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Abstract: A thorough understanding of the drivers that affect the emission levels from electricity
generation, support sound design and the implementation of further emission reduction goals are
presented here. For instance, New York State has already committed a transition to 100% clean
energy by 2040. This paper identifies the relationships among driving factors and the changes in
emissions levels between 1990 and 2050 using the logarithmic mean divisia index analysis. The
analysis relies on historical data and outputs from techno-economic-energy system modeling to
elucidate future power sector pathways. Three scenarios, including a business-as-usual scenario and
two policy scenarios, explore the changes in utility structure, efficiency, fuel type, generation, and
emission factors, considering the non-fossil-based technology options and air regulations. We present
retrospective and prospective analysis of carbon dioxide, sulfur dioxide, nitrogen oxide emissions for
the New York State’s power sector. Based on our findings, although the intensity varies by period and
emission type, in aggregate, fossil fuel mix change can be defined as the main contributor to reduce
emissions. Electricity generation level variations and technical efficiency have relatively smaller
impacts. We also observe that increased emissions due to nuclear phase-out will be avoided by the
onshore and offshore wind with a lower fraction met by solar until 2050.

Keywords: power sector; CO2 emissions; NOx emissions; SO2 emissions; energy use; decomposition
analysis; LMDI; MARKAL; energy systems analysis

1. Introduction

Meeting increasing energy demand in a sustainable manner while managing air
pollution has become strategically essential at a regional scale, especially for New York
State, which has the third-largest economy in the United States [1]. In 2015, the New York
State government committed to transforming the state’s power system by enacting climate
action plans, including Clean Energy Standard (CES). CES consists of three tiers: investing
in renewable energy facilities (Tier 1), preserving existing renewable power plants (Tier
2), and Zero Emission Credit (ZEC) generated with each megawatt-hour of electricity that
supports “at-risk” existing nuclear facilities (Tier 3) [2]. With the contribution of three
tiers, CES is designed to reduce the carbon level of energy supply by obtaining 50% of
its electricity from renewable resources by 2030 [3]. Right after CES, New York State
presented the “Reforming Energy Vision (REV)” plan that requires investing in energy
efficiency in buildings, a clean energy economy, and regulatory reforms. Recently the state
declared an even prone action by setting a target for a carbon-neutral power system by
2040 [4]. More electricity should be produced from non-fossil-based energy sources in line
with the CES implementation to accomplish a transition to the cleaner power sector. This
situation raises the question about how much investment should be made to which non-
fossil-based electricity generation technology [3]. Non-fossil-based energy technologies’
environmental contributions should be identified to answer this question and prioritize
technology options in the power sector. However, the attribution of avoided emissions
resulted from the switch to non-fossil-based energy sources cannot be placed easily [5].
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In the literature, primary energy equivalent (PEE) and the equal share (ES) are the most
widely accepted approaches in this regard [6]. PEE and ES have both advantages and
disadvantages related to their model assumptions. PEE calculates the emission savings due
to the switch from fossil-based energy sources to non-fossil options under the assumption
that emission gain equals the aggregate emission level of generating the same amount of
electricity from fossil-based energy sources. In the PEE approach, emissions reductions are
calculated based on the electricity intensity of fossil-based generation. Emission savings
from a "non-fossil-based" energy source are product of the energy intensity value and the
difference between the amount of non-fossil-based electricity produced in the base year and
target year. Since this approach based on a single intensity value, when there is a demand
reduction, PEE result may not present the sole impact of emission reduction resulting from
the fuel-mix change [5].

Although there are numerous PEE applications in the literature [6,7], the main problem
related to PEE is that the model necessitates two conditions to provide valid results. (1) The
lion’s share of electricity generation should belong to fossil fuels; (2) the electricity demand
should constantly increase between periods within the timeframe of the study. Hence,
the applicability of PEE is limited for studies in which the electricity demand is stable
or dropping. Under such circumstances, the ES approach can be applied to quantify the
emissions reduction. ES calculates the emission changes resulting from non-fossil-based
energy sources’ consumption by looking at the share of those sources within the electricity
generation mix. In ES, the base year’s non-fossil-based electricity is adjusted by the total
electricity output ratio in the target year to the base year. Hence, ES accounts for the
emission reduction even under the circumstances in which the demand is declining [5].

However, while it is applicable to the energy systems with reducing demand, ES also
has some limitations. ES approach is sensitive to the target year [5]. Hence, it is not capable
of calculating the progress with respect to the targeted emission level for different years
(such as 2030 and 2050 emission targets of the New York State). Another limitation that
belongs to ES is that it is not able to quantify the decline in emissions due to the efficiency
improvements, and fossil fuel mix changes in the system. Understanding the driving
forces of emission reductions and evaluating the impact of clean energy deployment is
essential for sound policy development. The index decomposition analysis (IDA) is a
well-structured approach that can cope with the above-mentioned limitations of PE and ES.

Among different approaches of the IDA, owing to its advantages, including its the-
oretical foundation, the logarithmic mean divisia index (LMDI) is widely preferred [8].
LMDI methods provide solutions that are valid under factor test and time-reversal tests [9].
The advantages of the LMDI methodology include the adaptability of providing perfect
decomposition with no unexplained residual terms, path independency, the symmetry
between the decomposition ratios/differences within periods, and consistency in aggrega-
tion [10,11]. LMDI methodology also brings practical solutions due to its ease of use and
result interpretation. Additionally, since non-fossil-based resources have a “zero” emission
coefficient, LMDI’s ability to handle zero values [8] makes it applicable for the analysis of
non-fossil-based energy sources’ contribution to emissions.

Although a large number of methods have been used to address the effect of direct and
indirect factors on the emission change in the literature, LMDI is a popular methodology
due to its above-mentioned features and it has been applied to different countries and
regions to deal specifically with the electricity generation sector [12–14]. The LMDI method-
ology has become more popular as the penetration of renewable resources gets higher
within the electricity generation sector [6]. Some representative studies examining the
electricity sector include Ang and Goh [15] for Asia countries, De Oliveria-De Jesus [16] for
Latin America and the Caribbean, Cheng et al. [17] for China, Cansino et al. [18] for Spain
and Karmellos et al. [19] for the European Union countries. Despite the importance of state
and regions’ carbon dioxide (CO2) emission mitigation actions and air emission co-benefits,
comparatively less attention has been given to LMDI applications on local-scale energy
dynamics [20]. Hence, only a few studies focus on state or city level emission analysis [21].
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CO2 emissions from the power sector constitute a significant portion of global energy-
related emissions. Combustion processes in the power sector are one of the major sources
of sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions that adversely impact hu-
man health and the environment [22]. SO2, which mainly comes from burning coal and
oil, was found to contribute to the amplified respiratory symptoms and cause higher
rates of asthma, cardiovascular diseases, premature death, impaired lung development
in children [23,24]. Another primary concern with the SO2 is its contribution to acid rain
which causes corrosion of building materials, deforestation, and acidification of waterways
threatening the ecosystems. NOx emissions, including NO2, trigger ozone formation which
adversely impacts the air quality. The increased concentration of ozone in population
centers leads to amplified exposure, which has been associated with an exacerbated risk
for various respiratory problems (e.g., chronic bronchitis, emphysema, and asthma) [23].

