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Abstract: The density of building blocks and insufficient greenery in cities tend to contribute dramat-
ically not only to increased heat stress in the built environment but also to higher energy demand
for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy
usage of buildings along with improving outdoor thermal efficiency. This study examines the impact
of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the
energy consumption of adjacent buildings under various climate change scenarios as representative
concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The
investigation was performed at one of the most underutilized outdoor spaces on the new campus of
Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to
improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on
the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the
inevitable climate change was identified. The proposed scenarios were divided into four categories
of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were
used. The second category proposed dividing the space parallel or perpendicular to the existing
buildings. The third category was a hybrid scenario of the first and second categories. In the fourth
category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met
v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space
and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with
50% of the overall area than transform outdoor spaces into canyons.

Keywords: ENVI-met; design builder; energy demand; climate change; RCP

1. Introduction

Since the Kyoto Protocol in 1998, climate change has become the most important
global challenge [1–3], owing mainly to the increase in world population growth in con-
junction with industrial development activities [4]. Climate change is returning to increased
greenhouse gas emissions, specifically CO2 emissions. Reducing energy consumption is
therefore of considerable significance globally, since the largest amount of energy con-
sumption means the burning of large quantities of fossil fuels and the release of massive
amounts of greenhouse gases [5]. According to the National Institute for Public Health
and the Environment in the Netherlands, if fossil fuel-generated energy still accounts for
around 75% of all cooling emissions, these coolant leaks could cumulatively increase the
warming impact of CO2 emissions by up to 25% by the middle of the century [6]. Previous
studies indicate that new buildings have shown that carbon emissions can be lowered by
more than 50% compared to buildings constructed 5–10 years ago [7,8]. The Intergovern-
mental Panel on Climate Change urges all responsible persons to promote their country’s
mitigation strategies [9,10]. On the local level, while Egypt contributes only very little to
global greenhouse gas (GHG) emission (0.6% of global emissions), GHG is one of Egypt’s
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main climate change parameters [11]. Egypt is listed as one of the five countries most
susceptible to climate change [11]. By 2060, the maximum temperature in Cairo, Egypt’s
capital, is predicted to increase by 4 ◦C as a consequence of global warming, and for the
rest of Egypt, the increase would be 3.1 to 4.7 ◦C [12]. Over the duration of 1990 to 2100,
the temperature increase is predicted to be 5.6 ◦C in an intense pollution scenario. Unless
pollution falls significantly, the temperature rise will remain around 1.6 ◦C [11]. In recent
times, decision-makers in Egypt are of the opinion that a national strategy should be put in
place to ensure the adoption of the most relevant approaches to mitigating climate change
in the country, i.e., effort should be directed to the promotion of zero and low-carbon energy
systems to substantially minimize energy consumption, coupled with detailed strategies
for adaptation and mitigation [13]. Although the climate has a major impact on outdoor
and indoor thermal performance, most Egyptian research studies on climate change are
still limited to agriculture, biodiversity, and conservation strategies for historical buildings
and heritage sites, particularly in coastal cities such as Alexandria [14]. A few studies
have addressed the impact of urban form on thermal conditions in outdoor spaces [15–18].
All these studies investigated both the impact of urban form on the outdoor spaces and
energy-saving buildings.

Globally, severe heat waves that affected many European countries in 2003 caused
more than 80,000 additional deaths [19] in addition to a severe increase in electricity
consumption. [20,21] estimated that the climate change is responsible for a 3.6–5.5% increase
in energy demand in Greece annually. The severe heat waves were repeated frequently.
Due to their intensity and spatial extent, the heat waves in 2003 and 2015 were ranked
as the second and sixth most severe European heat waves [22]. In 2019, heat waves in
Germany caused some cities to reach 40 ◦C. Due to the climate change impacts on the
built environment, there is a growing concern in recent years about the urban climate
adaptation, especially the topics related to energy consumption. Some used a panel of
several European countries [23]. Other studies addressed a specific case like a country, a
city, or a sector of city. Several studies have addressed the relationship between average
temperature and electricity consumption [20,24]. These studies revealed that the main
value affecting the energy consumption is the extreme temperature value, whether high or
low value, not the average value. In Europe, the adaptation should consider the extreme hot
or cold, however in Egypt, the extreme hot is the main problem due to its climatic region.
Meanwhile, climatic studies can vary from a region to another. It is important to consider
each country’s specificities [20]. Moral Carcedo, 2005 [24], investigated the relationship
between temperature and energy consumption by applying a transition model to analyze
a Spanish case. Silav et al., 2020 [20], investigated this relationship in Portugal. Li et al.,
2018 [25], addressed the impacts of climate change on energy demands in the residential
sector in Nanjing in China. In this study, the authors introduced a mathematical model to
provide relevant references to study the effects of temperature changes on building energy
consumption.

The effect of climate change on future outdoor thermal performance is an important
issue. In this regard, one of the key meteorological parameters governing human energy
balance and thermal comfort is the mean radiant temperature, Tmrt, which sums up all
shortwave and longwave radiation fluxes (both direct and reflected) to which the human
body is exposed [26]. Tmrt’s spatiotemporal fluctuations for years to come (2070–2100) are
simulated utilizing the algorithm change-factor to adjust the observed one meteorological
evidence (2001–2010) to reflect simulated climate change by model Earth system/global
climate model representative concentration pathways (RCP) 4.5 and 8.5 scenarios on the
atmosphere. The RCP 4.5 scenario takes into consideration the radiative sum forcing
stability at 4.5 Wm−2 till 2100 [27], while the RCP 8.5 scenario provides a situation of heavy
use of fossil energy, culminating in 2100 (8.5 Wm−2) [28].

