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Abstract: Public transportation is a vital service provided to enable a community to carry out
daily activities. One of the mass transportations used in an area is a bus. Moreover, the smart
transportation concept is an integrated application of technology and strategy in the transportation
system. Using smart idea is the key to the application of the Internet of Things. The ways to improve
the management transportation system become a bottleneck for the traditional data analytics solution,
one of the answers used in machine learning. This paper uses the Artificial Neural Network (ANN)
and Support Vector Machine (SVM) algorithm for the best prediction of travel time with a lower error
rate on a case study of a university shuttle bus. Apart from predicting the travel time, this study also
considers the fuel cost and gas emission from transportation. The analysis of the experiment shows
that the ANN outperformed the SVM. Furthermore, a recommender system is used to recommend
suitable routes for the chosen scenario. The experiments extend the discussion with a range of future
directions on the stipulated field of study.

Keywords: time prediction; machine learning; ANN; SVM; shuttle bus; route optimization

1. Introduction

Over the last decade, technology has led intelligent systems, through sensing devices,
to analyze and improve the transportation system. One of the tools used to track the
location of a vehicle is the Global Positioning System (GPS). These devices can be used to
navigate not only in buses but also in airplanes, vehicles, smartphones, and other mobile
devices [1]. In addition, in the past few years, the demand for public transportation
has increased significantly to help people commute. On the other hand, conglomerating
technology such as the Internet of Things (IoT) and the Intelligent Transportation System
(ITS) with the automobile brings both automation and security [2]. Moreover, the ways to
improve the management transportation system become a bottleneck for the traditional
data analytics solution, one of the answers used in machine learning. Machine learning is
a type of Artificial Intelligence and data-driven solution that can meet the latest system
requirements. It learns the pattern of the data collection based on historical data to model
the performance of the system and to respond to make the system automatically run based
on the analytical model. Today, machine learning is becoming popular in the transportation
system to support the robustness of the analysis that focuses on prediction methods.
Moreover, machine learning techniques turn out to be an integral part of accomplishing
the smart transportation system [3] for transportation sustainability. Therefore, to obtain
the best-quality prediction of a shuttle bus, machine learning techniques with a lower error
rate are used in this study. Furthermore, the study illustrates the environmental benefits
using the estimation of fuel consumption and gas emission in the given case study.
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The study of the model is tested on the shuttle bus [4] of the University of Malaya [5],
which is a public research university situated in the center of Kuala Lumpur, Malaysia,
over 309 hectares of land. The University of Malaya is populated with a total of 24,769 local
and international students [6]. The university has a capacity of 12 residential colleges and
one international house for accommodating university students. Most of the residential
arrangements are situated on campus, except for a few buildings. However, around 10%
of students come from outside of the university; approximately 7% of students live in
their own accommodation near the university. On the other hand, the main mode of
transportation in the campus is the shuttle bus arranged by the university. Two of the
shuttle buses go outside of the campus to connect the outside accommodated students.
Alternatively, two different paid public buses provide their services outside of the main
university area (UM Sentral). Moreover, a few students use their own arrangements for
transportation. However, as the prime transportation medium for university students is
the shuttle bus, the sustainability plan for transport is essential, encouraging the current
study.

The main contributions of the paper are as follows:

(1) Robust machine learning algorithms such as Artificial Neural Network (ANN) and
Support Vector Machine (SVM) are used to predict the travel time of the shuttle bus
on a chosen scenario.

(2) The estimation of fuel cost in a preferred period is shown in the study.
(3) Gas emission of the vehicle in a period of time is also considered in this learning.
(4) A range of future scopes is demonstrated to show the path of the upcoming direction

of the stipulated field of study.

The description of all the different acronyms used in this article is listed in Table 1.
However, the rest of the document is designed as per the following pattern. Section 2
discusses the recent related work that aligns with the knowledge of the paper. After that,
Section 3 elaborates on the main idea of the research, which is the optimization of the
bus route using the data analysis. Then, Section 4 elucidates the experimental results and
analysis of the proposed work. After that, Section 5 evaluates the proposed research work
and analyzes the results, followed by the conclusion and future research scope in Section 6.

Table 1. Acronyms and their descriptions.

Acronyms Description Acronyms Description

ANN Artificial Neural Network OSRM Open Source Routing Machine
4G Fourth Generation RM Ringgit Malaysia

AGA Adaptive Genetic Algorithm RMSE Root Means Square Error
CRAN Comprehensive R Archive Network STNN Spatio-Temporal Neural Network

GPS Global Positioning System SVM Support Vector Machine
ITS Intelligent Transportation System SVR Support Vector Regression
IoT Internet of Things USD United States Dollar

MINLP Mixed-Integer Nonlinear Programming UM University of Malaya
OSM Open Street Map Wi-Fi Wireless Fidelity