Since the fuel, technology, and emission rate variables within dispatch decisions has a
multi-pollutant impact, considering solely CO2 emission intensity can be misleading.

In the literature, there are studies that explore the multiple benefits of the fossil fuel
transformation for electricity generation. They focus on air quality implications at multi-
regional [25] and national scale [26,27]. Several studies have evaluated the impact of
renewable-based electricity generation and its effectiveness of air emissions mitigation
at local level. A large body of those studies specifically investigated the impact of re-
newable portfolio standards from a cost perspective considering the price elasticity of
supply, emission abatement cost, and emissions perspective, including CO2 and other
air emissions. Johnson and Novacheck [28] presented a method to evaluate the emission
mitigation projections and related costs related to state-level RPS programs. They deployed
a unit commitment and economic dispatch model to determine generator operations. An
aggregate change for CO2, NOx, and SO2 for Michigan was provided from 2015 to 2030.
Rather than focusing on the positive impact of renewable penetration, Vankatesh et al. [29]
investigated the impact of coal power plant retirements on SO2, NOX, and related change
in greenhouse gas (GHG) emissions. They use an economic dispatch model based on
short-term marginal costs to examine the changes in the regional electricity generation for
three regions including Pennsylvania–New Jersey–Maryland. Since they utilize a dispatch
model rather than focusing on a single state, they worked on the whole grid attached to
those regions. Rather than focusing on single fuel type, McDonald-Buller et al. [30] im-
plemented a two-staged control technology investment model to explore the impact of a
time-differentiated pricing system in cap and trade program for Texas and Mid-Atlantic
electric power systems. They show the escalation of NOx and SO2 emissions and the pro-
duction costs under differentiated price signals. Rather than analyzing the power sector
solely, Johnson et al. [31] assess the air quality and public health benefits of New York City’s
commitment to reduce the greenhouse gas emissions by 80% by 2050 by also considering
transportation and buildings. They deploy energy dispatch modeling for the power sector
by taking each facility serving New York City into account. They also use EPA’s Community
Multiscale Air Quality (CMAQ) model to estimate resulting air quality outcomes.

The main body of the existing literature deploys facility-based hourly dispatch models
to analyze the transformation for CO2, SO2, and NOx either focusing a specific type of
generations (such as coal power plants) or an impact of one specific policy action (such as
cap and trade program, CO2 emission target, renewable portfolio standard). The main goal
of this work is to illustrate and analyze how different forces that modulate CO2, SO2, and
NOx emissions have evolved from 1990 to 2018 and might evolve beyond 2020 until 2050
to inform policy makers. For this analysis, we do not only explore the electricity generation
but also capture the external factors together. The first-order drivers, including technology
turnover, air pollution control leading to the emission rate change, fuel switching, and
efficiency improvement, are considered. Besides, market- and policy-driven (second order)
factors leading to emission reduction are explored.

The LMDI can only decompose the aggregate effect of the change in the electricity
generated by non-fossil-based energy sources on emissions. In order to quantify the
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contribution of each fuel type separately, Goh and Ang [5] proposed an extension to LMDI
based on the multilevel-hierarchical model presented by Xu and Ang [32]. We applied
the multilevel-hierarchical LMDI approach, proposed by Goh and Ang, over the period
between 1990 and 2050 to provide an overview of the driving forces on the change of
emission levels from electricity generation units in the State of New York. From 1990 to
2018, reported data were used, whereas for the rest of the analysis period, results from
a bottom-up techno-economic energy systems model (MARKAL-based) were included
to evaluate three different future scenarios including the continuation of exiting trends,
emission neutrality and emission neutrality when nuclear power plants are phase-out. The
decomposition analysis has been carried out for five-year period-wise. Moreover, yearly
decomposition analysis has been conducted between 2008 and 2018 to provide a detailed
snapshot of the change in the power sector in the last decade.

2. Overview of Power Sector in New York State

The New York State electric power grid has been undergoing a transformation at
an increasing pace because of the reliability and sustainability concerns. Thirty years
ago, coal and oil were the major fuels generating the state’s electricity (19% and 25%,
respectively) [33]. By 2018, both contributions of coal and oil to electricity generated
accounted for less than 2%. Meanwhile, natural gas and renewables have increased their
share in the electricity generation mix. Figure 1 illustrates the change in the electricity
generation mix over time. Although nuclear power plants’ contribution remains high
(accounted for about a third of the generation), the composition of the source of electricity
generation has been changed over time. For instance, coal and petroleum were contributing
to almost half of the electric generation mix in the 1990s, but starting in 2006, there was a
shift toward natural gas.

The investments in natural gas combined cycle units have increased drastically. In
2005, natural gas was 22% of the total electricity production, whereas, in 2018, that ratio
reaches approximately 40%. Figure 1 also shows the increase in the utilization of renewables
with the rapid growth in the contribution of wind and solar. Renewable energy sources
(hydropower, solar, and wind) provide almost 23% percent of total electricity production
in the New York State in 2018.

The wholesale electricity market includes 39,295 MW total in-state electricity gen-
eration capacity including nuclear power: 5400 MW, hydropower with approximately
180 hydroelectric facilities: 5864 MW, wind:1739 MW, coal: 837 MW, dual fuel:19,112 MW,
natural gas capacity: 3777 MW, oil: 2407 MW and rest of its capacity belong to other re-
newables [34], and imports from the New England Independent System Operator (NEISO),
Ontario’s Independent Electricity System Operator (IESO), and Hydro Quebec up to
2800 MW of power [35].

The implementation of health-based air quality standards required by the Clean Air
Act Amendments (CAAA) led to significant improvement in the state’s air quality [36].
The emission standards for large sources of air pollution resulting from power plants,
the establishment of a cap and trade program to limit acid rain, implementation of the
Montreal Protocol for ozone phase-out, and mandatory emission controls set by the U.S.
Environmental Protection Agency (EPA) have transformed the electricity generation sector
structure. The replacement of coal with natural gas (which has trace amounts of sulfur
dioxide concentrations at levels very close to zero) and amplified renewable usage can be
listed as the major changes. Air pollutant concentrations improved significantly during the
analysis period.

According to the State Energy Data System (SEDS), the change in the emission values
that belong to the power sector is given in Figure 2 [33]. A closer look at the numbers shows
that the CO2 emission level in 1990 was 69.09 Mton CO2 and decreased to 27.94 Mton CO2
in 2018. From 1990 through 2018, NOx emissions declined by 84%. The most significant
improvement was seen in SO2 emissions by 96% from 459.77 kt in 1990 [37].
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2.1. LMDI Method

There exist two main decomposition analysis techniques to evaluate the factors behind
the change in the carbon intensity of electricity production: structural decomposition
analysis (SDA) and index decomposition analysis (IDA). SDA captures both direct and
indirect effects, such as the secondary effect of a change in the demand in one sector on
demand for inputs from other sectors [16]. SDA consists of detailed input-output tables.
However, IDA uses only sectorial-level data which in turn has a lower data requirement.
The popularity of the LMDI method within IDA is not only due to low data requirements,
but it also has favorable properties from both theoretical and application viewpoints.