The urban climate is a multi-scale phenomenon. As part of the design process, it
has different scales: buildings (microclimate, clusters or building groups (local scale), and
settlement (mesoscale) [29]. The urban climate, which has a major impact on the outdoor
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occupants of the city [30,31], is directly affected by the geometrical properties of outdoor
urban spaces. Achieving thermal comfort in outdoor spaces has attracted much interest
in the scientific community lately. Thermal conditions of outdoor spaces are a major
determinant of the patterns of space usage [32]. Outdoor conditions with less thermal
comfort usually discourage participation in outdoor activities. Thermal discomfort not only
raises the heat burden in the open spaces but also the heat load on the building facades,
thereby requiring more energy for cooling purposes [33]. In the past, numerous research
studies have focused mainly on heat mitigation strategies to control changes in air ambient
temperature, although it is only one of the factors that influence the thermal comfort of
outdoor spaces. Thermal comfort is a much better indicator of the thermal performance of
any space [34]. In this study, thermal comfort is expressed by the physiological equivalent
temperature (PET), which is an up-to-date thermal index. It is based on “human energy
balance and considers the thermo-regulatory capacity of the human body to adjust to
stressful microclimates” [35]. PET is an effective tool for the evaluation of the thermal
component of different climates [36]. Moreover, it is considered as an outdoor thermal
comfort indicator that is used to investigate the impact of urban geometrical properties on
the thermal quality under different weather conditions [37–39]. It allows a layperson to
compare the integral effects of complex external thermal conditions with his own indoor
experience [35]. Table 1 highlights the PET range and grade of physiological stress on
humans.

Table 1. Thermal perception based on Physiological Equivalent Temperature PET range and grade of
physiological stress on human beings in a typical case [36].

PET (◦C) Thermal Perception Grade of Physiological Stress

<4 Very cold Extreme cold stress
4–8 Cold Strong cold stress

8–13 Cool Moderate cold stress
13–18 Slightly cool Slight cold stress
18–23 Comfortable No thermal stress
23–29 Slightly warm Slight heat stress
29–35 Warm Moderate heat stress
35–41 Hot Strong heat stress
>41 Very hot Extreme heat stress

Various studies were conducted on the thermal efficiency of streets and outdoor
spaces (in terms of their architectural features such as aspect ratios, orientation, shading,
and canopies) in relation to the effect of their attributes on outdoor thermal efficiency.
These previous studies have shown that the most relevant urban space attributes that
affect urban microclimate conditions are orientation and aspect ratio (or height-to-width
ratio, H/W) [40]. Many experiments were performed to determine the impact of several
criteria on thermal comfort in street canyons, such as the geometry of street canyons, solar
exposure, and shading. For these experiments, physiological equivalent temperature (PET)
was used to evaluate thermal comfort sensitivity values [41,42]. Most of these studies
indicate that shading sites are more effective than canyons spaces. For example, in a
comparison between unshaded and tree-shaded locations, Matzarakis and others [43]
found a substantial difference of about 15 K between PET values. Other researchers have
reported findings of environmental and comfort aspects in open spaces in cities in five
separate European countries, focused on field surveys and questionnaires [44]. There are
also studies that examine the creation of thermal comfort by greening outdoor spaces
within the urban environment [33,45,46]. However, the urban form for each region reveals
a distinctive influence of climatic conditions [40]. It is very difficult to conduct thermal
comfort passively, particularly in summer when it is very hot. Nevertheless, thermal
comfort can be increased by alterations to urban building architecture.

It is evident from previous research that the interaction of buildings and outdoor
spatial proportions has a significant effect on the thermal performance of the studied areas,
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impacting the sum of solar radiation and corresponding lighting, either on the façade of
the building or on the level of the pedestrians. Nevertheless, in any given region, there
may be a great range of microclimates in the same local area. The differentiation is mainly
in the urban canopy layer influencing basic urban features (buildings, streets, trees) on
scales of a few hundred meters [47]. At the time of writing, to the best of our knowledge,
hardly any research on correlating between the thermal efficiency of outdoor spaces and
energy efficiency based on the climate change in Egypt has been conducted. There are very
few published works concerning the effect of urban geometry on human thermal comfort,
especially in Upper Egypt. Moreover, most of the available studies deal with spaces with
aspect ratio height (H)/width (W) >0.5, where the impact of changing urban geometry
is clear [48]. The investigated case study is a rare example of space in an educational
campus where public activities are held in a hot and arid environment without mitigation
strategies to reduce the heat stress. As shown in Figure 1, this investigated case study
has the following characteristics and dimensions; the space width = 92.5 m, buildings
height = 15 m. This area takes the east-west direction with (H/W = 0.16) and sky view
factor (SVF = 0.85), as well as it was divided into two platforms and two streets.

Figure 1. The characteristics and dimensions of the studied case study.

The many factors that impact energy efficiency in buildings can be divided into two
classes. One class deals with all factors that focus on the building envelope such as building
form, orientation, dimensions, geometry, compactness, and construction materials. All
these factors have a fundamental effect on energy consumption for heating and cooling
in buildings [49]. Therefore, these factors are widely investigated all over the world. The
second class of factors are those that deal with the effect of the urban climate on the energy
demand for cooling and heating in buildings. Urban geometry, greening, and urban pattern
are the most important factors in the second class. There are some ambiguities about this
class since most of the previous research focuses on the direct effect of the first class on
energy consumption in buildings. In this study, however, the focus is on urban geometry
attributes that impact both outdoor thermal comfort and energy demand for cooling in
the adjacent buildings. There are a few studies that discuss the effect of urban climate on
the energy demand for cooling and heating in nearby buildings e.g., Strømann-Andersen,
2011 [50] examined the impact of urban climate on energy demand for adjacent interior
spaces, especially for heating demand, and found that urban geometry of canyons had a
very significant impact on the total energy consumption, in the range of up to +30% for
offices and +19% for housing. The study also highlighted the impact of dense urban built-
up on energy consumption, especially for improving daylight in the adjacent interior spaces
but not increasing energy consumption in these spaces. A significant relative increase in
energy consumption, about 30%, was observed in the case of transformation into a dense
urban area with approximately 70 kWh/m2/year. This increase in energy consumption
was due to the location of the case study in Denmark. Dense urban built-up is not a
suitable solution for energy efficiency in places with a cold climate, like Denmark. So, it is
recommended to select wider canyons in this type of climate to save energy in the adjacent
interior spaces.

On the local front, 42% of the energy in Egypt is consumed by the buildings sector.
Consequently, energy conservation is a critical issue in Egypt, and decision-makers have
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to tackle the challenges of high energy consumption and electricity shortages, coupled
with repeated reduced electricity supply between 2012–2013 [51]. Lowering energy de-
mand in the context of climate change challenges for cooling and heating is an important
issue [52,53]. Thus, improving energy efficiency in university buildings is one of the major
objectives of this study. In fact, many indices are used to measure energy consumption
in university buildings, e.g., the average annual energy consumption per unit area, the
average annual energy consumption per capita, and carbon emission per capita [54]. The
energy consumption of the New Aswan University Campus (case study) was calculated
for comparison with energy consumption by other universities globally. Table 2 highlights
the comparison between the average annual energy consumption of several universities in
the United States, Finland, and South Korea [54].

