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Abstract: The provision requirement of 10% openings of the total floor area stated in the Uniform
Building By-Law 1984 Malaysia is essential for natural lighting and ventilation purposes. However,
focusing on natural ventilation, the effectiveness of thermal performance in landed residential
buildings has never been empirically measured and proven, as most of the research emphasized
simulation modeling lacking sufficient empirical validation. Therefore, this paper drawing on field
measurement investigates natural ventilation performance in terraced housing with an air-well
system. The key concern as to what extent the current air-well system serving as a ventilator
is effective to provide better thermal performance is to be addressed. By adopting an existing
single-story air-welled terrace house, indoor environmental conditions and thermal performance
were monitored and measured using HOBO U12 air temperature and humidity, the HOBO U12
anemometer, and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter for a six-month duration.
The results show that the air temperature of the air well ranged from 27.48 ◦C to 30.92 ◦C, with a
mean relative humidity of 72.67% to 79.25%. The mean air temperature for a test room (single-sided
ventilation room) ranged from 28.04 ◦C to 30.92 ◦C, with a relative humidity of 70.16% to 76.00%.
These empirical findings are of importance, offering novel policy insights and suggestions. Since
the minimum provision of 10% openings has been revealed to be less effective to provide desirable
thermal performance and comfort, mandatory compliance with and the necessity of the bylaw
requirement should be revisited.

Keywords: air shaft; solar chimney; air well; field measurement; natural ventilation; tropical climate;
terrace house; passive cooling design

1. Introduction

Natural ventilation occurs when pressure differences generated by wind or buoyancy
forces undertake at single or multiple openings in the building envelope. It is an important
and significant sustainable building design strategy for human being as one of the basic
living environment criteria [1–5]. Following the Malaysia Uniform Building By-Law 1984,
the requirement of provisioning a minimum of 10% of the total floor area of residential
and business spaces has to be fulfilled in order to secure approval and commence a
construction process on the ground. A similar requirement has been stated in the Building
and Construction Act of Singapore as well as in other countries such as Australia and some
other Commonwealth countries. Hence, it is plausible that natural ventilation is important
and necessary to be included as a habitable building design strategy under circumstances
when a mechanical ventilation system is unavailable.
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In Malaysia, terraced houses have a limited amount of exposed building envelope
due to the constraint of design layout with adjacent party walls. Such constraints have
limited the natural ventilation strategy to be applied on the external fenestration. Hence,
mechanical ventilation systems have become the choice of occupants in a terraced house
as a substitution to manage air quality and indoor ventilation and subsequently solve the
thermal comfort problem. However, mechanical ventilation systems require high electricity
to run. For instance, in some cities, air-conditioning requirements take the full capacity of
electricity grids [3,6]. According to Toe and Kubota [7], final energy use in residential and
commercial sectors in Malaysia increased more than sevenfold between 1980 and 2007, at a
higher rate than the total amount of energy-demand growth rate, based on the Ministry of
Energy, Green Technology, and Water National Energy Balance 2007 report. In residential
buildings, a large portion of electricity consumption was attributed to air-conditioning
systems, as the ownership of air-conditioners expanded from approximately 12,000 to
764,000 households from the 1970s to the 2000s [7,8].

In recent years, the natural ventilation topic has attracted growing interest due to
its potential benefits over mechanical ventilation systems in terms of economic, energy
consumption, and environmental advantages [6]. There were also some trials to enhance
the performance of natural ventilation by using renewable energy, whereas some authors
have categorized it as hybrid ventilation [5]. This has proven that natural ventilation is
widely researched for the purpose of achieving a reduction in the use of air-conditioning
systems. An application of natural ventilation to provide thermal comfort is a sustainable
approach because the method applied uses renewable energy resources, such as solar
energy, and hence minimizes energy consumption in buildings [9].

The thermal performance of an indoor environment under a hot climatic condition
is highly affected by various passive design techniques, for instance, space dimensions,
facade colors, fenestration ratio, and glazing type, and vertical and horizontal shading
devices [10]. The principle of an air-well effect is based on the combination of both solar-
assisted stack ventilation as well as wind-driven ventilation. That is, solar heating causes
hot air to rise, and due to the light density of the hot air, it escapes from shaft outlets.
Meanwhile, the cooler air withdraws into the indoor environment from fenestrations via
the pull effect complemented by the push effect from the outdoor environment [2,5,11]. In
the past decades, much research was conducted on ventilation shaft configurations and
strategies to improve a ventilating system: for instance, the improvement of solar chimney
performance by using different types of glazing; increasing the air gap, width, depth, and
height of the solar chimney; integrating the Trombe wall with a roof solar collector; and
changing the inclination angle of the solar chimney [12–16].

Most of the above research regarding ventilation strategies was mainly focused on
simulation methods, although some studies adopt and justify their simulation methodology,
which is sufficiently deemed accurate and valid, and some have been conducted specifically
on ventilation shafts focusing on the courtyard, solar chimney, and Trombe wall of domestic
residential buildings [6,17–26]. However, due to data collection constraints in obtaining
real data, only a few were validated with field measurement results. In other words, there is
still a lack of empirical field research conducted, specifically investigating the effectiveness
and impact of an air well (as a ventilator), especially in a tropical climate country such as
Malaysia. More precisely, albeit the importance of natural ventilation is emphasized as it
is also part of the legal requirement of the bylaw to provide the minimum percentage of
opening (10% of total room floor area), the workability or practicality and effectiveness in
terms of thermal performance of the minimum amount of the opening imposed (i.e., an air
well) is still unknown because so far no single empirical research has been carried out in
this regard. In Malaysia, terraced houses dominate the overall property record. According
to the Summary of Property Market Report 2019, under the section of Overall Performance
of Malaysia’s Property Stock, Planned Supply and Incoming Supply, residential property
recorded the highest figure of 5,727,814 units, followed by shops recording 526,079 units
and service apartments with 253,056 units. Of the more than five million units of residential
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types that were built, terraced houses comprised 40.9%, or 85,669 units, compared to other
residential types, such as high-rise, vacant plot, semi-detached, or detached houses [27],
Since terraced houses are dominant in Malaysia, primarily using an air-well system, it
is therefore vital to understand the current ventilation and thermal performance of the
existing room via field measurement. More importantly, the key concern as to what extent
the current air-well system serving as a ventilator is effective to provide high thermal
performance in a single-story terraced house is to be addressed.