The LMDI method that allows decomposing changes in CO2 emissions into sepa-
rate indexes has been preferred among the literature in various study areas including
nation/economy-wide [38] and sectoral [39,40] analysis of energy consumption and related
emissions. This method provides the change in driving factors to explain year-to-year
differences in emissions. The preference for LMDI has also been in other study areas, such
as industrial [41], logistics [42], building sectors [43]. The assessment of contributors to
emissions resulting from the electricity generation sector is a field that gets a great deal
of attention in the literature. Within those studies, decomposition analysis is also widely
applied because of its advantages [44–46]. While mentioning the advantages from the
theoretical foundation viewpoint, the LMDI methods are valid under the factor and the
time-reversal tests [5]. They provide perfect decomposition with no unexplained residual
terms [47]. Moreover, they can handle multiple factors in the IDA identity easily. This
property is particularly relevant in studies for the electricity generation sector since four or
more factors are often specified in the IDA identity. LMDI is an IDA method that is also
capable of working with zero values (such as the case for renewable energy generation
having zero-emission values) [48,49].

By evaluating the change in the power sector structure from the emissions point of
view, a key issue is to allocate the avoided emissions from the transformation of fossil-fuel-
based electricity generation into non-fuel-based electricity production, there is no standard
procedure to assign avoided emissions. In this study, the LMDI additive decomposition
approach is used to quantify and explain the main factors on the variation of energy-related
emissions resulted from electricity generation overtime in New York State because of its
theoretical properties.

The decomposition approach is formed with the breakdown of five different factors
presented in Equation (1) to reveal the arithmetic change in emissions between the reference
year and target year. Ct is the total CO2 emissions from electricity generation in a particular
year. In the formulation and the presentation of the results, we replaced C with N and S for
NOx and SO2 emissions, respectively. Ct

i is the CO2 emissions measured in a million metric
ton from fossil fuel i in year t, Gt stands for the total electricity generation measured in
megawatt-hours (MWh) for year t; Qt denotes the total electricity generated (MWh) from
fossil fuels for year t; Qi is the total electricity output (MWh) from fossil fuel i, and Fi is the
total energy input measured in TBtu from fossil fuel i. In the LMDI formulation p denotes
the portion of the electricity generated from fossil fuels, mi is the share of the electricity
generated from fossil fuel i within total electricity generation from fossil fuels whereas ui
represents the technical efficiency of fossil fuel i and ei is the emission factor of fossil fuel i.
The emission change between any given year “t” and target year “T” in emissions of CO2,
NOx, and SO2 are subject to Equations (2)–(4), respectively for decomposition analysis.
The aggregate effect could be drawn by summing the effect of electricity generation, the
change in the share of fossil fuels to non-fossil based sources, the change in the share of
non-fossil fuel j, changes in the fossil fuel mix, generation efficiency and the change in fuel
emission factors.

C = ∑
i

G
Q
G
× Qi

Q
× Fi

Qi
× Ci

Fi
= ∑

i
Gpmiuiei (1)

∆Ctot = CT −Ct = ∆CG + ∆Cp + ∆Cm + ∆Cu + ∆Ce (2)
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∆NOxtot = NOT
x −NOt

x = ∆NOxG + ∆NOxp + ∆NOxm + ∆NOxu + ∆NOxe (3)

∆SO2tot = SOT
x − SOt

x = ∆SOxG + ∆SOxp + ∆SOxm + ∆SOxu + ∆SOxe (4)

This formulation covers not only the fossil-based energy sources but also the non-
fossil-based energy sources to reveal the impact of fuel share on total change. Two main
types of energy sources, fossil fuels (coal, natural gas, fuel oil) that produce a high level of
emissions and non-fossil fuel-based energy sources (solar, nuclear, geothermal, etc.,) are
included in the model [50].

Equation (5) captures the activity effect (Cg). ∆Cg represents the change in total
electricity generation between period t and T informing the absolute change in emissions
resulted from the variation in the total electricity output in New York State.

∆CG = ∑i L
(

CT
i , Ct

i

)
ln

(
GT

Gt

)
where L(x,y) =

(x− y)(
lnx− lny

) for x 6= y (5)

Equation (6) represents the fossil fuel ratio effect Cp. ∆Cp measures the emission
difference between two periods resulted from the change in the ratio of fossil fuel generation
to total electricity generation. This effect reveals the emission change resulted from the
deviation in the utilization of fossil-based energy. The fossil fuel is replaced by non-fossil-
based resources as the share decreases. This parameter is also interpreted as the positive
effect of the penetration of non-fossil fuel into the electricity supply mix.

∆Cp = ∑
i

L
(

CT
i , Ct

i

)
ln
(

pT

pt

)
(6)

We apply Equation (7) to calculate the sole effect of each non-fossil fuel-based source.
∆Cp is decomposed into subcategories where j represents the energy source options (j = 1
for hydroelectric, j = 2 for nuclear, j = 3 for solar, j = 4 for wind, j = 5 for other sources).

∆Cpj
= ∑i L

(
CT

i , Ct
i

)GT

QT

(
Rt

j

Gt
j
−

RT
j

GT
j

)
(7)

The fossil fuel mix effect (Cm) is also included as in Equation (8). ∆Cm measures the
effect of the change within the fossil fuel mix which includes all fossil fuels (coal, natural
gas, and petroleum).

∆Cm = ∑i L
(

CT
i , Ct

i

)
ln

(
mT

I
mt

i

)
(8)

Equation (9) captures the electricity generation efficiency effect Cu. ∆Cu shows the
change in emissions due to the change in the input to output ratio. It covers the technologi-
cal enhancements of any other internal/external factors that have an impact on the input
to output ratio. It represents the change in generation efficiency between any given year
and target year “T.”

∆Cu = ∑i L
(

CT
i , Ct

i

)
ln

(
uT

I
ut

i

)
(9)

Finally, we added the emission factor effect (Ce) in Equation (10). ∆Ce captures the
deviation in the emissions due to the changes in emission factors (the ratio of aggregate
emissions of fossil fuel i in period t to aggregate consumption of fossil fuel i in period t).
This parameter captures any external impact that is able to change the unit emission factor
including air pollution control equipment and change in the chemical composition of the
fuel yielding reduced emissions post-combustion.

∆Ce = ∑i L
(

CT
i , Ct

i

)
ln

(
eT

I
et

i

)
(10)
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Data Sources for LMDI

The LMDI analysis has been carried out for the electricity generated within the New
York State’s geographic boundaries. The impact of imported electricity on power sector
emissions is excluded from this study. The latest U.S. Energy Information Administration
(EIA) state-level detailed data on net electricity generation, which was released in January
2019, covers the 1990–2018 period. Hence, we utilized the data from 1990 to 2018 for the
LMDI analysis. EIA has detailed state data including Electric Power Industry Generation
by State by Type of Producer by Energy Source (EIA-906, EIA-920, and EIA-923) [37] and
NYISO provides New York State Primary Consumption for Electricity Generation by Year
data [34]. Wherein, the data for the proposed decomposition model is derived primarily
from EIA and NYISO Power Trends Reports [51–53]. The aggregate emissions values of
CO2, NOx, and SO2 for the New York State’s electric power industry are taken from Electric
Power Industry Emissions Estimates, 1990 through 2018 [54].