Table 2. The average annual energy consumption of several global universities.

United States South Korea Finland

Annual average of energy
consumption per m2 490 kWh/m2 210 kWh/m2 229 kWh/m2

The average annual energy consumption per m2 for Aswan University, roughly
524.5 kWh/m2, is compared to the other universities presented in the table above. This
means that Aswan University’s annual average energy consumption per m2 is higher
than that of universities in other parts of the world. It is, therefore, very important to
reduce energy consumption at Aswan University with all the available passive solutions.
One of these passive solutions is the optimization of urban geometry (which includes
orientation, aspect ratio, lightweight urban roof cover, and sky view factor), which has a
significant impact on thermal outdoor performance and energy consumption in adjacent
buildings [55]. This paper, therefore, proposes the best strategy for control of thermal
conditions for outdoor spaces and energy-efficient building conditions for urban areas in
arid regions, and in particular, for the Aswan University campus.

This study seeks to contribute towards a more in-depth understanding of thermal
sensation in public outdoor urban spaces dedicated to human activities, especially in
Egyptian new cities located in arid regions. It reports on the results of a comprehensive
study aimed at quantifying the contribution of various proposed strategies in mitigating
heat stress and developing guidelines for the design of better outdoor spaces to mitigate
thermal stress in existing spaces. The analysis was based on data extracted throughout the
entire day. Moreover, it was expanded to study the effect of proposed cases on the energy
required for cooling in the adjacent buildings under climate change scenarios.

2. Research Methods

Since the sky view factor (SVF) is considered the main parameter which affects the
thermal performance of outdoor space and thus the energy consumption, the study limits
to investigating scenarios affecting SVF values such as aspect ratio and lightweight urban
roof cover. The scenarios were selected based on their feasibility and the literature review.
Regarding the survey, measuring devices for ambient temperature and relative humidity
were used, and the rest of the parameters (solar radiation, wind speed, and wind direction)
were recorded using our weather station. The simulated model was calibrated to ensure its
reliability before applying the suggested scenarios.

2.1. Area of Study

New Aswan University campus was chosen as a case study to investigate the impact
of outdoor thermal efficiency on energy demand for cooling in adjacent buildings. New
Aswan University is in New Aswan city, located in the desert area [56] (24.085296◦ N–
32.904779◦ E). The city has different climatic characteristics, with the average annual
temperature at 25.9 ◦C, while the average maximum temperature in June is 42 ◦C and
the average annual rainfall is 1 mm [57]. Aswan University campus is located in the



Sustainability 2021, 13, 27 6 of 21

southwestern part of New Aswan city and has an open area of 98.507 acres (413,730.80 m2).
Figure 2 shows the location of Aswan University campus.

Figure 2. Aswan University new campus in New Aswan city: (a) Aerial view of New Aswan city, (b) The planned campus
for Aswan University in New Aswan city. The location of the case study area is highlighted.

2.2. Meteorological Data

There are several methods to examine the different impacts of urban form on the
microclimate parameters. The first method is based on onsite measurements [58,59]. This
method tends to be limited by the conditions of their urban context. The second method is
based on simulations using weather stations data [60]. However, using the weather data
of off-site weather stations in simulation may miss the climatic conditions derived by the
context of the samples being tested. The third method is calibrated simulations [61]. We
preferred this method since it tends to balance between attaining validated results and
testing various scenarios that might not be available in the existing forms either in terms
of time or space. The measure campaign was conducted as a part of a research project
in multiple sites in New Aswan city. The surveyed sites were in Aswan University new
campus [15], and in a social residential quarter [62]. Regarding this study, the measure
campaign conducted in the Aswan University new campus was used. Five points was
selected as measured points (P1, P2, P3, P4, and P5 using Hobo U12 data loggers installed
in handmade sunscreens mounted at a height of 1.5 m at all measurement locations as
shown in Figure 3. Measurements were taken from 12 a.m. on 12th July for 48 h. The
climatic conditions of New Aswan are rather homogeneous in summer. Hence, it was
possible to limit the measurements to 13th and 14th of July 2018 as representative of typical
hot, sunny, and cloudless conditions. A measuring campaign was held at that time on the
campus construction site to validate the model in the current state. In this campaign, air
temperature and relative humidity were measured. In the preliminary simulation with
ENVI-met, the meteorological parameters were defined as follows:

1. 2.7 m/s was set for the wind speed at 10 m following records from the Aswan airport
weather station.

2. The hourly values of air temperature and relative humidity were obtained from a
data logger installed in the study site on the survey day.
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3. Specific humidity at model top (2500 m, g/kg) was set to 3.7 according to the Uni-
versity of Wyoming website (University of Wyoming, 2017) Aswan weather station
ID 62414.

4. The albedo of materials was set to 0.6, 0.2, 0.5, 0.12, 0.31 for roofs, walls of buildings,
pavement, asphalt, and sand for ground.

5. The default values of ENVI-met were used for roughness length (0.01).

The validation of the model was done according to the literature, whereby the average
difference between simulated and observed values is represented in root mean square
error (RMSE) which describes the overarching accuracy of the model and the index of
agreement (d) [63]. Where d = 1.0, it means that the simulated value equals the observed
value. The data collected showed that the air temperature trends between the observations
and the simulation were roughly the same; the observed peak Ta (ambient temperature)
was consistently 1 to 2 ◦C above the simulated value. Hence, the simulated results showed
good agreement with field measurements and the index of agreement d ranged between
0.96 and 0.98; the correlation (R2 > 0.96) showed that the simulation successfully captured
the observed diurnal temperature trends.

Figure 3. Measurement locations at Aswan University new campus: (a) Arial view of part of Aswan
University campus in New Aswan city. Measurement points (P1 and P2) and the investigated
area [15], (b) The investigated space.

2.3. Climate Change Scenarios

This study presents the local climate changes in Aswan, Egypt based on the extracted
data from COSMO-CLM, a regional climate model developed by the CLM-community,
a group of European research facilities based on a weather forecast model by the DWD,
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the German Weather Service. It can simulate meteorological parameters with a horizontal
resolution of 1 to 50 km [64]. For this study, a horizontal resolution of 12.5 km was used.
The output had a temporal resolution of 3 h. From a large model domain that contained
the whole of Egypt, the data point for Aswan was extracted and the daily mean values for
the 2 m temperature were calculated with the help of climate data operators (CDO).