This paper is novel as it adds value in several ways. Aside from providing theoretical
insights on how the configurations (e.g., position, size, height, and shape) of an air well
affect its ventilation performance, it primarily contributes methodologically via various
data collection (i.e., step-by-step setting up of equipment) and analysis techniques, as
well as empirically (a detailed case study via a field measurement analysis on the thermal
performance of an air-well system), which hence provides pragmatic policy implications
not only to the Malaysian housing architectural and construction fields but also to other
parts of the world. This means that the significance of the thermal performance of the
air shaft terraced house could be studied more extensively in the future based on the
current field measurement results. In addition, this study is in line with the Sustainable
Development Goals (SDG), since governments and all the agencies from profit or non-
profit organizations are committed to achieving the goals in order to reduce urban energy
consumption to 80% of global energy. Since buildings account for 40% of total energy
consumption, designs of an energy-efficient building in passive designs (natural ventilation)
could make a significant contribution to meeting SDG 11 and SDG 13 on climate action [28].

The remainder of the paper is structured as follows: Section 2 continues with a
literature review that focuses on the effectiveness of the ventilation shaft and an empirical
study of its thermal performance. Next, Section 3 discusses the methodology highlighting
empirical field measurement techniques in terms of data collection and analysis, which
were executed on the selected case study of a single-story terraced house. Section 4 presents
empirical results and discussions on the thermal performance of an air well within the
terraced house’s test room. Lastly, Section 5 concludes by summarizing key findings
(takeaways) and suggesting future research based on several limitations. In this paper,
the terminology of “air shaft,” “air well,” and “solar chimney” are used interchangeably
subject to different contexts, but essentially they entail the same thing.

2. Literature Review
2.1. Terraced Houses with Air-Well Systems

Prior to discussing how an air-well system vitally works as a ventilator for improved
thermal performance in a residential building, a description of a terraced house is provided.
In Malaysia, a typical single terraced house unit consists of a built-up area of 60 to 65 square
meters with 6.5 m of front width and 11 m in length. A terraced house is usually sandwiched
by two sides of party walls with minimum front and rear widths exposed to the external
environment. The Uniform Building By-Law 1984 (UBBL 1984) states that a terraced house
could be referred to as any residential building that is designed as a single dwelling unit,
and forms part of a terrace of not less than three such residential buildings [29]. Terraced
houses usually have a narrow frontage, and the party walls are shared with adjacent
houses [30]. Internal partition walls within the narrow terrace housing layout define living
spaces, such as living room, bedrooms, utility, bathroom, and kitchen. Thus, an air well
could be used in one those spaces, and it is a typical feature in a traditional shophouse in
Malaysia. It provides natural daylight and ventilation to the internal space. It is a vertical
shaft or opening penetrated from roof to floor, connecting the internal space to the open sky.
However, the size of an air-well opening is huge, which would lead to security issues. Thus,
the feature has been replaced with an atrium or elevated clerestory in modern terraced
houses. In order to improve thermal performance in terraced houses, air wells have been
modified to solar chimneys, following Malaysian building regulations and thus keeping
the house secured. Most of the time, the air well in a modern terraced house is located in
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the intermediate room, utility room, or bathroom, as shown in Figure 1 [31]. It is the most
versatile feature of traditional row houses, where the number of air wells may range from
one to three or four based on the length of the house [32].
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In general, the UBBL designates minimum requirements for openings in walls to
induce natural ventilation and daylight. The purpose of the opening requirements is
to enhance natural ventilation in enclosed spaces and ensure that windows or openings
are able to protect the indoor occupants from direct exposure to rain and the sun. The
requirements stated in the UBBL are not specified in terms of dimension, design, or position,
thus allowing a certain degree of architectural design flexibility and creativity. Other than
the UBBL, the Malaysian Standard MS1525:2007 [33]—Code of Practice on Energy Efficiency
and Use of Renewable Energy for Non-Residential Buildings and the Malaysian Standard
MS2680:2017 [34]—Code of Practice on Energy Efficiency and Use of Renewable Energy
for Residential Buildings have further specified guidelines with respect to thermal and
visual comfort, building design, and energy efficiency. Ultimately, the standards could be
complemented with the UBBL provisions, which are crucial to be used as a design reference
for architects.

2.2. Natural Ventilation Strategies via an Air Shaft

In general, there are two types of ventilation strategies, namely, cross ventilation and
single-sided ventilation [11,35]. Mohit and Mahfoud [36], via a survey, found out that
especially double-story terraced houses could not satisfy occupants’ needs for thermal
and natural lighting comfort. Thus, most of the occupants opt for mechanical ventilation
systems to solve the ventilation problem [7]. Meanwhile, based on Nugroho study [18],
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preliminary study using a field measurement on thermal comfort in a single-story terraced
house in the context of Malaysia, it is revealed that the design of the single-story house
in Malaysia is insufficient and not effective in providing thermal comfort through natural
ventilation. This is due to the fact that the single-sided ventilation system in the test
room (master bedroom of the terraced house) reduces its ventilation effectiveness. By
virtue of this, it is crucial to propose a solar chimney or air well to induce and enhance
natural ventilation.

The effectiveness of a solar chimney as a passive cooling tool to improve the indoor
thermal conditions in hot, humid climates has been proven in several studies, including
the ones conducted in a tropical climate [2,20,37]. Findings show that the application of a
ventilation shaft in buildings could enhance natural ventilation. For example, based on
an experimental study conducted on a single-story terraced house in Malang, Indonesia,
using a solar chimney cum vertical landscape, it was found that the mean air temperature
of the indoor environment was within the acceptable comfort range. A combination of both
a solar chimney and a vertical landscape could reduce the use of a mechanical ventilation
system in domestic buildings and simultaneously provide a natural passive cooling effect
to the indoor environment.