2.2. MARKAL Model

In addition to the analysis of the historical data belonging to the New York State’s
power sector, we also examined the scenarios projecting the future of the power sector
emissions. The scenarios capturing future energy planning for New York State is developed
through an electricity capacity expansion model built on a MARKAL framework. The
MARKAL model is a mixed-integer linear programming model that solves for the least-cost
system-wide solution for meeting end-use energy service demands, given the primary
energy resources defined for a region by considering a wide range of available technology
options in the system [55]. Researchers from academia, non-governmental organizations,
and federal research laboratories have used the MARKAL framework for applications
ranging from system-wide policy analysis to specific technology evaluations [56–59].

The MARKAL model typically includes: (a) End-use demands for energy services
in residential, commercial, industrial, and transportation sectors (e.g., vehicle miles of
travel, lumens of lighting, process heat for industrial sector); (b) supply curves in the
resource sector to cover cost and emissions associated with the extraction and processing
of primary energy resources such as coal, natural gas, crude oil, biomass feedstocks, and
other non-biomass renewable resources; (c) energy conversion and process technologies
(e.g., electricity generating units (EGUs), power plants and refineries); and (d) technologies
meeting the end-use demands (e.g., LDVs, space heating, and cooling technologies, etc.,).
All technologies are specified by their cost (e.g., capital, operation, and maintenance
(O&M)), performance characteristics (capacity, fuel efficiency, availability), and emission
rates for criteria air pollutants (CAPs) and GHGs. MARKAL provides lowest system-
wide cost solution (i.e., total discounted investment, O&M, and fuel costs per technology),
with the optimal mix of energy technologies and fuels, while satisfying energy balance
constraints and meeting constraints on policies and regulatory standards such as air quality
regulations and vehicle efficiency standards. The model calculates the resultant electricity
and fuel marginal costs endogenously for all modeling years.

In this study, the demand-side representation has not been included. Hence, the
electricity demanded is exogenously defined in the MARKAL model. The power sector
is fully defined with all existing electricity generation capacities and available future
technology options.

2.2.1. Scenario Analysis

In 2018, the United Nations’ Intergovernmental Panel on Climate Change set a dead-
line for greenhouse gas emissions reductions to keep the warming under the threshold
value (1.5 degrees Celsius). As a response in the US, climate action plans have gained
momentum within cities and states. In accordance with this momentum, New York State
also launched an initiative called “Green New Deal” (GND) which consists of a set of
clean energy targets to combat climate change [4]. GND aims to mandate NYS’s power
sector to be carbon-free by 2040 while meeting its interim target of reaching 70% renewable
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electricity generation by 2030. To meet this mandate, New York State plans to double new
large-scale wind and solar resources through the Clean Energy Standard while maximizing
the contribution of its existing renewable resources.

To show the role of each non-fossil-based energy resource in the future of the power
sector, three different scenario runs have been made. Steady State (SST), Green New Deal
(GND), and Green New Deal with Nuclear Phaseout (GNDnp). SST scenario assumes the
continuation of the existing trends till 2050. SST demonstrates a reference case trends in
emissions while meeting the electricity demand in the system. GND simulates the transfor-
mation of the power sector under emission reduction targets. The sectoral assumptions
for GND scenarios are presented in Table 1. The state is about to shut down Indian Point
Nuclear Energy Center because of its aging infrastructure and resulting malfunctions. To
reveal the impact of the closure of the Indian Point on the New York State’s power sector,
GNDnp is set as another scenario in which no additional capacity investment in nuclear
power plants is allowed. The model is only allowed to utilize the residual capacity of the
existing facilities other than Indian Point in GNDnp.

Table 1. Scenario assumptions for New York State.

Scenario Steady State Green New Deal Green New Deal + Nuclear
Phaseout

Coal No additional constraints Generation from coal is not
allowed in 2020 and thereafter

Generation from coal is not
allowed in 2020 and thereafter

Natural gas, hydro,
onshore wind No additional constraints No additional constraints No additional constraints

Nuclear No constraints on nuclear
power plants

Indian Point power plant is
shut down.

No constraint on future
investments

Indian Point power plant is
shut down.

Future investment is not
allowed in 2020 and thereafter

Offshore wind No constraints on offshore wind 9000 megawatts by 2035 9000 megawatts by 2035

Electricity transmission
and distribution

Maximum annual energy losses
due to distribution and

transmission are 4.56% and 6.5%
respectively

Maximum annual energy
losses due to distribution and

transmission are 4.56% and
6.5% respectively

Maximum annual energy
losses due to distribution and

transmission are 4.56% and
6.5% respectively

Emissions No constraints on emissions 100% clean power by 2040 100% clean power by 2040

Renewables No constraints on renewables
At least 70% of electricity
generation by renewable

power by 2030

At least 70% of electricity
generation by renewable

power by 2030

In the MARKAL model, 2010 is set as the calibration year, and the analysis is conducted
from 2010 to 2050. The electricity demand for 2010 and 2015 is built upon the reported data
for New York State, and it is increased in line with Annual Energy Outlook 2020 Reference
Case. We take the projections for electricity consumption by sectors for Middle Atlantic
region till 2050 and input to the MARKAL model [60].

2.2.2. Data Sources for the MARKAL Model

The data regarding NYS’s existing electricity generation capacities, including combined-
cycle units are taken from numerous data resources. The status, generation capacity,
and equipment characterizations of power plants are from official reports including EIA-
860 [61], EIA-767 Steam-Electric Plant Operation and Design Report [62], National Electric
Energy Data System [63]. To represent the state’s power sector, the primary energy supply
potentials, including a reserve for fossil fuels, potential capacity, and annual limits for
renewables are also exogenously defined in the MARKAL model. For future electricity
generation units, a detailed technology database is prepared with possible efficiency and
cost improvements for each alternative source of energy and included in the MARKAL
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model. The model is used to illustrate how the electricity supply is realized under alterna-
tive scenarios and how emissions and system cost change with respect to those scenarios.
For detailed information including the formulations, model assumptions, and data sources,
please see the model documentation [60].

3. Results
3.1. The Analysis of CO2 Emissions from 1990 to 2018

Between 1990 and 2018, there were sharp fluctuations in CO2 emission values, but the
data showing positive changes were less than the data showing negative deviation in CO2
rates. From 1990 to 2018, New York State’s power sector CO2 emissions dropped by 60%
and decreased to 27.9 Mton CO2 in 2018. During the analysis period, the major components
that contributed to the total emission change were Cm and Cp as deduced from Figure 2a.