The results of this study showed significant warming in the near future for Aswan,
with an increase of 2 K from 1980 till 2050 under RCP 4.5 and 2.5 K in the same period
under RCP 8.5, respectively. Thus, the analysis of the temperature trend for Aswan showed
a clear rise in the mean ambient temperatures during the period 1981–2050, with a rise
from 26.2 to 27.9 ◦C under RCP 4.5 and 28.7 ◦C under RCP 8.5, respectively as shown in
Figure 4.

The steep temperature increase on hot days and hot nights, as well as the alarming rise in
occurring heat waves, will pose problems to human health. This will lead to a higher energy
demand for air conditioning and thus, higher costs for the inhabitants of Aswan. Data files
with different parameters as 2 m temperature, 2 m relative humidity, 10 m wind speed in m/s,
and wind direction were obtained from COSMO-CLM and subsequently used as input data
in ENVI-met to simulate the microclimate in the future for the study area.

Figure 4. Temperature trends for New Aswan from 1981–2050 under RCP 4.5 and RCP 8.5.

2.4. Proposed Cases and Simulation Cycling

This study relied on a coupling simulation to evaluate both thermal comfort conditions
for outdoor spaces and energy consumption in adjacent buildings using ENVI-met and
Design Builder, respectively. Figure 5 illustrates the integration between ENVI-met and
Design Builder to evaluate both outdoor thermal conditions and annual energy consump-
tion in nearby buildings. The simulation cycle was moved through three major phases. In
the first phase, a numerical simulation using ENVI-met was applied on the New Aswan
University campus to evaluate the micro-climate conditions for all outdoor campus spaces
to pick the hottest location on the campus.

Then, the second phase demonstrated the influence of the proposed cases (PC) on
the thermal comfort of the selected area in the present and future under two scenarios
of climate change RCP 4.5 and RCP 8.5. The simulation process took place on 13th July
2018 and (future) 2035. In this phase, six cases were suggested to improve the thermal
performance of the study area. In this respect, three proposed cases (PC1, PC2, PC3) to
cover outdoor space in varying proportions (25%–50%–75%) were suggested to expand
the shading area and improve the thermal conditions in the study area. With regards to
the mentioned aspect ratio of the investigated case study (H/W) = 0.16. The coverage
of that huge area between the buildings can be through use of simple coverings such
as tents which are carried on outdoor columns located in the outer space between the
investigated buildings. Using this type of coverage allows decision-makers to improve the
outdoor thermal conditions, as well these types of coverage have the lowest cost among
other coverages. These proposed cases reflected the first mitigation category. The fourth
proposal case (PC4) reflected the second mitigation category and adopted the idea that
transformation of the outer spaces into a deep canyon was assumed to enhance the thermal
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performance of these spaces by increasing the aspect ratio of this study area. This study
added another assumption in the fifth and sixth cases (PC5, PC6), which reflected the third
and fourth mitigation categories. PC5 assumed that it should be more effective to cover
these canyons with an appropriate distributed roof, while PC6 had the same characteristics
of PC5, but with a green surface added into the canyon. All characteristics of the proposed
cases are illustrated in Table 3.

Figure 5. Simulation cycling with ENVI-met and Design Builder in outdoor–indoor simulations.

Table 3. Description of proposed urban geometry cases.

Acronyms Model Description

PC1 Semi sheltered with 50% distributed shaded roof

PC2 Semi sheltered with 25% distributed shaded roof

PC3 Semi sheltered with 75% distributed shaded roof
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Table 3. Cont.

Acronyms Model Description

PC4 Dividing the outdoor space into a street and two canyons with aspect
ratio = 1.5

PC5 Dividing the outdoor space into a street and two half shaded canyons
with aspect ratio = 1.5

PC6 Dividing the outdoor space into a street and two half shaded canyons
with aspect ratio = 1.5 and with green areas added

In the third phase, the extracted results of the second phase such as air temperature,
relative humidity, and wind speed were used as input data. The energy demand for cooling
in the adjacent buildings was calculated in this process. In this regard, for the base case
and presented proposed cases, Design Builder was used for the calculation of the energy
consumption of adjacent buildings in the present 2018 and future 2035 under different
climate change scenarios RCP 4.5 and RCP 8.5. The adjacent buildings input data are
as follows; wall to window ratio = 0.15, thermal transmittance values (U-values) of the
external facades = 0.35 W/m2K, single clear glazing with thickness = 6 mm, and solar heat
gain coefficient (SHGC) = 0.815 was used in the external windows.

3. Results and Discussion

The main objective of this paper is to examine approaches towards reducing energy
demand for cooling in the buildings overlooking the university’s outdoor spaces by in-
vestigating the influence of urban geometry characteristics of the university’s outdoor
spaces on its outdoor thermal performance. Therefore, this study investigates the impact
of different urban geometry on the thermal performance of the university’s outdoor space
(study area). In addition, the study also examines in depth the impact of these proposed
urban geometries on the cooling energy demand in adjacent buildings.

3.1. Evaluation of Current Outdoor Thermal Performance of Whole Campus Spaces

First, the current environmental conditions were analyzed to determine the main
causes of thermal problems on campus. As mentioned before, several geometric variables
influence outdoor space thermal behavior, such as aspect ratio, sky view factor (SVF), and
orientation. The current situation reveals there are two perpendicular streets on the campus.
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The first street is in the N-S direction with aspect ratio = 0.16, while the second street is in
the direction of the E-W with aspect ratio = 0.16. A simulation process was created for the
entire campus using ENVI-met to assess the thermal performance of all campus outdoor
spaces in the current situation and to determine the hottest area on the campus. It was
clearly found, in terms of thermal comfort, the street with N-S direction performed slightly
better than those in other direction. The hottest area was found in the street taking the
east-west direction. This result was more consistent with previous research which found
that, for the E-W direction, the most favored aspect ratio for outdoor spaces should be
ranged between 2 to 3 [65]. Figure 6 shows the hottest area on the New Aswan University
campus.