2. Theoretical Framework of Related Research

In recent decades, the use of artificial neural networks and support vector machines to
analyze the time travel for vehicles has been pursued by many researchers. Jiang [7] used
the methods to predict a whole route and a segment of the bus route travel time based on
three-layer neural networks with a different number of input and hidden units. Moreover,
GPS, real-time traffic, and primary bus information data were used in their experiment.
Additionally, the Mean Squared Error loss function, which indicated the result of positive
and negative errors, was tested in that research. They set training alpha to 0.5, compared
the prior data to GPS data, and achieved a higher accuracy. On the other hand, Jindal
et al. [8] implemented the unified neural network algorithm for estimating travel time for a
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taxi to found the desired model. Additionally, a multi-layer perceptron with two hidden
layers was incorporated in their study. Moreover, the network was trained to minimize
the loss for a large number of epochs. The study showed that the performance of the
Spatio-Temporal Neural Network (STNN) (unified learning) on the dataset could reduce
the mean absolute error of up to 17% for travel time prediction. Alternatively, Junyou
et al. [9] applied a support vector machine for predicting bus travel time to distribute
many random factors such as weather, traffic congestion, and passenger flows. Moreover,
Zhang Junyou et al. [9] suggested that SVM can be used to analyze predictive objects and
predict unknown data or new phenomena. They went on to explain that the SVM has a
high accuracy of learning and generalization. The result of their study was the difference
between actual data and predicted data, with a relative error between −0.5 to 0.5, which is
considered as a low error rate and a high accuracy level. On the other hand, Mingheng
et al. [10] proposed a regression algorithm in SVM, known as Support Vector Regression
(SVR), to predict the arrival time of a vehicle. They showed that the SVR could reduce not
only relative mean errors but also root means square errors in predicting travel time. They
selected the data which had the best portion with no corrupt or missed data. Moreover,
the SVR prediction used the kernel for performance equal to 0.01 and c = 1000, and the
result was very good because it could cover local minima with the predicted error of 5%.
Eventually, the result showed that the ability of the SVR model to be used in traffic data
analysis was significantly outperformed [11]. Recently, Md Noor et al. [12] used the SVR
model to predict the urban bus arrival time and showed a significant prediction ability
with a low average error. On the other hand, Nandy et al. [13] applied the interpolation
model to predict the vehicle arrival time from the statistical dataset. In that study, the
prediction of the vehicle lies within 4 m of the actual location.

Besides the travel time, the optimization of transportation is an essential topic high-
lighted by recent researchers. Wu et al. [14] proposed a mechanism of a control system in a
vehicle using holding and speed control to improve the level of service, while Qin et al. [15]
proposed a route optimization for the emergency services to enhance sustainability, utiliza-
tion, and timeliness. Alternatively, Cyril et al. [16] projected a performance optimization
with the help of a hierarchical process for both the user and resources. Likewise, Leyerer
et al. [17] showed that most of the previous research was focused on the single-tailored
vehicle optimization problem. Therefore, they proposed a customized vehicle routing
problem for road transportation optimization. On the other hand, via vehicle-mounted
GPS systems, large and redundant vehicle trajectory data are continually sent to the server,
creating a variety of sustainable problems such as computation, connectivity, and storage.
To address this issue, Chen et al. [18] proposed an online vehicle trajectory compression
technique facilitated by two phases, namely mapping and compression. Recently, Ciesla
et al. [19] proposed a mathematical model of transport optimization to understand the
mobility demand and multicriteria decision making of passengers.

The cost of fuel rises with the increased number of vehicles on the road. Therefore,
recent trends in transportation sustainability tend toward energy cost reduction in creative
ways [20]. Recently, Tian et al. [21] argued that the fuel monitor platform does not show
accurate data due to interference, noise, and collision errors, though a high-precious fuel
level sensor detects the level of fuel in a vehicle. Therefore, they proposed an effective
and efficient method of repairing and cleaning the data to allow for a more precise fuel
consumption. Alternatively, in research, Dioha and Kumar [22] explained five different
pathways for the Nigerian Transport Sector to reduce energy consumption and gas emis-
sion. The alternative routes are improved fuel economy, carbon tax, modal shifting, fuel
switching, and improved logistics for the period 2010–2050. Alternatively, Hu et al. [23]
proposed a cost-effective energy consumption management strategy to monitor and man-
age the fuel cell/battery ingesting in a vehicle. Recently, Rivera-Gonzalez et al. [24] studied
the energy and fuel demands in Ecuador’s sustainable road transport for 2016–2035. The
result shows that the energy demand for the chosen scenario decreased by 12.14%. On the
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other hand, Yang and Liu [25] presented a mechanical model for the energy consumption
of different vehicles depending upon driving style, road condition, and vehicle types.

Transportation is the backbone of the development of a country because it helps to
make the movement and supply chain smoother. However, transportation produces green-
house gas emissions, which are, in turn, a threat to the environment. Significant research on
the gas emission of transportation has been conducted in the last decades. In 2017, Salehi
et al. [26] proposed a bi-objective mixed-integer nonlinear programming (MINLP) model
to reduce the cost and gas emission from transportation. Alternatively, Llopis-Castelló
et al. [27] conducted a study to observe the CO2 emission under the geometric design con-
sistency on a vehicle. In the same year, Penazzi et al. [28] designed a framework to reduce
transportation carbon discharge to ensure ecosystem sustainability. Recently, Golebiowski
et al. [29] proposed a mathematical model of pro-ecological distribution on a network to
minimize the carbon footprint from a journey. Alternatively, Huang et al. [30] experimented
on large-scale transportation data and established a calculation for energy consumption
and gas emission based on a chosen scenario. On the other hand, Shimizu et al. [31] recently
used techniques called third-generation wireless in-wheel motor in electric vehicles. As the
driving resistance is reduced due to the lightweight of the battery, CO2 reduction is also
condensed. Similarly, Wang and Wen [32] proposed a numerical benchmark test based on
an adaptive genetic algorithm (AGA) to study the low carbon vehicle routing problem. As
a whole, the recent research focuses not only on the cost-benefit and the time complexity
but also on environmental sustainability.

The research on the prediction model of the vehicle timing is growing gradually.
Moreover, a range of studies focuses only on the accuracy of the timing of prediction.
To continue with the journey, this article shows the experimental analysis on the shuttle
bus arrival time based on a case study. Moreover, data analysis and machine learning
algorithms such as SVM and ANN are used. Additionally, the overall fuel cost and the gas
emission are estimated to enhance the understandability of the identified field.