The fossil fuel mix change (∆Cm) had a significant impact on the decrease in CO2
emissions considering the whole modeling period. The share of coal within fossil fuel-
based energy sources substantially decreased by a large margin to 3% from 31% in the
electricity generation sector. For the same period, the share of natural gas increased to
94% within the fossil-based electricity generation. Especially after 2005, numerous factors
amplified the natural gas-fired electricity generation. Ease in natural gas delivery with
the expansion of pipelines and the upswing of the coal prices, a decline in the cost of
natural gas due to the increase in the domestic shale gas formations were some of the major
market-driven factors [64]. As a result, the production of natural gas reached a peak level
in 2011 and decreased the price of natural gas drastically from 9.65 $/thousand cubic feet
in 2008 to 4.18 $/thousand cubic feet in 2018 in the US [65]. Accordingly, the consumption
shares of fossil fuels with comparatively low carbon content increased over the modeling
period. The impact of the availability and the market price of natural gas on the electricity
generation mix can be seen explicitly by looking at ∆Cm. Specifically, in the 2005–2010 and
2010–2018 periods, this change in the fossil fuel-based electricity generation mix resulted
in the highest decline in the emissions level, and it accounted for 9.45 Mton CO2 and 7.89
Mton CO2 emission reduction respectively.

∆Cp represents the deviation in emissions relative to the changes in the share of fossil
fuels in the electricity generation mix. The second most substantial decrease in carbon
emissions was due to Cp for New York State case over the entire period of 1990–2018 which
was equivalent to 16 Mton CO2.. Cp reached its highest value with 5.5 Mton CO2 and
5.25 Mton CO2 emission reduction, respectively in the 2000–2005 and 2005–2010. Although
Cp led to a decrease of 3.24 Mton CO2 between the 1990–2000 period, this value reached
its peak level with 4.26 Mton CO2 from 2008 to 2009 after New York adopted its first RPS
in 2004.

The third main component of the emission mitigation in the power sector is Cu which
presents the emission reduction attributed to the change in efficiency. During the analysis
period, we observe an upswing and downswing phase of emission change because of the
efficiency effect. However, the cumulative effect of Cu from 1990 to 2018 was negative. The
efficiency changes reduced 8.63 Mton CO2 emissions, which accounted for 21% of the total
emission reduction. While interpreting the gain from Cu, we should keep in mind that
New York State has one of the oldest electricity generation infrastructures. Nationwide,
the capacity-weighted average age of power plants is 29 years, whereas New York’s power
plant fleet has an average age of 36 years [51]. The newly added, lower- or zero-emitting
capacity in the New York electricity generation system equals 11,846 MW, and nearly
7000 MW of higher-emitting capacity has retired or suspended since 2000. This structural
change resulted in more efficient electricity generation [52]. Thus, the total efficiency gains
mainly resulted from the retired or suspended coal power plants plus the natural gas
combined cycle capacity expansion.

Cg represents the activity change effect. During the study period, the aggregate
effect of Cg was positive. However, from 1990 (136 TWh) through 1995 (133 TWh)
and 2005 (147 TWh) to 2010 (137 TWh), there were decreasing trends as presented in
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Figure 2a. These declines in electricity generation resulted in emission reduction during
those periods. Between 2005 and 2010, a negative deviation in electricity generated because
of the economic turndown resulted in approximately 3.50 Mton CO2 reduction (7% of total
reduction). Overall, the effect of Cg was not a significant determinant of emission change
for the New York State case. Similarly, Ce was not a significant contributor.

Figure 2 also depicts the positive effect of RPS for the period of 1990–2018 in terms of
CO2. The change in emissions resulted from the positive impact of renewables, accounted
for more than 5 Mton CO2 from 2005 through 2010, whereas this value was equal to
5.08 Mton CO2 between 2010 and 2018. Exploring the differences between the effects of
non-fossil-based resources helps reveal how different clean energy types contribute to
emission reductions for each pollutant analyzed. Hence, the extension of LMDI through
Equation (7) decomposes the sole effect of each non-fossil resource in electricity generation.
Figure 2b–f depicts the resource-based emission reduction contributions of non-fossil-
based energy options from 1990 to 2018, including the environmental benefits of using
non-fossil-based energy resources.

Electricity generation from hydropower plants varies from year to year mainly due
to water availability during the analysis period. The impact of this fluctuation on CO2
emissions is presented in Figure 2b–f. In the periods 1990–1995, 1995–2000, and 2000–
2005 there was a significant decline in electricity generation from hydropower plants.
Accordingly, we observe an increase in CO2 emissions (1.36 Mton CO2, 1.42, Mton CO2,
and 0.50 Mton CO2 respectively). Although there exist 4.02 Mton CO2 reductions from
2005 to 2018, the net effect of hydropower plants was limited to 0.74 Mton CO2 reductions
from 1990 to 2018.

For New York State, nuclear power has long been the largest and reliable, clean source
of electricity. From 1990 through 2018, nuclear was the leading contributor to the decrease
in emission levels within the non-fossil-based energy sources. U.S. EPA established the
Acid Rain Program in 1995 under the CAA Amendments to limit NOx and SO2 emissions
from power plants, which resulted in the reduction of the electricity mainly generated from
coal [66]. Hence, starting in 1995, we observe a sharp increase in electricity generation from
nuclear power (35.2 TWh) starting until 2001 (40.4 TWh). Nuclear energy approximately
produced 32% of New York State’s total electricity generation. It counted more than 50%
of the state’s carbon-free power. Within the 1990–2018 timeframe, emission gain, which
belonged to nuclear power plants, was 15.36 Mton CO2. However, for the period between
2013 and 2014, 1.13 Mton CO2 was emitted due to the reduced electricity production by
nuclear facilities.

Regarding solar, although New York operates over 58,000 residential PV systems
(Kaatz, 2017) and behind-the-meter solar will continue to expand in New York, in our study
the solar only considers the effect of the “utility-scale.” Electricity generation from rooftop
solar PV is not considered. Between 2010 and 2018, the total CO2 contribution that could
be attributed to utility-scale solar power was 0.16 Mton CO2. Despite New York State’s
high solar potential, the contribution remained limited during the study period due to its
scale. Although solar did not contribute significantly to the emission reduction compared
to other available renewable options, the wind showed a promising progression. Wind
accounted for only 0.01% in 2000, whereas in 2015 it was equal to 2.6% of total generation.
The total emission gain was 2.70 Mton CO2 until 2018.