There are several ways to address the problem of thermal comfort in terraced houses,
and one of them is replacing an air well (with bigger shaft geometry) with a solar chimney
(with smaller shaft geometry) [31]. In a hot, humid climate, a solar chimney can provide
both thermal comfort and natural daylight for a terraced house. As for the purpose of
better thermal performance, a solar chimney, widely applied as a natural ventilation tool,
can help induce the air movement, via air-pressure and air-temperature gradient from the
inlet of a building, and pass through the occupied zone. The cool air will replace the hot
air via air convection, and the hot air will be released through the solar chimney outlet due
to temperature differences [37]. A solar chimney is basically composed of glass, enclosed
extruded concrete walls, an absorber, and an air gap. The concept of applying solar
heat gain to generate passive cooling has been receiving more attention by designers and
researchers, especially in hot climate regions. There have been various studies attempted
to promote and improve a solar chimney’s thermal performance, in which they specify its
application based on climatic conditions, building types, and other controlling factors such
as inlet and outlet configurations, materials, room depth, and forms.

Wei et al. [38] studied a series of connected solar chimneys on roofs with inclination
angles as well as a vertical section facing the south wall. In their findings, the optimal
ratio of length to width was found to be 12:1, and the optimal inclination angle to be 4◦

via mathematical modelling. In another case, Amori and Mohammed [39] investigated
the effects of integrating the phase change material (paraffin) with a solar chimney on
its thermal behavior. Computational fluid dynamic (CFD) analysis was used to predict
thermal performance as well as the two-dimensional fluid flow. The findings show that
the phase change material extended the ventilation hours at nighttime by discharging the
stored energy from 13:00 h to 22:00 h for 9 h. In addition, in one of the old studies, N.K.
Bansal et al. [40] developed a numerical model consisting of two main variables, i.e., sizes
of the openings of the solar chimney and the values of the discharge coefficient, for a solar
chimney in order to enhance the effect of thermally induced ventilation in buildings.

The findings show that the air velocity of 140 m3/h to 330 m3/h was induced by the
solar radiation of 200 W/m2 and 1000 W/m2, respectively, with 2.25 m2 solar collector areas
in the solar chimney. Moreover, based on the fundamental numerical model incorporating
height and diameter variables, the optimum solar chimney configurations for the case of
Tehran should be as follows: a collector inlet of 6 cm, a solar chimney height of 3 m, and
a solar chimney diameter of 10 cm, where the velocity of air could speed up to 4 to 25%
in different cases [41]. Based on Mathur et al.’s [14] results considering a solar chimney’s
depth and the inlet height as key parameters, the air change rate is found to increase with
the depth of the solar chimney, and was in direct proportion to the solar irradiance. In the
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context of a high-rise building, a thermal comfort study was carried out by experimenting
with a combination of both a solar chimney and a wetted roof [42].

The literature above on the effect of a solar chimney or air shaft on thermal comfort,
though mostly experimental (based on simulations and prototypes) and conducted in the
settings of multiple-story buildings, are adequately valid for us to conclude that an air-well
system is vital to function as an effective natural ventilation tool, especially with the right
combinations of configurations in a building. Therefore, to fill in the existing knowledge
gaps, an empirical field measurement study is necessary in this paper.

3. Methodology

This methodology section mainly discusses data collection and analysis techniques
and procedures involved in the field measurement, which was carried out in the single-
story air-welled house located in Kuching, Sarawak, Malaysia. However, prior to that, the
next subsection provides justifications of the how the case study of a single-story terraced
house with an air well was selected.

Selection of Case Study House

The selection of the terraced house type as a case study was based on the terraced
house classification data. The classification, presenting four types of single-story ter-
raced house and five types of double-story terraced house layout plans, is provided in
Figure 2 [43]. The classification samples, based on 219 floor plans focusing on the internal
layout and total floor area (gross floor area), cover the earliest modern terraced houses
as well as new terraced houses from 2012–2016. From the classification chart (Figure 2),
the case study house was classified as having the common typological layout of terraced
houses with total floor area ranging from 85 to 90 m2. Having said that, although some
variations of layouts may be observed, we believe that they may not significantly influence
an air well’s thermal performance and thus that the selected terraced house could be fairly
represented as a typical case study building for a stack ventilation study [20].
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Since the study is to understand the thermal performance of the existing room with
single-sided ventilation, it is a 1:1 full-scale model. To perform this field measurement, a
terraced house located 5.65 km to the west of the city of Kuching, Sarawak, East Malaysia,
was selected as a case study (see Figure 3). In short, the field measurement was carried out
to understand the following existing conditions of the typical single-story terraced house
in terms of:

• Outdoor weather conditions in Kuching, Malaysia;
• Thermal performance of the test room with a single-sided opening;
• Thermal performance of the test room attached to the existing air well; and
• Thermal performance of the air well.
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Figure 3a,b illustrate the case study house, where the house frontage faced north,
sandwiched by two party walls on both sides. The total walled-up floor area of the house
was 84.6 m2, with an elongated length of 14.1 m and width of 6 m. There were three
bedrooms in the house. Bedroom 1 and Bedroom 2 were attached to the air well, while the
master bedroom was a single-sided opening room facing north. In this scenario, Bedroom
2, with a total floor area of 12 m2 and a ceiling height of 3 m, was selected as the test
room since its end wall was attached to the air well, and the opposite wall openings faced
the external environment. The study focused on the test room and the air well only (see
Figure 3).
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The field measurement was carried out from 3 January to 29 June 2014 (178 days) at a
single-story terraced house in Kuching, Sarawak, Malaysia. Although the dataset seems to
be rather old, the validity of the data collected can be justified in Figure 4, summarizing
the variation of 10 years of climatic data in Kuching, Sarawak. In short, the measured data
were valid as the deviation range of the air temperature was deemed insignificant and was
quite consistent during the period. Literature has supported that, where there was a very
slight variation of average air temperature within the 10-year period, with an increment of
0.39 ◦C from 2005 to 2015 [44]. Based on the 30 years (2005–2040) forecast study, recorded
by the Malaysia Meteorological Centre, the air temperature rises linearly within the range
of 26.00 ◦C to 28.50 ◦C. According to the 10 years of climatic data from Kuching, Sarawak,
from 2006 to 2019, the average annual outdoor air temperature ranged from 26.20 ◦C to
27.30 ◦C, whereas the annual mean maximum air temperature ranged from 31.30 ◦C to
32.5 ◦C. At the same time, the annual mean minimum air temperature ranged from 22.9 ◦C
to 23.8 ◦C, and the average wind speed ranged from 5.90 m/s to 7.00 m/s. The differences
between the maximum and the minimum for the average annual temperature from 2006 to
2019 was 4.03 ◦C, whereas the differences between the maximum and the minimum for the
annual average maximum temperature throughout the years was 3.69 ◦C (see Figure 5).
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After justifying the validity of the segmented data used, next, descriptions of the
case study are provided. That is, a 3.0 m × 3.0 m bedroom, with a floor-to-ceiling height
of 3.0 m, consisting of external windows and opposite wall attached to an air well was
installed with experimental instruments. The measured data include air temperature and
humidity. All measurements were auto-logged at 15 min intervals. The measurement
was carried out in a free-running non-air-conditioned test room. The measured test room
was not occupied by any occupant, and the operable window was open fully 24 h for a
week. During the field measurement, the test room door was closed all the time. The
measurement instruments used in this study are summarized in Table 1.
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Table 1. Purposes of field measurement instruments used.

Space Data Type Equipment Setting Positions of
Equipment Descriptions

Bedroom 2 (test room)

Air temperature
Relative humidity
Globe temperature

Air velocity, Predicted
Mean Vote (PMV) and
Predicted Percentage of

Dissatisfied (PPD)

Delta Ohm HD32.3
1.50 m from the floor
level, in the center of

the room

Purpose: to understand
the current thermal

performance of
residential rooms in
Kuching, Malaysia

Air well Air temperature
Relative humidity

HOBOware U12 air
temperature and

relative humidity data
logger, and HOBOware

U12 air velocity data
logger

Upper air well: 3.0 m
from the floor level,
lower air well: 1.5 m
from the floor level

Purpose: to investigate
the thermal

performance of the
upper and lower

air well

Outdoor

Air temperature
Relative humidity

Solar radiation
Wind velocity
Wind direction

HOBOware U30
weather station

2.0 m from the
floor level

Purpose: The results of
the measurements were
taken as a controlling
factor and compared

with the thermal
performance of the
indoor environment

4. Results and Discussion

Generally, this section discusses the overall field measurement results, including
three primary components, namely, (i) outdoor microclimatic weather analysis, and (ii)
the thermal performance of the test room and (iii) the air well. For the outdoor climatic
analysis, results of selected days (i.e., the hottest and coldest days throughout the period)
are reported, in which the measured outdoor data were compared with the meteorological
data. The purpose of such a comparison is to verify the trend of air temperatures and
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humidity during normal days, hot days, and cold days. Meanwhile, the former were also
compared with the indoor measured data comprising the air temperatures and humidity
of the test room and the air well.

4.1. Selected Hot Days (10 to 24 June 2014)

Selected hot days throughout the measurement period were chosen based on the
maximum mean air temperature. According to the dataset, 10 to 24 June 2014, marked
the hottest week throughout the second quarter of 2014. The total measurement results
ranged from 23.94 ◦C to 42.99 ◦C. The average air temperature was 27.88 ◦C according to
the measured data; hence, the selected week was above the average air temperature. The
hot days occurred around May to June, due to the Southwest Monsoon season. The hottest
air temperature obtained throughout the field measurement was 42.99 ◦C on 19 June at
17:00. The mean air temperature for the selected days ranged from 27.81 ◦C on 13 June to
33.55 ◦C on 19 June 2014. The average deviation of the mean air temperature between the
field measurement and meteorological data for the selected days was 2.07 ◦C.

According to the meteorological data and measured data during the hot period (10
June to 24 June 2014), the minimum temperature difference was 0.51 ◦C on 13 June 2014,
whereas the maximum temperature deviation was 3.14 ◦C on 19 June 2014. The minimum
difference of 1.84% and the maximum difference of 9.35% between both measured and
meteorological data show that the differences were insignificant for the extreme hot days.
On the other hand, the average relative humidity for the selected hot period was marked as
91.41%. The relative humidity was inversely proportional to the air temperature, meaning
that the highest mean air temperature day (19 June 2014) was recorded as the lowest mean
relative humidity day with a value of 66.24%, whereas the lowest mean air temperature
day (13 June 2014) was marked as the highest mean relative humidity day with a value
of 86.34% throughout the selected hot period. In order to understand the temperature
variation of the hot day, 19 June 2014, was selected to be analyzed because it was the hottest
day during the measured period.

