFTR and its value should be
reasonably determined according to the layout of charging station system. If the quantity
of charging stations is sufficient, the value of µ can be appropriately set lower. Otherwise,
it should be set higher. Therefore, setting an appropriate value for µ is helpful to reduce
the total rebalancing cost.

Figure 5. The trend of TRC changes with the increase of µ.

6. Conclusions

As a low-carbon and ecologically sustainable transportation mode, BSS has become a
way to deal with the growing menace of global warming. In this study, we have proposed,
modeled and solved BRP-MMFTR, which is a variant of BRP considering multi-energy
mixed fleets and traffic restrictions. We first formulate BRP-MMFTR as a mixed integer
programming model with the objective of minimizing the total rebalancing cost composed
of vehicles’ fixed costs, vehicles’ traveling energy costs, EVs’ recharging costs, and ICVs’
carbon emission costs. Then SAVN is designed to solve this model, which is the simulated
annealing algorithm enhanced with variable neighborhood structures. To illustrate the
efficiency and efficacy of our algorithm, some test instances of BRP-MMFTR are generated
randomly. The computational results reveal the huge advantage of SAVN, compared with
SA and VNS. SAVN can achieve better solution in terms of solution quality and CPU time,
outperforming those obtained by SA and VNS. In addition, SAVN is more stable than SA
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and VNS. Finally, the sensitivity analysis results of parameter µ indicate that as µ increases,
the total rebalancing cost shows a clear trend of decreasing and then increasing. Therefore,
setting an appropriate value for µ is helpful to reduce the total rebalancing cost. In addition,
the value of µ is not necessarily constant in the practical rebalancing operations, and it can
be dynamically adjusted according to the real-time conditions.

For BSS operators, we provide the optimal vehicle scheduling suggestions for multi-
energy mixed fleets to minimize the total rebalancing cost when bike supply and user
demand are not matched. In addition, we also focus on carbon emissions during the
rebalancing process. BSS is originally a sustainable transportation mode, but if their
operators use ICVs during rebalancing operations, the low-carbon benefits of BSS will be
partially offset by the carbon emissions of ICVs. Therefore, it is obviously beneficial to
create a green and low-carbon sustainable transportation system by using EVs instead of
ICVs. The government should vigorously promote the sustainable development of EVs.
Some policies, such as traffic restrictions on ICVs, can be introduced to encourage the BSS
operators to purchase more EVs to minimize the carbon emissions.

Future research can extend our model and algorithm to solve more complex variants
of BRP-MMFTR, such as considering the impact of average speed and speed variations to
the traveling energy costs. Furthermore, dynamic or stochastic BRP-MMFTR is also a good
research direction.
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