Figure 6. The hottest area on the New Aswan University campus: (a) Axonometric view for the
campus, (b) Thermal distribution map for whole campus. Dashed circle represents the hottest area in
the campus.
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3.2. Adapted Urban Spaces to Improve Thermal Performance

In the second phase, six proposed cases were analyzed. These proposed cases outlined
four parameters of urban geometry. The shading parameter was the first parameter; the
second parameter was the aspect ratio; the third parameter was merged between the first
and second parameters; the fourth parameter was similar to the third parameter but with
greenery added onto the ground surface. Moreover, simulation processes were conducted
under different climatic conditions. Input data for simulation process in this stage were
collected from Aswan Airport weather station for the present time, but extracted from
COSMO-CLM for the future scenario. The findings derived from COSMO-CLM indicated a
significant increase in air temperature for Aswan city in both climate change scenarios (RCP
4.5 and RCP 8.5). Extracted results from COSMO-CLM indicated that air temperature levels
would increase over the day hours in the future scenario. In addition, on the 13th of July
2018, it was found that the maximum value reached 42.5 ◦C at 16:00, while it was projected
to reach 44.3 and 46.1 ◦C at the same time in 2035 under the RCP 4.5 and RCP 8.5 scenarios,
respectively, with an average increase ranging between 1.8–3.6 K. Such findings point out
that the lack of an appropriate climate solution will have a negative impact on outdoor
thermal conditions due to the impact of climate change on these areas. Figure 7 illustrates
the effect of future climate change scenarios on the air temperature values in 2035.

Figure 7. Comparison between outdoor thermal performance of the studied area in the present (2018)
and those projected for the future (2035) under different climate change scenarios.

In this phase, the thermal performance of the proposed cases was evaluated using
PET. It was found that all the proposed cases could improve the thermal performance of
the selected areas, both at the present time and in the future. Moreover, PC1 and PC4
were the most appropriate solutions to improve the predicted thermal conditions for such
spaces in arid regions in future scenarios. Nevertheless, for the present, only PC1 had
priority over other scenarios, while PC4 was found to be the most appropriate scenario
in the future, based on its efficiency in improving thermal performance, with an average
that ranged between 4–18% in all climate change scenarios. Figure 8 and Table 4 illustrate
that PET values would reach lower values in the future according to PC4. Results of PC4
showed lower PET values for 2018, RCP 4.5 (2035) and RCP 8.5 (2035) exceeded 34.42,
39.25, and 39.19 ◦C at 6:00 p.m., respectively. Higher values at 47.52, 49.31, and 49.7 ◦C
were reached in the same scenarios at 3:00 p.m. This increase of future PET values will
return to the heat-trapping that takes place when the space is covered by an average of 50%
in combination with rising air temperatures in the coming years. Therefore, in the future,
due to rising outdoor air temperatures, the higher aspect ratio of outdoor spaces would be
preferred rather than sheltered outdoor spaces. It was also found that PC5 would not be an
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appropriate solution due to the increasing rate of heat-trapping inside these canyons in the
future. Moreover, PC6 is not a recommended solution, although in these canyons, green
areas were installed in conjunction with the shelter parameter. This resulted in an increase
in relative humidity as well as a rise in air temperature due to heat-trapping, leading to an
increase in PET values.

Figure 8. Cont.
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Figure 8. The effect of proposed mitigation cases on the outdoor thermal comfort of the studied area
on New Aswan University campus in the present and following years and scenarios: (a) 2018; (b)
2035 RCP 4.5; (c) 2035 RCP 8.5.

Table 4. Thermal distribution map for the selected area at 2:00 p.m. in 2018 and 2035 (RCP 4.5–RCP 8.5).

Scenarios 2018
2035

RCP 4.5 RCP 8.5

Base

Minimum value = 32.38 ◦C
Maximum value = 61.73 ◦C

Minimum value = 49.75 ◦C
Maximum value = 70.80 ◦C

Minimum value = 49.49 ◦C
Maximum value = 70.80 ◦C
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Table 4. Cont.

Scenarios 2018
2035

RCP 4.5 RCP 8.5

PC1

Minimum value = 30.30 ◦C
Maximum value = 57.20 ◦C

Minimum value = 49.38 ◦C
Maximum value = 68.80 ◦C

Minimum value = 49.13 ◦C
Maximum value = 68.40 ◦C

PC2

Minimum value = 47.82 ◦C
Maximum value = 66.00 ◦C

Minimum value = 49.62 ◦C
Maximum value = 70.00 ◦C

Minimum value = 49.38 ◦C
Maximum value = 69.40 ◦C
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Table 4. Cont.

Scenarios 2018
2035

RCP 4.5 RCP 8.5

PC3

Minimum value = 45.78 ◦C
Maximum value = 64.60 ◦C

Minimum value = 49.35 ◦C
Maximum value = 68.60 ◦C

Minimum value = 49.10 ◦C
Maximum value = 68.20 ◦C

PC4

Minimum value = 41.77 ◦C
Maximum value = 65.65 ◦C

Minimum value = 42.00 ◦C
Maximum value = 65.80 ◦C

Minimum value = 42.89 ◦C
Maximum value = 66.20 ◦C
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Table 4. Cont.

Scenarios 2018
2035

RCP 4.5 RCP 8.5

PC5

Minimum value = 47.28 ◦C
Maximum value = 66.00 ◦C

Minimum value = 47.40 ◦C
Maximum value = 68.20 ◦C

Minimum value = 47.64 ◦C
Maximum value = 68.20 ◦C

PC6

Minimum value = 49.20 ◦C
Maximum value = 73.60 ◦C

Minimum value = 49.87 ◦C
Maximum value = 76.40 ◦C

Minimum value = 50.14 ◦C
Maximum value = 77.40 ◦C

In the third phase of this study, the effect of the proposed cases on the energy demand
for cooling the northern building was evaluated in the present and future scenarios. The
results reflected the impact of climate change and its negative effect on energy consumption.
The impact of urban geometric properties was examined to determine the total amount of
energy consumption in adjacent buildings due to differences in thermal loads on building
façades in each urban geometry scenario. It was found that PC1 and PC4 had almost the
best effect on the outdoor thermal performance in the present as well as in the future. For
PC1, the average percentage of improvement in 2018, (2035) RCP 4.5, and (2035) RCP 8.5
were 6.64%, 5.2%, and 2.79%, respectively.