According to Figure 6, the selected hot day was the hottest day throughout the
study period with the highest air temperature of 42.99 ◦C at 5:00 p.m. Even though the
temperature difference between the two sets of data at the hottest hour was recorded as
24%, which was the highest deviation, the variation pattern for both sets of data fluctuated
at a similar rate. At 5:00 p.m., the meteorological data of the air temperature were recorded
as 32.7 ◦C, which was one of the highest air temperatures throughout the day. The deviation
of air temperature ranging from 0.115 ◦C at 3:00 a.m. to 10.292 ◦C at 5:00 p.m. was 10.117 ◦C
different between the maximum and minimum deviation values. This indicates that the
existence of variations is accepted since the fluctuation patterns were within the same
direction and range. In the relative humidity context, the overall mean relative humidity
of the selected day was 66.24%, with the highest value recorded as 90.8% at 6:00 a.m.
and the lowest value 35.75% at 7:00 p.m. The impact of a hot day would directly cause
thermal discomfort to the occupants since the heat gain from the outdoor environment was
transmitted via radiation, convection, and conduction of the air and building material to
the occupants. The analysis of the hot day could predict the air temperature for the indoor
environment and refine the solution to reduce the thermal discomfort of the occupants.
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4.2. Selected Cold Days (11 January to 24 January 2014)

After analyzing the selected hot day condition for the case study house, an analysis
for the cold days is important to be done to understand the microclimate for the case study.
The cold days happened between the end of December and early February, which was
the peak season of the Northeast Monsoon that tends to cause a heavy rainfall. Figure 6
shows that from 11 January to 24 January 2014, the field-measured mean air temperature
ranged from 23.94 ◦C, which happened on 24 January 2014, to 26.66 ◦C on 19 January 2014.
Throughout the field measurement period from 3 January to 29 June 2014, the lowest mean
air temperature happened on 5 February 2014, with 19.57 ◦C, and the most frequently
occurring mean air temperature below the overall mean air temperature was 24.73 ◦C.
Hence, the selected period to represent cold days possessed a mean air temperature ranging
from 23.94 ◦C on 24 January to 26.66 ◦C on 19 January 2014.

The average deviation of the field measurement data and weather data was 1.02 ◦C,
which is considered acceptable and insignificant. The highest deviation mean value
throughout the selected cold days was 2.15 ◦C on 20 January 2014, where the weather sta-
tion showed 26.17 ◦C and the field measurement was 24.01 ◦C. The massive and dynamic
atmospheric circulation occurring in the spacious flat topography caused the weather
station data to have a lower air temperature compared to the case study field measurement.
The lowest deviation value was 0.11 ◦C (which was 0.43%) on 14 January 2014, with a field
measurement value of 25.73 ◦C and weather data of 25.85 ◦C.

The mean relative humidity for the selected cold days ranged from 80.31% on 16 and
17 January 2014 to 95.57% on 15 January 2014. Similar to the hot days’ condition, the day
with a higher air temperature was accompanied with a lower relative humidity, while the
day with the lower air temperature came with a higher relative humidity. The selected cold
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days with the highest relative humidity, which was 95.57%, happened on 15 January 2014
with a mean air temperature of 24.27 ◦C. On the other hand, the cold days with the lowest
relative humidity, which was 80.31% on 16 and 17 January 2014 had a mean air temperature
of 26.53 ◦C. The fluctuation of relative humidity in cold days was lower compared to the
hot days. The relative humidity ranged from 66.24% to 86.38% and the cold days from
80.31% to 95.57%. This shows that relative humidity for cold days was not only high but
also stable.

When the study specified the selected cold day, as shown in Figure 6, the fluctuation
pattern of the graph shows a more dynamic pattern compared to the selected days graph as
shown in Figure 6. The selected cold day is represented by 24 January 2014. In general, the
measured data were lower than the weather station air-temperature value. The differences
of both sets of data were recorded as 2.21 ◦C or equivalent to 8.87%. The measured mean
air temperature ranged from 22.681 ◦C at 7:00 a.m. and 25.635 ◦C at 6:00 p.m., whereas
the weather station data air temperature ranged from 23 ◦C at 5:00 a.m., 6:00 a.m., and
7:00 a.m. to 30 ◦C at 2:00 p.m., 3:00 p.m., and 4:00 p.m. The data from the weather station
were more general compared to the field measurement data. The percentage differences
between both sets of data ranged from 1% to 22%. The deviation gaps were larger when
the air temperature increased, which was in the afternoon. The field measurement data
show a more stable and consistent pattern whereas the weather station data possess
more significant fluctuation range. The field measurement data were recorded based on
microclimate condition, since the field measurement instruments were located at human-
level height.

Furthermore, relative humidity for the cold day recorded was 60.44% at 2:00 p.m. and
95.96% at 7:00 a.m. The relative humidity from 12:00 a.m. to 8:00 a.m. on 24 January 2014,
was above 89% but it gradually dropped after 9:00 a.m. until 8:00 p.m. When night fell,
the relative humidity increased from 72.99% at 7:00 p.m., to 78.52% at 8:00 p.m., to 81.34%
at 9:00 p.m., to 82.75% at 10:00 p.m., and to 83.89% at 11:00 p.m. Diurnal air temperature
and diurnal relative humidity maintained the high temperature–low humidity relationship
even though it was categorized as a cold day. The impact of a cold day to the indoor
environment was not as critical as that of a hot day since thermal performance of hot days
would cause significant impact on the thermal comfort of occupants in the tropics.

4.3. Selected Normal Days (31 January to 13 February)

After looking into selected hot and cold days from the field measurement days, it is
important to look into outdoor air temperature and relative humidity of normal days, which
falls on the total average of air temperature throughout the field measurement. The total
average air temperature of the field measurement was 27.88 ◦C. The selected normal days
were from the end of January to around the end of April, during the inter-monsoon period.

Figures 6 and 7 show the variation and deviation of air temperature between the field
measurement and weather station for normal days. In general, the percentage deviation
between both sets of data was acceptable since the highest percentage of deviation through-
out the selected days was not more than 7%. The mean air temperature of the selected
normal days obtained from the field measurement ranged from 25.34 ◦C on 31 January
to 28.53 ◦C on 12 February 2014, whereas the data from the meteorological center ranged
from 25.38 ◦C to 28.04 ◦C on 3 February and 11 February 2014, respectively. The average
deviation for both sets of data was 0.64 ◦C, which was not significant or acceptable. During
the normal days, the highest deviation percentage between both sets of data was found
on 13 February 2014, with a deviation of 6.36%, whereas the closest value was found on 4
February 2014, with a deviation of 0.03%. However, the highest percentage of deviation on
13 February was only 1.67 ◦C, whereas the lowest percentage deviation was 0.007 ◦C on
4 February 2014. It can be inferred that the measured data are reliable and similar to the
weather station data.
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For the relative humidity, the highest relative humidity and lowest relative humidity
values were 81.53% and 67.28%, respectively. The highest relative humidity happened on 31
January and the lowest on 5 February 2014. The average relative humidity from 31 January
to 13 February was recorded as 77.27%. The mean relative humidity for selected normal
days was similar to the range suggested by Malaysia Meteorological Department [45].