3.2. The Analysis of NOx and SO2 Emissions from 1990 to 2018

In this study, we also conducted an LMDI analysis on NOx and SO2 emissions. The
change in those emissions are presented in Figures 3 and 4, respectively. According to
annual emission trends, NOx emissions consistently decreased and fallen to 28.89 kt in 2018.
The total NOx emissions of power plants dropped 86% from 1990 through 2018, whereas
SO2 emitted by power plants declined by 98% and reduced to 10.74 kt in 2018. Although
SO2 emissions had decreased substantially throughout the modeling period, there was an
increase from 2000 to 2005, as given in Figure 4a.
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For New York State power sector, the change in the emission factor ∆Ne and the
effect of changes in fossil fuel mix ∆Nm were the primary driving forces contributing to
the downswing in NOx emissions from 1990 to 2018. ∆Nm, covering the impact of fuel
switching toward lower sulfur fuels such as natural gas, illustrates also the magnitude of
emission change due to the effect of Clean Air Act Amendments after 1990. The reason
for this decline was two-fold. First, natural gas was cleaner-burning fuel than coal and
petroleum, and second, natural gas combined cycle plants were typically more efficient
than coal-fired power plants. Especially for the period between 1990 and 2005, we observe
that the change in fuel emission factor effect was the most important driver of the NOx
change. 76.29 kt reduction was due to the change in the emission factor, whereas after 2005
this value of change was equal to 3.27 kt. From 2005 to 2018, it can be seen that fuel mix
change is the most important factor within other drivers as given in Figure 2a.

Between 1990 and 2018, the effect of fossil intensity changes in the generation mix
accounted for 17% of the reduction whereas in the last decade higher penetration of
renewables amplified this ratio approximately to 30%. The changes in total electricity
generation played a minor role in decreasing co-pollutant emissions (less than 3% reduction
in NOx and SO2).

Turning to changes in SO2 emissions from New York State power sector, there was a
sharp decline for the 1990–2018 period. The emission rate of SO2 that belongs to the power
plants in New York State went down under 0.3 lbs/MWh from 6.8 lbs/MWh. However,
the degree of electricity generation, the effect of the change in the share of fossil fuels
to non-fossil-based sources, the effect of changes in the fossil fuel mix, and generation
efficiency effects on emissions differ by period. We found that the highest reduction in SO2
was mainly due to “the effect of changes in fossil fuel mix.” ∆Sm also represents the switch
in the fuel mix toward lower sulfur content. Over the modeling period, aggregate reduction
in SO2 emissions which was driven by ∆Sm was equal to 212.45 kt which accounted for
47% of the negative change.

Furthermore, between 2005 and 2018, ∆Sm was even more influential as 72% of the
reduction was attributed to the change in the share within the fossil fuel consumption.
∆Se also played an important role in inhibiting SO2 emissions. 179.90 kt of SO2 was
driven by the change of emission level per unit fuel consumption whereas ∆Sp and ∆Su
affected the 59.35 kt decrease and the 8.65 kt decrease respectively as given in Figure 4a.
Throughout the modeling period, the effect of generation efficiency, the effect of the change
in the share of fossil fuels to non-fossil-based sources, and the change in total electricity
generation had less influence on SO2 emission changes. From 1990 through 2005, the
desulfurization of electricity generation mainly resulted from the change in emissions factor,
which was due to the declining sulfur content of the coal and the increased installation of
flue gas desulfurization systems (FGD). On the other hand, after 2000, most FGD-based
reduction opportunities had already been implemented, the shift from coal to other non-
fossil fuel-based electricity generation mainly drove additional emission reductions of SO2
for New York State.

Results show that the sulfur content and heat content of the coal also improved over
time, plus coal power plants started installing FGDs, which helped lowering unit SO2
emission levels significantly. From 2010–2018 the change in the share of fossil fuels in fossil
fuel-based electricity generation was still an essential factor in the negative deviation rather
than non-fossil-based electricity generation effect in terms of SO2 emissions.

3.3. The Analysis of the Emission Scenarios

Different scenarios result in different electricity generation mix choices. The impli-
cations of the assumptions in the reference case and Green New Deal scenarios can be
observed through changes in the generation. Figure 5 shows that in the SST, within renew-
able sources, the highest utilization belongs to hydropower, whereas the contribution of
other renewable sources especially solar remains low in the long run compared to other
scenarios. Besides hydropower, nuclear power is also popular as a cost-effective source of
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electricity generation. The use of natural gas is dominating the primary energy supply for
electricity generation in the SST scenario, whereas in both alternative policy scenarios, we
see a decline in natural gas consumption due to the renewable portfolio share target. In
GND and GNDnp scenarios, electricity generation from natural gas is expected to hit zero
by 2040, enforced by the “zero emission” target. Figure 5 also indicates the considerable
reduction in natural gas use in GND and GNDnp even in the 2025–2040 period compared
to the BAU.

Sustainability 2021, 12, x FOR PEER REVIEW 15 of 25 

3.3. The Analysis of the Emission Scenarios 
Different scenarios result in different electricity generation mix choices. The implica-

tions of the assumptions in the reference case and Green New Deal scenarios can be ob-
served through changes in the generation. Figure 5 shows that in the SST, within renew-
able sources, the highest utilization belongs to hydropower, whereas the contribution of 
other renewable sources especially solar remains low in the long run compared to other 
scenarios. Besides hydropower, nuclear power is also popular as a cost-effective source of 
electricity generation. The use of natural gas is dominating the primary energy supply for 
electricity generation in the SST scenario, whereas in both alternative policy scenarios, we 
see a decline in natural gas consumption due to the renewable portfolio share target. In 
GND and GNDnp scenarios, electricity generation from natural gas is expected to hit zero 
by 2040, enforced by the “zero emission” target. Figure 5 also indicates the considerable 
reduction in natural gas use in GND and GNDnp even in the 2025–2040 period compared 
to the BAU.  

 
Figure 5. New York State power sector electricity generation (TWh) in (a) STEADY STATE (SST) 
scenario, (b) in GREEN NEW DEAL (GND) scenario, (c) GREEN NEW DEAL with the nuclear 
phase-out scenario (GNDnp) (Not that distributed solar is not included in the analysis). 

Within non-fossil-based energy resources, offshore wind fulfills the need for electric-
ity resulted from the capacity reduction of nuclear power plants in GNDnp. Hence, we 
observe a 33% increase in the generation from offshore wind in GNDnp compared to the 
GND scenario. Regarding solar, 10 TWh additional generation is expected in 2050 in 
GNDnp. 

The impact of the associated technological choices and the accompanying supply mix 
of the scenarios on CO2, NOx, and SO2 emission levels are depicted in Figure 6. In the SST 
scenario, New York State’s power sector emissions are expected to reach 22.9 Mton CO2, 
whereas, in the GND and GNDnp scenarios, the CO2 emission levels follow a decreasing 
trend since we impose a constraint that ensures carbon neutrality by 2040. In SST, alt-
hough the absolute value of the electricity generation from hydropower and nuclear does 
not fluctuate significantly, the share of electricity generated from those sources is expected 
to drop (for hydropower, from 19% to 14% and for nuclear generation from 32% to 22%). 
Hence, we observe an increase in emissions as given in Figure 6b, f, and j. The emissions 
have been expressed as the respective factor contributions to the total emissions. For SST, 
fossil fuel mix change and the electricity generated from wind provides the highest con-
tributions to emissions reduction. 

On the other hand, according to the MARKAL results, carbon neutrality can be 
achieved with a fuel and technology mix that significantly differs in reference to SST. The 
closure of nuclear power is expected to put an additional burden on the power sector to 
reach carbon neutrality. Hence, the shutting down of nuclear plants requires the replace-
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solar is not included in the analysis).