3. Data and Methods

The bus route optimization techniques are discussed in this chapter. Moreover, the
process of data collection and travel time prediction models, optimization for cost, and the
environmental and current system are shown. Additionally, the discussion of datasets and
feature selection procedures are explained in detail.

3.1. System Model

This research tests the effectiveness of the techniques on the University of Malaya
shuttle bus. Therefore, this paper used the route, schedule, and other characteristics of the
aforesaid bus as a case study. To elaborate further, the discussion of the time frame and all
the constraints are given in this part of the paper.

This research analyzed the shuttle bus system in the odd semester from September
2019 to December 2019. Moreover, the analysis only focused on the last learning week
of the semester. However, the research excluded the exam week because the routes were
different from those of the study week. The various routes of the buses are provided in
Figure 1.

The University of Malaya provides five available journeys based on the routes. There
are Bus A, Bus B, Bus C, Bus D, and Bus E. The detailed journey is discussed in the following
section.

Bus A and B have eight shelters to stop at in every service round, and they take 6.64 km
and 5.61 km in total to complete a journey. Moreover, Bus A operates every twenty minutes,
from 07.30 until 21.00 from Monday to Friday. However, there is a break from 12.00 to
15.00 for lunch, prayer, and rest between operation hours. Both routes allow passengers to
commute inside the University of Malaya through several faculties and student dormitories.
Furthermore, Bus C connects the students from outside the campuses. However, the service
hour is a bit different, and the bus operates every thirty minutes, from 07.30 to 21.00. The
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overall distance journey for bus C is 7.44 km. On the other hand, Bus D and E connect
the students to the international house and student dormitories (Kolej Kediaman 9). The
distance for each journey is 7.44 km and 7.19 km for Bus D and E. An average of the yearly
trips, kilometer traveled, and the passengers by all the buses are represented in Figure 2.

Figure 1. University Shuttle bus service route.

Figure 2. Average Yearly Statistics of All the Shuttle Buses of the University of Malaya. (a) Kilometers
traveled, (b) Number of trips, and (c) Number of passengers.

3.2. Research Design

The research on this paper is quantitative. It utilizes the methods of numerical data,
using a statistical approach and analysis of the variable to get the insight. In addition, two
machine learning techniques were applied to predict the travel time and compared the
best prediction with a low error rate of the shuttle bus from the case study. Moreover, the
numerical optimization model was used to identify the cost of operation and production
of carbon dioxide that impacts the environment based on the average travel time. The
independent variable in this study is GPS data, which was gathered from the GPS device
attached to the buses, and the dependent variables are travel time, cost, and environmental
(production of carbon dioxide). Furthermore, the relationship between the dependent
and independent variables is analyzed and shown in this paper. The raw dataset has
13 attributes, and each attribute contains 10,328,710 instances. The available dataset is split
into training and testing datasets for the model in this study.
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3.3. Research Conduct

The GPS coordinate data, along with the time, device id, and speed, is collected
from the GPS device, which is attached to the buses, with five-second intervals. As per
the research requirements, the data were collected and analyzed from September 2019 to
December 2019, within one semester period, in the main route. In addition, artificial neural
networks and support vector regression were used to conduct the research. The research
procedures can be summarized as follows:

i. The data collected from GPS are stored in a MySQL server and converted to a CSV
file to run in the R programming language.

ii. The pre-processed data runs in R Studio and selects the useful data in an appropri-
ate format.

iii. Exploratory data analysis is implemented before conducting data modeling and
feature extraction.

iv. Modeling the training and testing with machine learning techniques for travel time
analysis in the UM shuttle bus.

v. Evaluating the performances based on the result and providing solutions.

3.4. A Detailed Discussion of the Data

This section elaborates on the importance and readiness of data for conducting the
proposed research. Moreover, a thorough explanation of the preparation of the data
for usefulness is shown in this part of the research. The schema for data preparation is
pictorially represented in Figure 3 and the details are clarified below.

Figure 3. The schema for Data Preparation.

3.4.1. Data Collection

All the buses were equipped with GPS devices that populate the location of the bus in
a specific interval. Furthermore, the buses were connected with 4G and Wi-Fi networks
to transmit the data in runtime. However, the data were stored in a memory unit on the
bus for any inconvenience in the network or for backup. On the other hand, the data were
collected in a secure MySQL database with mirror backup. Alternatively, the GPS devices
gathered data only at the scheduled time. The rest of the time, the buses were mostly in
the terminus. A sample of the dataset is presented in Figure 4a. These data were used,
furthermore, to predict and model with two machine learning algorithms: ANN and SVM.

Figure 4. (a) The sample of raw data from the GPS server; (b) A sample of Map Mapping of Bus A.
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3.4.2. Data Pre-Processing

For the pre-processing data phase, the dataset was cleaned up with the dataset man-
agement tool R programming language. A threshold of 20% was measured for missing
data, and the dataset was cleaned based on the cut-off. Moreover, the time was divided
into two categories, namely peak hours (from 08.00 a.m. to 10.00 a.m. and 05.00 p.m. to
07.00 p.m.) and non-peak hours (the remaining period). The next step was mapping the
position of the buses, grouping the collected data based on id, and sorting the timestamps
in ascending order.

3.4.3. Exploring the Data

This part of the study used the Open Street Map (OSM) to map the collected GPS data
with the external real-world map. Map matching is a process used to pair the latitude and
longitude locations detected by the GPS. This process is performed to get the exact distance
in each shelter along the route. The sample of map mapping of Bus A from Open Source
Routing Machine (OSRM) is shown in Figure 4b. Moreover, all the map mapping of the
different buses is provided in Appendix A.