In general, the results of PC1 in the present and future (2035) RCP 4.5 are more
compatible with the climate, while it would not have the same effect in (2035) RCP 8.5
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due to the increase of heatwaves in the RCP 8.5 scenario. The base case, however, did not
compare well with PC1 and PC4 due to increasing thermal load on the building façades
according to the solar inclination which is rather high, especially in summer, when it
reaches more than 80◦. So, many parts of building facades, especially the top floor, are
subjected to a high level of thermal load. This significant amount of thermal load led to
increased energy demand for cooling in the top floors and in the entire adjacent indoor
spaces. Figure 9 presents the amount of energy consumption in the adjacent buildings in
the present and future scenarios.

Figure 9. Average annual energy consumption in the adjacent buildings in the following scenarios: (a) 2018, (b) 2035 RCP
4.5, and (c) 2035 RCP 8.5.

4. Conclusions

The study investigates the effect of different urban geometry on both thermal perfor-
mances of outdoor spaces and the energy required for cooling in the buildings overlooking
outdoor spaces. The focus is on assessing the efficiency of six proposed cases that present
four main parameters. These parameters are distributed shading roof parameters, canyon
parameters with higher aspect ratio values, integration between the above parameters, and
adding greening to the ground surface of the integration parameter. The study shows an
improvement of the outdoor thermal comfort in the case that depends on the parameter
concerned with covering the outer space with a distributed roof (covering 50% of the total
area of the outer space) in comparison with other studied parameters at the present time.
This thermal improvement will continue in the case of meteorological temperatures record-
ing values less than 42 ◦C, while dependence on the canyons becomes the best solution in
the case of the meteorological temperatures exceeding that value, an inevitability in future
scenarios due to climate change. So, relying on the deep canyons without any covering
would prevent the occurrence of heat-trapping as well as the reduction of the area of the
surfaces exposed to the intense direct solar radiation, significantly reducing the PET values
inside those canyons. This result is in agreement with a previous study (Mohammed. A,
2015) [66] which found that higher solar radiation on the space surfaces led to greater heat
sensitivity to the ambient air, resulting in a significant temperature increase.
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In general, the study showed an improvement in the outdoor thermal comfort in all
studied proposed cases; the energy consumption of the indoor spaces overlooking the
studied outdoor space was decreased, with an average percentage between 1.8–14.4%
in simulation cases in the present and in the future. Energy consumption for cooling
is an index of the impact of urban geometry on the outer spaces. The study concluded
that several useful urban geometrical strategies could be applied to Egyptian universities
located in arid areas to enhance their environmental performance and energy consumption
by surrounding buildings, and especially for spaces that are overlooked by urban structures.
These strategies could be applied in the early stages of the building design or as a future
modification in the occupancy stage.

Author Contributions: H.M. and A.R. conceived the idea and research design of this paper, acquired
the data, performed the data analysis, developed and validated the model, and wrote the paper.
Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Development Fund (STDF),
Egypt, and the Federal Ministry of Education and Research, Germany (BMBF), ID: 23022.

Acknowledgments: This paper is based upon work supported by Science, Technology & Innovation
Funding Authority (STDF) under grant “German-Egyptian Research Fund” (GERF4), ID: 23022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Levermore, G.J. A review of the IPCC assessment report four, part 1: The IPCC process and greenhouse gas emission trends from

buildings worldwide. Build Serv. Eng. Res. Technol. 2008, 29, 349–361. [CrossRef]
2. IPCC—Intergovernmental Panel on Climate Change. Available online: https://archive.ipcc.ch/ (accessed on 20 October 2019).
3. Levermore, G.J. A review of the IPCC assessment report four, Part 2: Mitigation options for residential and commercial buildings.

Build Serv. Eng. Res. Technol. 2008, 29, 363–374. [CrossRef]
4. IPCC. ENVI_MET—Decoding Urban Nature—Microclimate Simulations|ENVI_MET. 2007. Available online: https://www.envi-

met.com/ (accessed on 7 January 2019).
5. Nikolic, D.; Djordjevic, S.; Skerlic, J.; Radulovic, J. Energy analyses of serbian buildings with horizontal overhangs: A case study.

Energies 2020, 13, 4577. [CrossRef]
6. Ruyssenaars, P.G.; Coenen, P.W.H.G.; Zijlema, P.J.; Arets, E.J.M.M.; Baas, K.; Dröge, R.; Geilenkirchen, G.; Honig, E.; van Huet, B.;

van Huis, E.P.; et al. Greenhouse gas emissions in the Netherlands 1990–2017. In National Inventory Report 2019; RIVM: Utrecht,
The Netherlands, 2019.

7. Partridge, L.E.; Loughnane, E.J. Committed carbon—Upgrading existing buildings. Struct. Des. Tall Spec. Build. 2008, 17, 989–1002.
[CrossRef]

8. Al-Waked, R.; Nasif, M.S.; Groenhout, N.; Partridge, L. Energy performance and CO2 emissions of HVAC systems in commercial
buildings. Buildings 2017, 7, 84. [CrossRef]

9. Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings—Generation and assessment of building
simulation weather files. Energy Build. 2008, 40, 2148–2168. [CrossRef]

10. Holmes, M.J.; Hacker, J.N. Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century. Energy
Build. 2007, 39, 802–814. [CrossRef]

11. Timor-Leste National Directorate of Meteorology and Geophysics. Current and Future Climate of Timor-Leste; Pacific Climate
Change Science Programme (PCCSP): Melbourne, Australia, 2015.

12. Hassan, K.E. The Future Impacts of Climate Change on Egyptian Population, International Union for the Scientific Study of
Population (IUSSP). In Proceedings of the XXVII IUSSP International Population Conference, Busan, Korea, 31 August 2013;
pp. 1–15.

13. Egypt Ministry of the Environment. Egypt’s Third National Communication under the United Nations Framework Convention on Climate
Change; Government Printers: Cairo, Egypt, 2016.

14. Mahdy, M.M.; Nikolopoulou, M.; Fahmy, M. Climate Change Scenarios Effects on Residential Buildings Shading Strategies in Egypt;
Building Simulation–Towards Sustainable & Green Life: Cairo, Egypt, 2013.