Figure 7 also shows that the selected day to study the daily air temperature and relative
humidity variation was 2 February 2014. The variation order for both meteorological data
and field measurement data agreed with each other and had a similar pattern except for
8:00 a.m. and 9:00 a.m., which showed 10% and 16%, respectively. Out of 24 h of the selected
normal day, each of the deviations was not more than 8% except for 8:00 a.m. and 9:00
a.m. The field measurement data at 8:00 a.m. and 9:00 a.m. showed 25.51 ◦C and 28.61 ◦C,
whereas the weather data showed 23 ◦C and 24 ◦C. The deviation happened around sunrise
when radiation started to warm up the air. The weather station was located on a flat terrain
where the water vapor density was higher, which caused the air temperature to be lower.
The mean air temperature for the field measurement ranged from 22.52 ◦C at 6:00 a.m. to
30.74 ◦C at 3:00 p.m. Since 2 February 2014, was selected to represent a normal day, the
mean air temperature range could indicate that before sunrise and after sunset (nocturnal),
the case study house experienced lower air temperature as well as a high mean daytime
(diurnal) air temperature. This means that daytime thermal performance is more critical
compared to nighttime thermal performance.

Relative humidity for a normal day could range from 63.24% to 93.18%. The lower
relative humidity happened at the hottest hour, which was 3:00 p.m. whereas the highest
relative humidity happened at one of the coldest hours, which was 7:00 a.m. A difference of
29.94% between highest and lowest air humidity shows that occupants in tropical climates
experience dynamic changes of thermal comfort within 24 h, from daytime to nighttime,
throughout the year. This demonstrates that thermal comfort could be an issue for a free-
running building, especially during daytime, since the climate is hot and humid throughout
the year.

In the next section, an analysis of outdoor air temperatures is detailed through the dis-
cussion on the daily maximum and the daily mean for air temperatures, relative humidity,
solar radiation, wind velocity, and wind directions.
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4.4. Field Study Results: Outdoor Climate

This section examines the four different main climatic parameters, namely, air temper-
ature, solar radiation, relative humidity, and wind velocity. In this case, the daily maximum
temperature was discussed, since the maximum daily air temperature is important to be
taken as the worst-case scenario for the future study, e.g., a boundary condition for mod-
eling simulation. In the hot, humid, tropical climate, high temperatures for both outdoor
and indoor environments cause concerns because they lead to thermal discomfort. The
poor thermal performance of a building increases the tendency of the occupants to use
mechanical ventilation systems.

4.4.1. Daily Maximum

The daily maximum of the parameters is considered to be more important compared
to the daily minimum. Under the hot and humid tropical climate condition, extreme and
high air temperature, relative humidity, solar radiation, high intensity of outdoor wind
during a certain period of time—especially monsoon seasons and so forth—could directly
and indirectly affect indoor thermal performance. Hence, this subsection discusses the
daily maximum of the following selected parameters.

4.4.2. Air Temperature

Figure 8 shows the daily maximum for outdoor air temperature throughout the field
measurement days. The maximum air temperature of each day was recorded in order to
investigate the extreme condition of the microclimate throughout the field measurement.
The overall daily maximum air temperature ranged from 25.35 ◦C to 42.99 ◦C on 20 January
and 19 June, respectively. The air temperature difference of 41.11% between the maximum
and minimum values shows that the microclimate changed significantly according to
the monsoon seasons. The Northeast Monsoon, which usually happens around January,
causes a high volume of rainfall and directly lowers the air temperature. According
to McGinley [46], Sarawak receives minimal rainfall in June and July annually. Without
adequate rainfall, the phenomenon directly causes drought around the coast due to the high
intensity of solar radiation and hot air convection. Therefore, June and July are considered
critical months for thermal comfort. Furthermore, haze pollution, which happens from
June onwards, would be one of the reasons causing extreme high temperatures around
mid-year [47].
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4.4.3. Solar Radiation

The daily maximum of solar radiation for Kuching throughout the field measurement
ranged from 86 W/m2 at 6:00 p.m. on 27 May 2014 to 1022 W/m2 at 1:00 p.m. on 3 March
2014. The solar radiation directly influenced the air temperature through conduction and
air convection. The air temperature for the studied day could be deduced from the daily
maximum solar radiation. According to Makowski [48], since the solar flux only influences
the diurnal daylight, it significantly affects the daily maximum air temperature compared
to the daily minimum air temperature, whereas the nocturnal air-temperature variation is
affected by thermal radiative exchanges. Nighttime surface air radiative cooling relies on
the atmospheric capacity to absorb and conduct the thermal radiation towards the Earth’s
surface. In this case, the daily maximum study was significant in understanding the effect
of diurnal conditions, especially daily maximum air temperature and solar radiation, in
order to deduce the extreme thermal conditions for an indoor environment.

Figure 9 indicates the daily maximum solar radiation throughout the field measure-
ment. Comparable to Figure 8, the highest daily maximum air temperature was 42.99 ◦C on
19 June, whereas the highest daily maximum for solar radiation was 1022 W/m2 on 3 March
2014. The maximum air temperature for 3 March 2014 was 27.88 ◦C even though it had the
highest daily maximum solar radiation. In general, high solar radiation is accompanied by
high air temperature.
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This rare case could be due to other factors such as high cloud cover rate, high
evaporation rate on the measuring area, high wind velocity, and others. According to
Graham [49], low and thick clouds (example: stratocumulus) could reduce the Earth’s
surface and air temperature since it reflects the solar radiation, whereas high and thin
clouds (example: cirrus clouds) allows direct sunlight to penetrate, which causes high
air temperature. The high and thin clouds also trap heat and infra-red radiated from the
Earth’s surface.