Within non-fossil-based energy resources, offshore wind fulfills the need for electricity
resulted from the capacity reduction of nuclear power plants in GNDnp. Hence, we observe
a 33% increase in the generation from offshore wind in GNDnp compared to the GND
scenario. Regarding solar, 10 TWh additional generation is expected in 2050 in GNDnp.

The impact of the associated technological choices and the accompanying supply mix
of the scenarios on CO2, NOx, and SO2 emission levels are depicted in Figure 6. In the SST
scenario, New York State’s power sector emissions are expected to reach 22.9 Mton CO2,
whereas, in the GND and GNDnp scenarios, the CO2 emission levels follow a decreasing
trend since we impose a constraint that ensures carbon neutrality by 2040. In SST, although
the absolute value of the electricity generation from hydropower and nuclear does not
fluctuate significantly, the share of electricity generated from those sources is expected
to drop (for hydropower, from 19% to 14% and for nuclear generation from 32% to 22%).
Hence, we observe an increase in emissions as given in Figure 6b, f, and j. The emissions
have been expressed as the respective factor contributions to the total emissions. For
SST, fossil fuel mix change and the electricity generated from wind provides the highest
contributions to emissions reduction.

On the other hand, according to the MARKAL results, carbon neutrality can be
achieved with a fuel and technology mix that significantly differs in reference to SST. The
closure of nuclear power is expected to put an additional burden on the power sector to
reach carbon neutrality. Hence, the shutting down of nuclear plants requires the replace-
ment of this capacity by alternative resource options. This study demonstrates that onshore
wind and offshore wind are steadily replacing nuclear also with the contribution of solar
throughout the analysis period. Surprisingly, this study also depicts that, there exists no
significant change in the electricity generated from hydropower regardless of the available
capacity of nuclear power plants. The contributions of onshore and offshore wind are
expected to be 20.41 Mton CO2 and 13.61 Mton CO2 in GND. However, when the nuclear
capacity is reduced because of the phase-out actions, the total amount of abatement will be
29.47 Mton CO2 and 26.11 Mton CO2 for onshore and offshore wind respectively.
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Consistent with this CO2 analysis, we also observe similar patterns in NOx and SO2
emissions under GND and GNDnp scenarios. The reduction in the electricity generated
by nuclear power is expected to result in an additional 28.5 kt NOx and 17.6 kt SO2. As
nuclear power is expected to be partially replaced by wind and solar, our study points out
that onshore wind will abate 44% and 28% more of NOx and SO2 to dampen the increase
due to the phase-out as given in Figure 4. In comparison, offshore wind is expected to
double its contribution to NOx abatement, which is equivalent to 31.7 kt. Similarly, for SO2
this amount is expected to be 19.1 kt.

The MARKAL model also reports the discounted total system cost, which covers the
endogenously generated fuel and electricity prices, processing and transmission costs, and
the technology level investment, operation, and maintenance costs. To provide a better
understanding of how emission reduction goals affect the power sector, the total discounted
system cost is used to compare the overall price of New York City’s power sector between
different scenarios. Costs are reported in 2005 $US Million and discounted by taking
the inflation rate (5%) into account. The cost results show that there is great variability
between SST and zero-emission scenarios. SST is expected to be $189,599, whereas GND is
projected to reach $252,848. This study also finds that nuclear phase out does not lead to a
significant increase in total system cost. GNDnp is estimated to cost around $262,080 when
considering the New York State expenses solely.
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4. Discussion

We find that carbon emissions in New York State’s power sector are expected to
decrease by 67% between 1990 and 2050 under the SST scenario, with an absolute reduction
of 46 Mton CO2. According to the projections, CO2 emission mitigation goals also have
significant air emissions co-benefits under both GND and GNDnp scenarios.

The fossil fuel mix changes play a crucial role in emission mitigation while switching
to non-fossil-based energy sources and generation efficiency are also dominant factors.
However, the magnitude of those factors’ impacts differs for each period and each emission
type. The LMDI decomposition results indicate that the transformation of the fossil fuel
mix is the strongest driver regardless of the emission type, especially from 1990 to 2018.
However, our analysis reveals that, as a future direction, renewables hold a higher potential
than fossil-fuels in emission mitigation, as shown in Figure 6.

For the analysis of 2018–2050, we calculate electricity generation and related emissions
data by deploying the MARKAL model. The MARKAL model results are included in the
LMDI model to analyze the power sector from 2018 to 2050. We shed light on possible
emission outcomes of the state’s electricity generation transformation. To accentuate the
potential benefits of the net-zero emission target, we also built the SST scenario. For that
purpose, the SST scenario represents the business as usual future of the New York State’s
power sector.

In the SST scenario, as a consequence of the MARKAL model structure, results favor
low-cost energy sources and technologies unless constraints are limiting their usage. Hence,
we observe the cheapest electricity generation mix and resulting emissions under the
SST scenario as given in Table 2. Although renewable energy options show progress in
installation costs, they are still not as cost-effective as the fossil-based counterpart. Hence,
their contribution is limited in SST. Besides the SST scenario, we also demonstrate two
alternative future scenarios to show the impact of nuclear power and renewable energy
alternatives under emission mitigation constraints. Scenario analysis demonstrates an
approximately 40% increase in total system cost in alternative future scenarios in reference
to the SST scenario.

Table 2. Scenario analysis results from 2015 to 2050.

Steady State Green New Deal Green New Deal + Nuclear Phaseout

Aggregate CO2 emissions 220.5 Mton 97.8 Mton 99.0 Mton

Aggregate NOx emissions 80.9 kt 53.1 kt 53.1 kt

Aggregate SO2 emissions 35.0 kt 23.9 kt 23.9 kt

Share of fossil-based
electricity generation 50% 14.2% 16.7%

Share of nuclear-based
electricity generation 18.9% 15.9% 9.3%

Total System Cost 189,599 (Million $) 252,848 (Million $) 262,080 (Million $)

The increasing electricity generation efficiency restrained the CO2 emissions in New
York State power sector, especially between 2000 and 2010. Emission reduction due to Cu
equals 8.1 Mton CO2 during this period, accounting for more than 20% of the aggregate
deviation. Considering the existing generation fleet and the New York State’s Clean
Energy Standard plan, our findings illustrate that efficiency increase is not expected to be a
significant driver of emissions under GND and GNDnp scenarios. Suppose the targeted
renewable penetration is not attained. In that case, our results indicate that efficiency
change will possibly be a significant driver of carbon and NOx abatement, as we observe
under the SST scenario.

Regarding criteria pollutant emissions, although renewables are the central component
of New York State’s Clean Energy Standard plan, they do not have as a significant effect
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on NOx and SO2 mitigation from 1990 to 2018. For those emissions, technical efficiency
gains and installed pollution controls were more influential than other factors included in
the decomposition analysis. The effect of the change in fossil fuel share to non-fossil-based
sources (Sp and Np) did not impact air pollutions as substantially as air regulations and
the change in the fossil fuel mix from 1990 to 2018. The implementation of CAAA resulted
in a rapid reduction of NOx and SO2 emissions until 2005. The biggest trigger of SO2
emission reduction was the shift from coal power plants to natural gas-fired electricity
generation units.