3.4.4. Data Classification

Often the GPS point does not correspond precisely to the shelter’s location. This
can be referred to as GPS error data. This type of error is found when the shelters are
in between the buildings or in a forest. Therefore, the bus location does not appear on
the road, a situation that is known as off-road data. To solve this problem, the degree of
location is reallocated in the GPS to the nearest shelter (see Figure 5). Another type of error
refers to backward data, which are not only off the road but also reveal a location that is
earlier than the previous point. However, as the number of backward data is lower, it is
not significant for the proposed works and is thus ignored. The total number of points is
shown in Table 2. It has been seen that the on-road GPS data amounts to 78.76%, followed
by off-road and backward data among a total of 40,460 data points.

Figure 5. (a) GPS Data Point On-road and Off-road Illustration; (b) GPS point of backward data illustration.

Table 2. Number and percentage of the points based on location and error.

Data Number of Data Percentage

On-road data 31,866 78.76%
Off-road data 6979 17.25%

Backward data 1615 3.99%
Total 40,460 100%

3.4.5. Feature Selection

All the buses populate a data stream with the 13 attributes every time. The attributes
are id, device_id, protocol, server_time, device_time, fix_time, valid, latitude, altitude,
longitude, speed, course, and address. However, only the data that are directly correlated
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with the research are gathered for further use in this study. A well-accepted and standard
feature selection method, the Random Forest, is used to select the most important five
features. The selected features are device_id, fix time, latitude, longitude, and speed.

3.4.6. Model Training and Testing

In this part of the study, the whole dataset was split into two crucial parts: the training
dataset and the testing dataset. Training data are required to train the machine learning
model to learn the pattern of the dataset. Moreover, the learning state of machine learning
helps to improve the prediction of future data. On the other hand, the testing dataset
was used to check the potentiality of the trained model to predict the output accurately.
However, using a large training set makes a model overfit. Therefore, the ratio of the
training and testing data was approximately 1:5, which means that about 20% of the whole
dataset was used as a training dataset. The training and testing of the data were done over
two different machine learning algorithms, namely SVM and ANN, and are described in
detail in Section 4.

3.4.7. Optimizing Input Data

The optimization of the data calculates the travel time for each bus route. Additionally,
the machine learning approaches are used to predict bus travel time. To calculate the travel
time in each direction, we need the data from every shelter. However, it has been seen that
a bus takes more time to reach to the next shelter. The time of the bus at the shelter location
is shown using (1).

Tn = Tn−1 +

[
Xn−1,n

Xn−1,n+1
× (Tn+1 − Tn−1)

]
(1)

where Tn is the GPS timestamp of data in shelter n, and Xn−1,n+1 is the distance between
data n − 1 and n + 1. However, it often happens that no passenger wants to step into the
bus or stop in the shelter, in which case the driver just moves forward to another shelter.

Calculating Off-Road Data

GPS location may send different data points to detect the off-road data point, based
on the GPS data, in a radius of 30 m from the shelter. The point may be different because
the bus may not stop precisely in the bus shelter. On the other hand, the total number of all
bus data points is 40,460, and among them, 17.25% of the data are off-road. Therefore, the
off-road bus data points need to be considered. Figure 6 shows the understanding of the
off-road data, and (8) and (9) demonstrate the calculation of the off-road data.

As per Figure 6, consider two different stops: stop 1 (a1, b1) and stop n(an, bn), where
a1, b1, and an, bn are the coordinates. Therefore, the distance between the coordinates can
be represented as da = (a1 − an) and db = (b1 − bn). Similarly, the slope (m1) between stop 1
and stop n can be shown as (2).

m1 =
db
da

(2)

On the same occasion, the line between stop 1 and stop n is as follows.

y = m1x + c1 (3)

where c1 is the constant, and the value of c1 can be shown as (4) by implementing stop 1
in (3).

c1 = b1 − m1a1 (4)

On the other hand, let the other point be L1 (da, db), and the slope of the line from L1
m2, which is perpendicular to the m1. Therefore, m2 is shown as follows.

m2 = −m1 = −db
da

(5)
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Let the line from L1 touch the line between stop 1 and stop n on L2 (al2, bl2). Therefore,
the line between L1 and L2 is shown as follows.

y = m2x + c2 (6)

where c2 is the constant, and the value of c2 can be shown as (7) by implementing L1 in (6).

c2 = db− m2da (7)

Lastly, the off-road data point L2 (al2, bl2) can be represented as follows.

al2 =
−(c1 − c2)

m1 −m2
(8)

bl2 = m1al2 + c1 (9)

where c1 and c2 are the constant values, and m1 and m2 signify the slops of line 1 and line
2, respectively.

Figure 6. The calculation for Off-road Data Illustration.

Calculating Arrival Time

The arrival time for each bus will be detected by the GPS time when the bus arrives in
each shelter or final destination. When the bus stops at each station, it may consider the
time of arrival of the bus at that station. However, if the bus does not stop in each shelter,
the arrival time in that shelter is the timestamp of the nearest location. Consider the time
in data n as the arrival time at the bus shelter i.

An = Ti (10)

where An denotes the arrival time at bus shelter n, and Ti shows the GPS time of data i at
the nearest location.

Scheduled Time

The assumption of the bus service operation is on schedule. Usually, the bus arrives
10 min earlier at the initial bus shelter, depending on the peak and non-peak hour. The
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schedule of the bus is designed to be finished in 30 min. The calculation of the estimated
time to travel to each shelter based on the schedule is shown by (11).