Other than that, clear moving air, humidity, and clouds also balance the air temper-
ature on Earth. In order to explain the condition that high solar radiation could slightly
increase the air temperature, three randomly selected days with high solar radiation
throughout the field measurement are discussed briefly. The chosen dates are 5 March 2014,
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with an air temperature of 30.91 ◦C at 1:00 p.m.; 28 April 2014, with an air temperature of
36.17 ◦C at 1:00 p.m.; and 18 June 2014, with an air temperature of 41.19 ◦C at 2:00 p.m. The
solar radiation value was 1019 W/m2, 981 W/m2, and 903 W/m2, respectively. The dates
above were selected due to the high solar radiation value throughout the field measurement
period. From the selected field measurement results, it can be deduced that high solar
radiation causes high air temperature in general, due to the high reflectivity rate of emitted
radiation from solar radiation to the Earth’s surface.

4.4.4. Wind Velocity

Wind velocity near to the Earth’s surface is one of the most influential thermal comfort
parameters for the indoor environment. In order to understand the indoor thermal perfor-
mance, the intensity and speed of outdoor wind velocity must be determined. According
to the Beaufort scale of wind speed, a wind speed of more than 5.4 m/s could lead to
uncomfortable conditions for the occupants. The recommended comfortable range in a
tropical context, based on the Beaufort scale, ranges from 1.6 to 5.4 m/s [50]. Figure 10
depicts the daily maximum air velocity throughout the field measurement. Out of 4270 data
for each of the hours within the field measurement periods, 2641 data ranged from 1.6 m/s
to 5.4 m/s at daily maximum conditions. The highest daily maximum wind velocity was
marked as 8.334 m/s on 19 May 2014, whereas for the normal hour it could be as low as
0 m/s. The extremely huge range of wind velocity is a critical dilemma for the indoor
environment since it cannot give a consistent cooling effect to the indoor environment.
Furthermore, the poor layout design of modern terraced housing hardly creates a pressure
gradient between the indoor and outdoor environment to induce wind ventilation.
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The daily maximum wind velocity in Figure 10 shows the daily maximum air velocity
of each day throughout the field experiment. The highest daily maximum and lowest daily
maximum wind velocity ranged from 1.95 m/s on 13 June to 8.34 m/s on 19 May 2014. The
highest daily maximum wind velocity happened during the monsoon season, whereas the
lowest daily maximum wind velocity occurred during the end of inter-monsoon season.
The effect of monsoon wind directly influences the climate in general.

4.4.5. Relative Humidity

The other important parameter that affects thermal comfort in the tropics is relative
humidity. Other than high air temperature throughout the year, high relative humidity
is also one of the critical factors that contributes to thermal discomfort. According to
Figure 11, daily maximum relative humidity obtained throughout the field measurement
ranged from to 82.89% to 100%, which happened on 20 June, as well as 6 January and 29
June. High relative humidity usually happens during the lowest air temperature, which is
during rainy days or nighttime.
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The lowest daily maximum relative humidity is considered above average or high
value. Sahabuddin [50] stated that the ideal relative humidity range for indoor thermal
comfort in tropical climates ranges from 30% to 60%. In comparing the outdoor lowest
daily maximum relative humidity, the critical number could be one of the factors that needs
to be noted while considering the passive cooling architectural design. However, a natural
ventilation method is hardly implemented widely due to the lack of research. Hence,
increasing air velocity to reduce air temperature and promote thermal comfort in tropical
climates is one of the most reliable solutions under a natural ventilation method [51–53].

In the next section, in order to investigate the relationship between outdoor climatic
conditions, thermal performance for an air well, and a single-sided ventilated test room, a
comparative analysis was carried out.

4.5. Field Study Results: Comparison between the Minimum, Mean, and Maximum Thermal
Performance between the Air Well, Test Room, and Outdoor Climate Conditions

Comparison of Daily Maximum Air Temperature and Relative Humidity for Outdoors,
Test Room, and Air Well from 3 January to 29 June.

A comparison between the maximum air temperature for three locations, outdoors, the
test room, and the air well, justifies the correlation between each other. An understanding
of the mutual relationship between outdoors and test room (single-sided ventilation);
outdoors and the air well (performance of stack ventilation tool), and the test room and air
well would enhance the research study background in improving the thermal performance
of a habitable room in a single-story house.

Figures 12 and 13 show daily maximum air temperature and relative humidity for
outdoors, the test room, and the air well. Both figures are intended to display the variation
of overall thermal performance for outdoors, the air well, and the test room. In the previous
section, outdoor weather data taken from the field measurement were discussed. However,
the same data were applied to compare with the measured indoor environment as reference.
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In general, the daily maximum air temperature for outdoors, the test room, and
the air well fluctuated upwards gradually from January to June. Since relative humidity
was inversely proportional to air temperature, the overall variation pattern fluctuated
downwards gradually. The phenomenon infers that air temperature increased from March.
The total average of the daily maximum outdoor air temperature was 3.19 ◦C and 3.92 ◦C
higher compared to both the test room and air well, respectively. Furthermore, the total
average of the daily maximum outdoor relative humidity was 17.26% and 15.47% higher
than the test room and air well, respectively. The highest daily maximum air temperature
deviations for outdoors–test room and outdoors–air well were 9.52 ◦C and 10.41 ◦C,
respectively, whereas the lowest daily maximum air temperature deviations were 3.13 ◦C
and 2.71 ◦C, respectively. The highest deviation happened on the hottest day, which was
19 June, and the lowest deviation occurred on a cold day, which was 20 January 2014. From
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the findings, it is evident that thermal performance of the indoor environment was stable
since the fluctuation patterns were more consistent.

Based on the above detailed results and findings, the key thermal performance results
of the case study house in terms of temperatures of outdoors, the test room, and the air
well are summarized in Tables 2–4.