Under GND and GNDnp scenarios, we see a similar pattern in contributing factors.
Because of the extreme penetration of renewable sources, Cu, Nu, and Su turn out to be
essential emission drivers. Hydropower, with its low unit production cost, competes
with fossil-based resources already. Since it generates electricity close to its potential, no
additional significant capacity addition is observed. Hence, hydropower’s contribution
to emissions mitigation is expected to be limited even under the nuclear phase-out. Solar,
onshore wind and offshore wind alternatives exert sufficient downward pressure on natural
gas, and they provide a significant contribution to the emission mitigation actions.

Given the results, one of the most striking findings of the model is that results do
not demonstrate significant changes in the total system cost. The deviation in the total
system cost appears to be limited to 4%. The evidence presented supports that onshore
and offshore wind are very effective generation options in achieving carbon neutrality in
the long run. In summary, when the overall results of these three scenarios are considered,
should nuclear power plants phased out, the electricity generation deficit will be balanced
by the offshore wind technology under extreme decarbonization targets.

The study that we present here has some limitations. It assumes that NYS’s electricity
demand follows a similar pattern with EPAUS9r’s North-East Region electricity generation
from 2018 to 2050 under a business as usual scenario. We assume that all energy-consuming
sectors will follow existing trends without any specific emission reduction targets (no
extreme electrification is expected on the demand side). Accordingly, the impact of extreme-
decarbonization of end-use energy services on electricity demand is not captured.

5. Conclusions

Electricity generation is one of the significant contributors to anthropogenic CO2
emissions. As a response, local governments, including the New York State, are setting
targets to limit CO2 emissions to avert their negative impact on the environment. These
mitigation actions also have air quality implications. The purpose is to identify the drivers
of emissions considering the existing data, but we also aim to show the potential co-benefits
of the State’s CO2 mitigation target. Hence the period of the study is selected as 1990–2050.
We applied two-phased LMDI to identify the underlying factors on the deviation of CO2,
NOx, and SO2 emissions from New York State’s power sector. The analysis between 1990-
2018 relies on the reported data, whereas, for the rest of the analysis period, MARKAL
model results are used in the decomposition analysis. We try to illustrate how NYS’s
electricity generation is realized under alternative scenarios and how emissions and system
costs change concerning those scenarios. While this analysis provides in-depth insights on
each factor type (i.e., technology efficiency, fuel type, emission factors), we especially focus
on renewable energy options and calculate their contributions to exhibit deeper insights
about the emission change as an input for future emission mitigation actions.

The New York State’s total annual electricity generation level did not fluctuate drasti-
cally during the 1990–2018 period, yet power sector emissions declined significantly. The
most important finding of this study is that no unique contributor can provide the highest
benefit for CO2, NOx, and SO2 together for each period in the analysis. The reduced natural
gas prices boost the considerable change in the electricity production portfolio. It provided
a significant contribution in terms of a decline in emission level. Thus, approximately half
of this reduction is due to Cm, the fossil fuel mix change. The same observation is valid
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for SO2 emissions, especially between 2005 and 2018. However, for NOx, the technical
transformation of electricity generation facilities is more important.

Even though significant long-term aggregate abatement potentials exist, short-term
trends (especially after 2000) show impacts at different levels. In terms of NOx emissions,
Nm became ineffective and only covered 7% of NOx reduction after 2005, although it was
also an essential component between 1990 and 2005.

We conduct scenario analysis to explore each non-fossil-based energy resources’ con-
tributions considering the Green New Deal target with and without nuclear phase-out.
Our findings reveal that offshore wind and onshore wind appeared to be the critical factors
of emission mitigation actions. Specifically, offshore wind plays an important role in the
GND scenario with nuclear phase-out replacing retired nuclear power plant capacity cost-
effectively to compensate for the additional need to reduce CO2 emissions. In both policy
scenarios, the State can still achieve its CO2 emission mitigation target with significant air
emission co-benefits. Although solar has the potential to reduce CO2 emissions, compared
with other renewable options, its contribution is limited.

With an increase in electricity demand in end-use sectors such as buildings and
transportation, the power sector has been the primary determinant of broader air and GHG
emissions. As countries, regions, states implement either broader or sectoral emission
reduction targets for air and GHG emissions, more attention should be given to the power
sector’s direct and indirect influence on emissions. Our results imply that the magnitude
of fossil fuel mix change diminishes over time because of the power sector’s switch to
cleaner fuels. We show that, however, there is still room for improvement in reducing
CO2, NOx, and SO2 emissions. Within alternative mitigation options, advancements in
technological efficiency and implementation of air regulations offer the most significant
potential to reduce emissions. Although the study is built upon New York State’s data, the
methodology can be applied, and insights can be extended to other locations.

Abbreviation

Abbreviation Explanation

t Time
T Targeted time
i The type of fuel
j The type of non-fossil fuel
l All non-fossil fuel-based sources

Ct Total CO2 emissions from electricity generation in year t
G The total electricity generation
Q The sum of the electricity generated from all fossil fuels
Qi The total electricity generation from fossil fuel i
Fi Energy input from fossil fuel i
Ci Total CO2 emissions from fuel i

p = Q/G The percentage of electricity generated from fossil fuels
mi = Qi/Q The percentage of electricity generated from fossil fuel i
ui = Fi/Qi The ratio of energy input to electricity generated from fossil fuel i
ei = Ci/Fi Emission factor for fossil fuel i

∆Ctot A total change of CO2 emissions
∆CG The change in total electricity generation effect on CO2 level

∆Cp
The effect of the change in the share of fossil fuels to non-fossil-based sources on
CO2 level

∆Cpj The effect of the change in the share of non- fossil fuel j on CO2 level
∆Cm The effect of changes in fossil fuel mix on CO2 level
∆Cu The effect of generation efficiency on CO2 level

∆Dtot The change in the ratio
∆Ntot A total change of NOx emissions



Sustainability 2021, 13, 265 21 of 23

Abbreviation Explanation

∆Ce The effect of the change in fuel emission factors on CO2 level
∆NG The change in total electricity generation effect on NOx level

∆Np
The effect of the change in the share of fossil fuels to non-fossil-based sources on
NOx level

∆Npj
The effect of the change in the share of non- fossil fuel j on NOx level

∆Nm The effect of changes in fossil fuel mix on NOx level
∆Nu The effect of generation efficiency on NOx level
∆Ne The effect of the change in fuel emission factors on NOx level
∆Stot A total change of SO2 emissions
∆SG The change in total electricity generation effect on SO2 level

∆Sp
The effect of the change in the share of fossil fuels to non-fossil-based sources on
SO2 level

∆Spj
The effect of the change in the share of non- fossil fuel j on SO2 level

∆Sm The effect of changes in fossil fuel mix on SO2 level
∆Su The effect of generation efficiency on SO2 level
∆Se The effect of the change in fuel emission factors on SO2 level
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