Tij =
Sij

nij
(11)

where Tij is the estimated time to travel from one point to another, Sij denotes the scheduled
time to travel from shelter i to j, and nij represents the total number of shelters in each route.

The evaluation and recommendation of the data and model, as per the selected case
study, are explained in detail in Section 4.

3.5. Gas Emission

The outdoor air quality is decreasing, and the use of heavy-duty vehicles is increasing
nowadays. In this study, one of the concerns was to calculate and reduce the production of
gas emission for each route. However, unlike many countries, Malaysia is increasing its
diesel standard to more greener alternatives [33]. According to Tang et al. [34], the factor
of gas emissions containing CO2, HC, CO, NOx, and PM2.5 are calculated in Equation (12),
where CO2 Equivalent is the computation from the pollutant gas in (11).

Etotal
m = ∑ EFI,mLHI f I m ∈ { CO2, HC, CO, NOx, PM2.5} (12)

In the equation above, m represents the pollutants from the bus operation system
by estimating the sum of the gas that contributes to pollutant emission. The chart of gas
emission by the buses is presented in Table 3.

Table 3. Gas Emission/CO2 Equivalent.

CO2 Equivalent Gas Emission Generated by Buses (g/mile)

Low 2500
Medium 2800

High 3100

3.6. Cost of Fuel

The fuel consumption based on the study by Yang et al. [35] is for a diesel bus with an
industry production year under 2007. This case fits the University of Malaya shuttle bus
specification. According to the authors, the research provides a fuel consumption model
which is already valid. From the proposed simulation, we used the equation presented
below.

The fuel consumption of a bus depends on many factors, such as the load of the vehicle,
traffic, road condition, and driving behavior of the driver [36]. However, if everything is
under control, the average fuel consumption of a vehicle can be measured [35]. Moreover,
the mathematical comparison of fuel consumption is shown in Equation (13)

Fuel = P × SFC /(ρdiesel × 1000)/DS× 100 (13)

where P is the demand of a diesel engine power (kW), DS denotes the travel distance
journey (km), SFC shows the specific fuel consumption (g/kW), and ρdiesel represents the
density of fuel (kg/L).

3.7. Tools

The tools used in this study are MySql and R programming. MySql was used to
extract the GPS data before its process in R. Firstly, the data were fetched from MySql
using extract and select statement based on one semester period from September 2019
to December 2019. Secondly, the data were exported to a CSV file and executed using R
programming for cleaning, modeling, and predicting. The R Package Coordinate Cleaner
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was used to clean the coordinate data. The neuralnet and e1071 package were used to run
the model for predicting travel time. Moreover, Tableau was used for the final visualization
in this research.

Overall, this section introduces the process and methodology applied in the proposed
scheme. Furthermore, the optimization calculation to calculate the independent variables
in this study is mentioned. Additionally, the estimate of pre-processing data selection of
point data in each shelter is indicated. The results of the experiments and the analysis of
findings are discussed in detail in the next section.

4. Experimental Results and Analysis

In this section, the result of the quantitative analysis based on the processed GPS data
is introduced to explore the shuttle bus travel-time data. This section represents the result
prediction using an Artificial Neural Network model and Support Vector Machine model.
In addition, the calculation of fuel and gas emission is presented in this section.

4.1. Actual Data Analysis Based on GPS Data

The stop point of the vehicles was measured after pre-processing the data components.
Next, we looked at the actual time consumption for each route of the vehicles. Bus A and B
commute inside the campus, and the rest travel to the outside of the campuses. However,
Bus E is free of traffic because of its trajectory.

In this study, the data were explored based on two categories: peak hour and non-peak
hour. The peak hour often impacts the vehicle journey because of the number of vehicles
on-road. The average travel time for each journey is listed in Table 4.

Table 4. Actual Average Time Travel Data.

Bus Route
Time Consumes to Travel Each Route

Peak Hour (sec) Non-Peak Hour (sec)

A 1572.15 1144.50
B 1350.45 1078.43
C 2606.11 1620.33
D 1960.22 1276.29
E 1031.10 785.29

4.2. Analysis Data Based on Artificial Neural Network

The multi-layer perceptron neural network was used to predict the time of the vehicle
movement. In addition, this model was one of the artificial neural network algorithms
used to indicate the travel time to support the intelligent transportation system. Therefore,
the R programming language was applied using the neuralnet package available from
CRAN to execute the prediction.

The hidden layer implemented in all shuttle buses was equal to the reduction of the
biased result. One of the ANN models for GPS data of Bus A is shown in Figure 7.

As per Figure 7, the travel time from one bus stop to another, symbolized as S1 until
S9, was considered as the input data. However, the input depends on the number of stops
for each shuttle bus journey. Consequently, the output layer was calculated based on the
input layer and the hidden layer.

There were nine stops on each journey for Bus A, which fit in three hidden layers.
In this model, 112 steps were built to predict the travel time. The sample size used was
0.70 of the dataset. The set.seed (80) in this model was set to generate different samples to
produce the same sample test when we tried to execute it at an extra time. Additionally,
the same model was implemented in other shuttle bus routes after modeling the result of
different steps. Kindly look at Appendix B for the figures of other shuttle bus route models
of the ANN.
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Figure 7. Artificial Neural Network (ANN) Model for Bus A.