Table 2. Summary of field measurement—outdoor weather data for selected days’ duration and one selected day (hot, cold, and
normal days).

Condition Mean Outdoor Air
Temperature (◦C)

Maximum Outdoor
Air Temperature (◦C)

Mean Outdoor
Relative Humidity (%)

Maximum Outdoor
Relative Humidity (%)

Hot days (10 June 2014–24
June 2014) 30.74 38.90 73.48 91.42

Cold days (11 January
2014–24 January 2014) 25.58 28.69 86.45 95.13

Normal days (31 January
2014–13 February 2014) 27.95 32.01 79.87 92.25

Hot day (19 June 2014) 33.55 42.99 66.24 90.56

Cold day (24 January 2014) 23.94 25.63 75.59 95.95

Normal day
(2 February 2014) 26.42 30.74 79.64 93.18
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Table 3. A summary of the field measurement—thermal performance of the test room for selected days’ duration and one selected day (hot, cold, and normal days).

Condition

Mean Test
Room Air

Temperature
(◦C)

Maximum
Test Room Air
Temperature

(◦C)

Mean Test
Room

Relative
Humidity (%)

Maximum
Test Room

Relative
Humidity (%)

Average Test
Room Mean
Radiant Air

Temperature (◦C)

Maximum Test
Room Mean
Radiant Air

Temperature (◦C)

Maximum
PMV

Mean
PMV

Maximum
PPD (%)

Mean
PPD (%)

Hot days (10 June
2014–24 June 2014) 31.10 32.42 70.16 75.15 30.42 31.67 2.58 2.32 94.63 87.73

Cold days (11 January
2014–24 January 2014) 28.04 28.84 76.00 79.79 27.33 28.09 1.80 1.64 66.96 58.55

Normal days (31
January 2014–13
February 2014)

30.39 31.3 70.52 76.5 29.62 30.6 2.30 2.15 88.34 82.70

Hot day (19
June 2014) 32.11 33.48 67.91 76.05 31.42 32.75 2.78 2.53 97.59 93.31

Cold day (24
January 2014) 28.92 29.95 70.86 78.83 28.18 29.16 1.99 1.80 76.37 66.89

Normal day (2
February 2014) 28.81 29.8 69.70 73.28 28.11 29.03 1.97 1.77 75.26 65.51

Table 4. A summary of the field measurement—thermal performance of the air well for selected days (hot, cold, and normal days).

Condition Mean Air well Air
Temperature (◦C)

Maximum Air well Air
Temperature (◦C)

Mean Air Well Relative
Humidity (%)

Maximum Air Well Relative
Humidity (%)

Hot days (10 June 2014–24 June 2014) 30.92 31.75 72.67 76.26
Cold days (11 January 2014–24 January 2014) 27.48 28.06 79.25 81.87

Normal days (31 January 2014–13 February 2014) 29.76 30.05 73.76 78.06
Hot day (19 June 2014) 31.74 32.58 71.44 75.79

Cold day (24 January 2014) 28.24 28.83 75.72 79.58
Normal day (2 February 2014) 28.37 28.77 74.30 78.90
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5. Conclusions

To date, thermal performance of terraced housing is still unresolved, especially in the
tropical climate. The limitation of external openings due to the bounded terraced housing
layout leads to restrictions in terms of internal spaces designs. These shortcomings have
resulted in poor ventilation performance; by which it increases thermal discomfort. This
paper studied the thermal performance of a single-story terraced air-welled house via an
empirical measurement, where it primarily measured both temperatures and humidity of
outdoor weather conditions, a test room (i.e., Bedroom 2), and an air well. Based on the
analysis, these are the key findings: (i) The outdoor mean air temperature ranged from
25.58 ◦C to 30.74 ◦C, with relative humidity ranging from 73.48% to 86.45%; (ii) the mean
air temperature of the air well ranged from 27.48 ◦C to 30.92 ◦C whereas the mean relative
humidity ranged from 72.67% to 79.25%; and (iii) the mean air temperature for the test
room (single-sided ventilation room) ranged from 28.04 ◦C to 30.92 ◦C with a relative
humidity of 70.16% to 76%; (iv) even though the air temperature of the test room was
similar to the outdoor air temperature, due to the high relative humidity, it caused the heat
to be trapped in the indoor environment and that led to a static air condition (0.00 m/s);
and (v) lastly, based on the aforesaid conditions, the Predicted Mean Vote (PMV) ranged
from +1.80–2.58 under the condition of 0.5 clo and 1.0 met, whereas Predicted Percentage
of Dissatisfied (PPD) was within the range of 66.96–94.63%. These entail that the current
thermal performance of the air well in the terraced house may not work effectively since
the positive values of PMV and PPD indicated that the room was hot and thus occupants
may have thermally felt discomfort (see ASHRAE 55 and ISO 7730). Besides, regardless of
any day (whether it was cold, hot, or normal), the low thermal comfort of the test room
was true, as supported by DIN EN 13779 and ISO 7730 (see the Fanger method).

In other words, the existing provision of a minimum of 10% openings of the total
floor area of the room for the purpose of natural ventilation, stipulated under the Malaysia
Uniform Building By-Law 1984, is proven to be less meaningful because such an imposition
does not effectively provide good thermal performance. These empirical findings are of
importance, offering novel policy insights and suggestions to the existing building code
standard and bylaws. Strict compliance with and necessity for the bylaw requirement
should be revisited and further studied. Therefore, further research beyond the recommen-
dation by local regulations in terms of air well or shaft configurations and fenestration
geometry (inlet and outlet of openings) could be explored to enhance the ventilation
effectiveness (thermal performance) of an air well for the indoor room of a terraced house.

Despite the above contributions and policy implications, this study is not without
limitations. The results presented are limited to only one case study (i.e., a single-story
house), and the field measurement only lasted for about six months. Although these
limitations have been well justified in the Methodology section and have empirically
produced valid results, the sample size and time period of the current study can be
increased so that a longitudinal comparative study can be conducted in order to provide
accurate and more reliable results.
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