15. Galal, O.M.; Mahmoud, H.; Sailor, D. Impact of evolving building morphology on microclimate in a hot arid climate. Sustain.
Cities Soc. 2020, 54, 102011. [CrossRef]

16. Galal, O.M.; Sailor, D.J.; Mahmoud, H. The impact of urban form on outdoor thermal comfort in hot arid environments during
daylight hours, case study: New Aswan. Build Environ. 2020, 45, 107222. [CrossRef]

17. Fahmy, M.; Sharples, S. On the development of an urban passive thermal comfort system in Cairo, Egypt. Build Environ. 2009, 34,
1907–1916. [CrossRef]

http://dx.doi.org/10.1177/0143624408096263
https://archive.ipcc.ch/
http://dx.doi.org/10.1177/0143624408096262
https://www.envi-met.com/
https://www.envi-met.com/
http://dx.doi.org/10.3390/en13174577
http://dx.doi.org/10.1002/tal.478
http://dx.doi.org/10.3390/buildings7040084
http://dx.doi.org/10.1016/j.enbuild.2008.06.005
http://dx.doi.org/10.1016/j.enbuild.2007.02.009
http://dx.doi.org/10.1016/j.scs.2019.102011
http://dx.doi.org/10.1016/j.buildenv.2020.107222
http://dx.doi.org/10.1016/j.buildenv.2009.01.010


Sustainability 2021, 13, 27 20 of 21

18. Fahmy, M.; El-Hady, H.; Mahdy, M.; Abdelalim, M.F. On the green adaptation of urban developments in Egypt; predicting
community future energy efficiency using coupled outdoor-indoor simulations. Energy Build. 2017, 153, 241–261. [CrossRef]

19. Muthers, S.; Laschewski, G.; Matzarakis, A. The summers 2003 and 2015 in South-West Germany: heat waves and heat-related
mortality in the context of climate change. Atmosphere 2017, 8, 224. [CrossRef]

20. Silva, S.; Soares, I.; Pinho, C. Climate change impacts on electricity demand: The case of a Southern European country. Util. Policy
2020, 67, 101115. [CrossRef]

21. Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D.P. Modeling framework for estimating
impacts of climate change on electricity demand at regional level: Case of Greece. Energy Convers. Manag. 2007, 48, 1737–1750.
[CrossRef]

22. Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ.
Res. Lett. 2015, 10, 124003. [CrossRef]

23. Wenz, L.; Levermann, A.; Auffhammer, M. North–south polarization of European electricity consumption under future warming.
Proc. Natl. Acad. Sci. USA 2017, 114, E7910–E7918. [CrossRef]

24. Moral-Carcedo, J.; Vicéns-Otero, J. Modelling the non-linear response of Spanish electricity demand to temperature variations.
Energy Econ. 2005, 27, 477–494. [CrossRef]

25. Li, G.; Cai, L.; Chen, L.; Chen, T.; Zhang, X.; Pan, Y. Relations of total electricity consumption to climate change in Nanjing. Energy
Procedia 2018, 152, 756–761. [CrossRef]

26. Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant
temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [CrossRef]

27. Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.;
Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [CrossRef]

28. Moss, R.; Babiker, W.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards
New Scenarios for the Analysis of Emissions: Climate Change, Impacts and Response Strategies; Intergovernmental Panel on Climate
Change Secretariat (IPCC): Geneva, Switzerland, 2008.

29. Ramyar, R.; Zarghami, E.; Bryant, M. Spatio-temporal planning of urban neighborhoods in the context of global climate change:
Lessons for urban form design in Tehran, Iran. Sustain. Cities Soc. 2019, 51, 101554. [CrossRef]

30. Mahmoud, A.H.A. An analysis of bioclimatic zones and implications for design of outdoor built environments in Egypt. Build.
Environ. 2011, 46, 605–620. [CrossRef]

31. Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements
in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [CrossRef]

32. Ali, M.M.; Moon, K.S. Structural Developments in Tall Buildings: Current Trends and Future Prospects. Archit. Sci. Rev. 2007, 50,
179–182. [CrossRef]

33. Yang, F.; Lau, S.S.Y.; Qian, F. Thermal comfort effects of urban design strategies in high-rise urban environments in a sub-tropical
climate. Archit. Sci. Rev. 2011, 54, 285–304. [CrossRef]

34. Taleghani, M.; Sailor, D.; Ban-Weiss, G.A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on
pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett. 2016, 11, 024003. [CrossRef]

35. Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal
environment. Int. J. Biometeorol. 1999, 43, 71–75. [CrossRef]

36. Brosy, C.; Zaninovic, K. Quantification of climate tourism potential of Croatia based on measured data and regional modeling.
Int. J. Biometeorol. 2013, 58, 1369–1381. [CrossRef]

37. Deb, C. The significance of Physiological Equivalent Temperature (PET) in outdoor thermal comfort studies. Int. J. Eng. Sci.
Technol. 2010, 2, 2825–2828.

38. Fang, Z.; Feng, X.; Liu, J.; Lin, Z.; Mak, C.M.; Niu, J.; Tse, K.-T.; Xu, X. Investigation into the differences among several outdoor
thermal comfort indices against field survey in subtropics. Sustain. Cities Soc. 2019, 44, 676–690. [CrossRef]

39. Lau, K.K.L.; Chung, S.C.; Ren, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An
approach of adopting local climate zone (LCZ) classification. Build. Environ. 2019, 154, 227–238. [CrossRef]

40. Ali-Toudert, F.; Djenane, M.; Bensalem, R.; Mayer, H. Outdoor thermal comfort in the old desert city of Beni-Isguen. Algeria. Clim.
Res. 2005, 28, 243–256. [CrossRef]

41. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan
model. Int. J. Biometeorol. 2007, 51, 323–334. [CrossRef] [PubMed]

42. Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor
thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [CrossRef]

43. Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J.
Biometeorol. 1999, 43, 76–84. [CrossRef] [PubMed]

44. Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build.
Environ. 2006, 41, 1455–1470. [CrossRef]

45. Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures
and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2017.08.008
http://dx.doi.org/10.3390/atmos8110224
http://dx.doi.org/10.1016/j.jup.2020.101115
http://dx.doi.org/10.1016/j.enconman.2006.10.022
http://dx.doi.org/10.1088/1748-9326/10/12/124003
http://dx.doi.org/10.1073/pnas.1704339114
http://dx.doi.org/10.1016/j.eneco.2005.01.003
http://dx.doi.org/10.1016/j.egypro.2018.09.241
http://dx.doi.org/10.1007/s00484-008-0162-7
http://dx.doi.org/10.1038/nature08823
http://dx.doi.org/10.1016/j.scs.2019.101554
http://dx.doi.org/10.1016/j.buildenv.2010.09.007
http://dx.doi.org/10.1016/j.buildenv.2010.09.006
http://dx.doi.org/10.3763/asre.2007.5027
http://dx.doi.org/10.1080/00038628.2011.613646
http://dx.doi.org/10.1088/1748-9326/11/2/024003
http://dx.doi.org/10.1007/s004840050118
http://dx.doi.org/10.1007/s00484-013-0738-8
http://dx.doi.org/10.1016/j.scs.2018.10.022
http://dx.doi.org/10.1016/j.buildenv.2019.03.005
http://dx.doi.org/10.3354/cr028243
http://dx.doi.org/10.1007/s00484-006-0061-8
http://www.ncbi.nlm.nih.gov/pubmed/17093907
http://dx.doi.org/10.1016/j.buildenv.2005.01.013
http://dx.doi.org/10.1007/s004840050119
http://www.ncbi.nlm.nih.gov/pubmed/10552311
http://dx.doi.org/10.1016/j.buildenv.2005.05.031
http://dx.doi.org/10.1016/j.ufug.2014.03.003


Sustainability 2021, 13, 27 21 of 21

46. Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an
institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [CrossRef]

47. Andrade, H.; Alcoforado, M.J. Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor. Appl.
Clim. 2008, 92, 225–237. [CrossRef]

48. Bahgat, R.; Reffat, R.M.; Elkady, S.L. Energy Efficiency Design Guide for Optimal Urban Features of Open Spaces in Residential
Complexes. Acad. Res. Community Publ. 2019, 3, 136–152. [CrossRef]

49. Ayman Ragab, A.M.; Hssan, M.; Tarek, D. The Effect of Using Nano-Materials in External Openings on Energy Consumption in
Hot Desert Climate. J. Eng. Sci. JES 2020, 48, 468–477.

50. Strømann-Andersen, J.; Sattrup, P.A. The urban canyon and building energy use: Urban density versus daylight and passive
solar gains. Energy Build. 2011, 43, 2011–2020. [CrossRef]

51. Fahmy, M.; Mahdy, M.M.; Nikolopoulou, M. Prediction of future energy consumption reduction using GRC envelope optimization
for residential buildings in Egypt. Energy Build. 2014, 70, 186–193. [CrossRef]

52. Heier, J.; Bales, C.; Martin, V. Combining thermal energy storage with buildings—A review. Renew. Sustain. Energy Rev. 2015, 42,
1305–1325. [CrossRef]

53. Hussain, S.I.; Dinesh, R.; Roseline, A.A.; Dhivya, S.; Kalaiselvam, S. Enhanced thermal performance and study the influence of
sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build. 2017, 143, 17–24. [CrossRef]

54. Ma, Y.T.; Lu, M.Y.; Weng, J.T. Energy Consumption Status and Characteristics Analysis of University Campus Buildings.
In Proceedings of the 5th International Conference on Civil Engineering and Transportation 2015, Guangzhou, China,
28–29 November 2015; Atlantis Press: Amsterdam, The Netherlands, 2015.

55. Givoni, B. Climate Considerations in Building and Urban Design; Van Nostrand Reinhold: New York, NY, USA, 1998.
56. World Maps of Köppen-Geiger Climate Classification. Available online: http://koeppen-geiger.vu-wien.ac.at/ (accessed on 19

April 2020).
57. Climate Data for Cities Worldwide—Climate-Data.Org. Available online: https://en.climate-data.org/ (accessed on 12 May

2019).
58. Andreou, E.; Axarli, K. Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental

investigation and parametric analysis. Renew. Energy 2012, 43, 354–363. [CrossRef]
59. Yang, F.; Qian, F.; Lau, S.S. Urban form and density as indicators for summertime outdoor ventilation potential: A case study on

high-rise housing in Shanghai. Build. Environ. 2013, 70, 122–137. [CrossRef]
60. Yahia, M.W.; Johansson, E. Evaluating the behaviour of different thermal indices by investigating various outdoor urban

environments in the hot dry city of Damascus, Syria. Int. J. Biometeorol. 2013, 57, 615–630. [CrossRef]
61. Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate

in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [CrossRef]
62. Mahmoud, H. Effect of Urban Form on Outdoor Thermal Comfort of Governmental Residential Buildings: New Aswan As a

Case Study. Egypt. JES. J. Eng. Sci. 2019, 47, 309–325. [CrossRef]
63. Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [CrossRef]
64. Rockel, B.; Will, A.; HenAvaise, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [CrossRef]
65. Mahmoud, H.; Ghanem, H. Urban Geometry Mitigation Guidelines to Improve Outdoor Thermal Performance in Egyptian Hot

Arid New Cities. JES. J. Eng. Sci. 2019, 47, 172–193. [CrossRef]
66. Bakarman, M.A.; Chang, J.D. The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Eng. 2015,

118, 101–108. [CrossRef]

http://dx.doi.org/10.1016/j.buildenv.2013.04.012
http://dx.doi.org/10.1007/s00704-007-0321-5
http://dx.doi.org/10.21625/archive.v3i1.436
http://dx.doi.org/10.1016/j.enbuild.2011.04.007
http://dx.doi.org/10.1016/j.enbuild.2013.11.057
http://dx.doi.org/10.1016/j.rser.2014.11.031
http://dx.doi.org/10.1016/j.enbuild.2017.03.011
http://koeppen-geiger.vu-wien.ac.at/
https://en.climate-data.org/
http://dx.doi.org/10.1016/j.renene.2011.11.038
http://dx.doi.org/10.1016/j.buildenv.2013.08.019
http://dx.doi.org/10.1007/s00484-012-0589-8
http://dx.doi.org/10.1016/j.landurbplan.2013.11.004
http://dx.doi.org/10.21608/jesaun.2019.115472
http://dx.doi.org/10.1080/02723646.1981.10642213
http://dx.doi.org/10.1127/0941-2948/2008/0309
http://dx.doi.org/10.21608/jesaun.2019.115119
http://dx.doi.org/10.1016/j.proeng.2015.08.408

	Introduction 
	Research Methods 
	Area of Study 
	Meteorological Data 
	Climate Change Scenarios 
	Proposed Cases and Simulation Cycling 

	Results and Discussion 
	Evaluation of Current Outdoor Thermal Performance of Whole Campus Spaces 
	Adapted Urban Spaces to Improve Thermal Performance 

	Conclusions 
	References