From the model, the next step was to predict the travel time. The dataset of the average
travel time data for 14 weeks after predicting the values for the two categories, peak hour
and non-peak hour, is shown in Table 5. The shortest time travel for non-peak and peak
hours of Bus E were 813.57 s and 1058.12 s, respectively. On the other hand, the highest
was for Bus C when during peak hours. Overall, the data shows that there is a time delay
when the buses operate during peak hours, which is to be expected due to congestion on
the road. The visualization of the predicted time travel data is shown in Figure 8a.

Table 5. ANN Model on Average Time Travel Data.

Bus Route
Prediction with ANN Algorithm

Peak Hour (sec) Non-Peak Hour (sec)

A 1616.37 1164.33
B 1362.23 1043.15
C 2570.39 1675.18
D 1975.22 1306.24
E 1058.12 813.57
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Figure 8. (a) The Average Travel Time in the ANN Model; (b) The Average Travel Time Comparison in the Support Vector
Regression (SVR) Model.

4.3. Analysis Data Based on Support Vector Regression

Support Vector Regression (SVR) is supervised learning that is capable of reading
the classification data, and it is a support vector machine model with the regression or
prediction function. In this study, the data were classified based on the availability of
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destination routes. In this prediction model, the data load used the R programming
language. The e1701 package in R programming was utilized for SVM build-in functions.
In the predicting step, the data were modeled with the available SVR function and mapped
the time travel on each route to the weekly data. The plot from the SVR prediction is
shown in Figure 9a. Based on the plot, the estimated travel time is close to the real data. In
addition, the data provided from executing support vector regression are shown in Table 6
and pictorially represented in Figure 8b. From the chart, it has been seen that Bus C takes a
longer time to reach the destination compared to others. The reason behind the delay of
Bus C is the longest route and traffic congestion. Moreover, the figures for all other buses
are shown in Appendix C.

Figure 9. (a) Support Vector Machine (SVM) Model of Regression for Bus A—the point is the actual data, and the red cross
is the predicted data by SVR; (b) Gas Emission Production.

Table 6. SVM Model on Average Time Travel Data.

Bus Route
Prediction with SVM Algorithm

Peak Hour (sec) Non-Peak Hour (sec)

A 1797.15 1299.50
B 1470.45 1140.22
C 2759.11 1670.45
D 1990.14 1389
E 981.19 765.12

4.4. Production of Gas Emission

The estimation of the bus journey produces the gas emission that is discussed in this
part. According to Tang et al. [34], the gas emission is characterized by three classifications:
high, medium, and low. Moreover, the classifications are based on the fuel used by a
vehicle used and the types of cars. On the other hand, this study estimates the emission
production based on a heavy vehicle, namely a passenger bus. In the university, the shuttle
bus uses diesel for fuel. The gas emission estimates are shown in Table 7 and in Figure 9b.

Table 7. Production of Gas Emission Based on the Category.

Bus Route Distance/Journey (mile)
Gas Emission Produce (g)

High
(3100 g/mile)

Medium
(2800 g/mile)

Low
(2500 g/mile)

A 4 12,400 11,200 10,000
B 3.48 10,788 9744 8700
C 4.62 14,322 12,936 11,550
D 4.47 13,857 12,516 11,175
E 1.77 3627 3276 4425
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As per the chosen case study, the gas emission production comes into the medium cat-
egory as only the green diesel is available in Malaysia from a decade. Therefore, regarding
the estimation of the contribution to pollution and global warming, Bus A will produce,
in each journey, 11,200 g of CO2 Equivalent per mile. Bus B, C, D, and E will produce
9744, 12,936, 12,516, and 3276 g CO2 Equivalent per mile, respectively. The contribution of
each bus has a significant impact on the environment. Furthermore, Bus C has the highest
number of CO2 equivalent contributions, followed by Bus D, A, B, and E. Overall, the
factor affecting the production is the distance and travel time of each journey. The lesser
the distance and travel time, the lower a bus produces the gas.

4.5. Cost of Fuel

The estimation of fuel consumed for each journey must be known to manage the
shuttle bus operation. Moreover, the cost management keeps track of the budget and
prevents over planning. According to Yang et al. [35], the consumption of fuel for the
heavy-duty vehicle is about 0.568 L/km. It is based on the type of vehicle and the year
of production of the bus. The estimation of fuel consumption for each route is shown in
Table 8.

Table 8. The Estimated Fuel Cost for Each Journey.

Bus Route Distance
(KM) Fuel Consumption 1 (Litre) Fuel Cost 2 (USD)

A 6.64 3.77 1.57
B 5.61 3.19 1.33
C 7.44 4.23 1.77
D 7.19 4.08 1.71
E 2.85 1.62 0.68

1 fuel consumption rate 1.758 km/L; 2 diesel price in Malaysia USD 0.42/L.

As per Table 8, Bus A spends USD 1.57 on one journey; however, Bus E needs only
USD 0.68 for each trip. The estimation of fuel provides advantages over the pre-plan, but it
has several disadvantages, such as fluctuation in the fuel price and unwanted congestion
on the road.

Overall, both ANN and SVM run well to estimate the travel time data. However, the
factors observed in this study are that the distance and the peak or non-peak hours affect
the travel time. On the other hand, a linear comparison between the ANN and SVM is
shown in Figure 10. It has been clearly seen that the prediction performance is better in the
non-peak hour dataset. Moreover, the comparison results indicate that the predictions for
Route C and E are near to the actual data. Alternatively, the estimated production of gas
emissions is directly proportional to the time and distance traveled. Lastly, the cost of fuel
consumption for shuttle bus services reflects a similar pattern to that of the production of
gas emission.

Figure 10. (a) Comparison of ANN, SVM and Actual Model for a Non-Peak Hour; (b) Comparison of ANN, SVM and
Actual Model for Peak Hour.
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5. Evaluation and Discussion

The prediction based on SVM and ANN is discussed in detail in this part of the
document. Besides that, the cost-effectiveness and the gas emission contribution from the
vehicles are also presented in this section. Finally, the recommendation of the bus routes is
provided based on the results. All the factors are shown in the following.

5.1. Time Travel Prediction Evaluation

The root means square error (RMSE) is incorporated to demonstrate the performance
evaluation of the prediction accuracy. The model in this study is prepared based on the
calculation of predicted and actual testing datasets, according to Yin et al. [37] and shown
in Equation (14). Moreover, the predicted result evaluation using ANN and SVM is shown
in Table 9. The table shows the evaluation result with RMSE. Moreover, the overall result
demonstrates that the RMSE value in ANN is lesser than that in SVM. To conclude the
result, the smaller amount the best its predicted fit. On the other hand, the shortest distance
point from actual to predicted data is found in Bus A, with the value 9.91 for non-peak
hour classification with the ANN model. The peak hour’s smallest RMSE value is found in
Bus C, at 5.89 with the ANN Model.

RMSE =

√
∑n

i=1
(
ttravel − t̂time

)2

n− 1
(14)

where ttravel is the actual travel time data, and t̂time is the predicted time data.

Table 9. RMSE Comparison between ANN and SVM.

Bus Routes
RMSE (sec)

SVM ANN

Peak Hour Non-Peak Hour Peak Hour Non-Peak Hour

A 112.50 77.50 22.11 9.91

B 60.00 30.90 5.89 17.64

C 76.50 25.06 17.86 27.43

D 14.96 56.36 7.50 14.98

E 24.95 10.09 13.51 14.14

5.2. Cost of Fuel Estimation

The estimation of fuel consumption is calculated for a one-semester shuttle bus op-
eration, covering only the period from week 1 to week 14. However, the exam week is
deliberately excluded due to the different operating hours. The estimation can be useful
for the evaluation of budgeting plans in the future for the shuttle bus operation.

Table 10 shows the cost for a 14-week shuttle bus operation, which is nearly USD 7386.69.

Table 10. Estimation Cost of Fuel in 14 Weeks.

Bus Route Journey/Day Cost of Fuel/Journey
(USD 1)

Cost of Fuel/Day
(USD)

Cost of Fuel/Week
(USD)

Cost of Fuel 14 Weeks
(USD)

A 17 1.57 26.77 133.86 1874.11
B 17 1.33 22.63 113.13 1583.79
C 15 1.77 26.49 132.43 1853.99
D 13 1.71 22.20 111 1554.03
E 11 0.68 7.44 37.19 520.77

Total 7386.69
1 USD = RM 4.14 Where USD is the United States Dollar and RM is Ringgit Malaysia.
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5.3. Gas Emission Production

Transportation is the top contributor to emission production. Furthermore, the envi-
ronmental impact of transport is air pollution. The estimation of gas emission production
for all the journeys within 14 weeks are shown in Table 11. In addition, the medium
category parameter was used to calculate the gas emission in Table 11. It has been seen
that the production of Carbon Dioxide Equivalent, or CO2*, is 52,418,240 g in the total of
all scheduled journeys within these 14 weeks.

Table 11. Estimation of Gas Emission Produces within 14 Weeks.

Bus Route Journey/Day CO2 */Journey
(g)

CO2*/Day
(g)

CO2 */Week
(g)

CO2 */14 Week
(g)

A 17 11,200 190,400 952,000 13,328,000
B 17 9744 165,648 828,240 11,595,360
C 15 12,936 194,040 970,200 13,582,800
D 13 12,516 162,708 813,540 11,389,560
E 11 3276 36,036 180,180 2,522,520

Total 52,418,240

5.4. Bus Route Recommendation

The evaluation result shows that the ANN model is more accurate when compared to
the SVM model based on a historical GPS dataset. However, there is a huge impact on the
production of gas within the stipulated period. Therefore, from the analysis of the result,
the recommendation for bus routes in the observed case study is given below, with the
appropriate motivation.

(1) Combine routes in Bus A and Bus E due to the overlapping route and less crowds.
(2) The journey of Bus A should cut off only until KK10 and turn around to the Faculty

of Languages and Linguistics and continue the trip to KK9 (Bus E routes) to avoid
the redundancy.

To further illustrate this, the proposed new journey is given in Table 12, and a route
comparison is shown in Figure 11.

Table 12. Proposed Bus Route of the Case Study.

Bus Current Route Bus Proposed Route

A

UM Central—KK 3,4&6—Academy of Malay
Studies—KK 8,10 FSKTM—Academy of Islamic
Studies—KK 8,10 FSKTM—Academy of Malay

Studies—PTM—UM Central
AE

UM Central—KK 3,4&6—Academy of Malay
Studies—KK 8,10 FSKTM—Academy of Malay

Studies—PTM—FBL—KK 9—UM Sentral
E UM Central—FBL—KK 9—UM Central

B
UM Central—PASUM—KK 5—Academy of

Islamic Studies—KK 11—KK 12—KK 1—Faculty
of Engineering—UM Sentral

B No change

C

UM Central—PASUM—KL
Hockey—Angkasapuri—Pantai

Permai—Bangsar South—KK 1—Faculty of
Engineering—UM Sentral

C No change

D
UM Central—International House—Rapid

1—Rapid 2—Rapid 3—Rapid 4—International
House—UM Central

D No change
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As per Table 12, there is no change recommended for Bus B, C, and D. However,
merging the routes followed by Bus A and Bus E can reduce a considerable overhead. The
proposed journey will reduce one bus route by combining it with another bus journey.
Moreover, combining Bus A and Bus E reduces the journey distance by up to 15%, which
in turn shrinks the travel time in peak hours by 27.26% and non-peak hours by 28.16%,
respectively. Furthermore, merging these two bus routes has a significant impact on the
environment. The recommended journey reduces fuel consumption, fuel cost, and CO2 up
to 32.57%, 43.55%, and 14.34%, respectively. The detailed description is listed in Table 13.

Table 13. Comparison between the actual bus route and the recommended combined bus route.

Bus Status
Distance

(km)

Travel Time Fuel Consumption
(litre)

Fuel Cost
(USD)

CO2
(g)Peak Hour Non-Peak Hour

A Actual 6.64 1572.15 1144.50 3.77 1.57 11.200

E Actual 2.85 1031.10 785.29 1.62 0.68 3.276
A&E Total 9.49 2603.25 1929.79 5.39 2.25 14.476

AE Recommended 7.99 1893.36 1377.58 3.07 1.27 12.400

The recommendation of the merged route is based on several factors, such as distance,
travel time, fuel consumption, overall fuel cost, and gas emission reduction.

A constant apprehension about environmental changes, soil, renewable energy, clean
water, and breathable air brings sustainability and, more importantly, sustainable planning.
Likewise, the overall discussion in this section refers to sustainable transportation planning.
From the case study, it has been clearly seen that the estimated time of operation of a
vehicle depends on many factors such as traffic congestion, timing, vehicle frequency, and
road condition. However, most of the essential elements, such as peak hours and non-peak
hours, are taken as a consideration for time calculation using machine learning algorithms.
On the other hand, the two prime and most useful machine learning approaches are used
in the study. The result of RMSE in Table 9. shows the best and worst prediction analyses
on the stipulated university case study. Likewise, Table 10 represents the fuel costs of the
14-week period for all the buses individually. Though the distance and congestion of Bus A
and Bus C are different, the frequency of Bus A is greater than that of Bus C. Therefore, the
fuel consumption of Bus A and Bus C is almost the same as the more significant number.
Alternatively, as the journey of a vehicle increases, the fuel consumption and gas emission
level rise. On that occasion, the gas emission of Bus A and Bus C is high, followed by Bus
B, Bus D, and Bus E. Finally, the recommendation of the bus routes is justified with the
consideration of all the resultant outputs.
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On the other hand, though the discussed techniques and operations are tested on a
specific scenario, namely the university shuttle bus, the model can be used in any context.
The study can be reproduced to predict operation time, cost estimation, and gas emission.
Alternatively, the replication of the model may not be directly applicable. Several other
factors, such as the variation of fuel cost, environment policies, road conditions, and
traffic condition, may need to be included in the existing model to be more precise on the
prediction, which may also constitute a limitation of the proposed model. On the other
hand, as the stipulated campus size is gigantic, two more paid public buses are available to
enable the outside campus students to connect with the university. Alternatively, all the
outdoor buses’ main focus is to connect to the UM central (University of Malaya center
point), as the students can then take free shuttle buses, which can take them to every
different place in the university. On the other hand, merging the recommended vehicles
can save time as well as significantly reduce the costs and gas emission, which benefits
passengers and can help managements to promote environmental sustainability.

6. Conclusions and Future Work

The use of computers has contributed a lot to the art of transport planning over the
last three decades. Some new methods, which take human activity into account, have been
applied to the tools of transport planners, in addition to acquiring the ability to create more
complex models to analyze collected data. High computational systems make it easy for the
decision planner to establish increasing precision quickly. Likewise, modern approaches
such as artificial intelligence, neural network, and computer vision help transportation
decision-makers to convert mono-solutions to a set of multi-solutions. The main objective
of this research was to study the ANN and SVM to predict travel time, fuel consumption,
and harmful gas emission. Moreover, the experiment was conducted during a semester—
except for the exam period, due to the different schedule times and routes. Furthermore,
the RMSE result showed that the ANN model performed well compared to the SVM
Model. In addition, the overall result showed that the cost of operation and gas emission
production for one learning week was USD 7386.69 and 52,418.240 g, respectively. Based
on the results and analysis, a suitable recommendation was made on the bus routes to
enhance the quality of service.

Although the model was tested under a specific scenario, namely a university shuttle
bus, the model can be replicated in any other context to promote urban sustainability.
However, the research found some limitations, which should be overcome and suggest
future work. The research was conducted during the learning weeks, 1 to 14, except
for the study break and exam weeks. The experiment could be extended to the whole
year, including all the factors to make more accurate predictions. On the other hand,
several other factors, such as road condition, traffic congestion, dynamic fuel pricing,
transportation policies, or weather conditions can be examined in the model to make a
more precise decision. To conclude, the study has a substantial impact on the environment
and society by estimating the travel time, fuel cost, and gas emission rate, which not
only can be implemented on the shuttle bus also on other service vehicles to ensure
transportation sustainability.
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Figure A5. Artificial Neural Network Model for Bus B with 116 steps.
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Figure A6. Artificial Neural Network Model for Bus C with 121 steps.

Figure A7. Artificial Neural Network Model for Bus D with 112 steps.
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Figure A8. Artificial Neural Network Model for Bus E with 128 steps.

Appendix C

This section of the document demonstrates the figures of the experimental results of
the support vector machine models on different buses in the chosen case study.

Figure A9. SVM Model of Regression for Bus B.

Figure A10. SVM Model of Regression for Bus C.
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Figure A11. SVM Model of Regression for Bus D.

Figure A12. SVM Model of Regression for Bus E.
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