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Abstract: In recent years, a new business paradigm has emerged which revolves around effectively
extracting value from data. In this scope, providing a secure ecosystem for data sharing that ensures
data governance and traceability is of paramount importance as it holds the potential to create new
applications and services. Protecting data goes beyond restricting who can access what resource
(covered by identity and Access Control): it becomes necessary to control how data are treated once
accessed, which is known as data Usage Control. Data Usage Control provides a common and trustful
security framework to guarantee the compliance with data governance rules and responsible use of
organizations’ data by third-party entities, easing and ensuring secure data sharing in ecosystems
such as Smart Cities and Industry 4.0. In this article, we present an implementation of a previously
published architecture for enabling access and Usage Control in data-sharing ecosystems among
multiple organizations using the FIWARE European open source platform. Additionally, we validate
this implementation through a real use case in the food industry. We conclude that the proposed
model, implemented using FIWARE components, provides a flexible and powerful architecture to
manage Usage Control in data-sharing ecosystems.

Keywords: data economy; Industry 4.0; data governance; data usage control; data access control; IoT;
shared data; FIWARE; International Data Spaces; UCON; usage policies; XACML

1. Introduction

Extracting value from data is one of the key aspects leading the development of applications
and services, especially for Industry 4.0 [1]. Consequently, ensuring data governance and traceability
becomes imperative to promote the exchange of data in this new business paradigm. Another crucial
aspect of the data economy is interoperability [2], since sharing data between different stakeholders
brings many new opportunities for all parties involved. In this scope, the use of trusted and secure
platforms for sharing and processing personal and industrial data is essential for the creation of a data
market and a data economy.

There is no doubt that big data analysis has played an important role in the fourth industrial
revolution as it helps to determine a low cost strategy for companies to be more competitive and
to identify how to increase their revenue and optimize their processes [3]. Furthermore, IoT has
become one of the core elements in Industry 4.0 [4] as well, since it facilitates factories the tasks
of speeding up their product development, achieving a more flexible production, and setting up
more complex environments. Currently, smart factories are growing in number and they have the
capability of manufacturing intelligent and customized products in a short period of time considering
customers’ preferences in real time [5]. In this regard, the streaming data gathered by IoT devices
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have different features in comparison with traditional (batch) big data in terms of data generation,
data interoperability, and data quality. Interpretation of big datasets from IoT is a challenge because
the data sources are ubiquitous; the transmitted data are noisy, heterogeneous, and spatiotemporal
dependent [6]. Thus, it is imperative to analyze these topics to determine what is the most suitable
solution for establishing a cross-industry data-sharing ecosystem.

Regarding data sharing and in terms of security, two concepts play an important role: Access
Control and Usage Control. Access Control constrains what a user can do directly, as well as what
programs executing on behalf of the users are allowed to do [7], whereas Usage Control extends the
traditional Access Control by enabling the control of a resource during and after the access to that
resource has been granted [8]. In data sharing not only is it important to control who can access what
resource (covered by identity and Access Control), but also how data are allowed to be used once
accessed. This is of special relevance in publish/subscribe scenarios in which data are sent in real time
to data consumers. In such cases, after providing the data, providers have no knowledge or control
over how data are treated, leaving consumers the possibility to make unauthorized or outlawed actions
over data that may have implications such as privacy or anonymity violation, which are some of the
major concerns of the General Data Protection Regulation (GDPR) [9]. Access Control does not suffice
to ensure that, once accessed, data are being used for the intended purpose. Thus, this measure needs
to be extended to a more comprehensive model, such as Usage Control, in order to meet the industry’s
new requirements, guaranteeing that data consumers make appropriate use of data.

One of the foundations of data sharing environments is trust. Trust management concerns
guaranteeing privacy, securing the exchange of data among different stakeholders, and ensuring
that data are duly used once accessed. Standardizing trust systems fosters data transactions in the
marketplace and eases compliance with the data governance framework defined by each organization.
The International Data Spaces (IDS), formerly known as Industrial Data Spaces, Reference Architecture
Model establishes a trust model to fulfill these requirements in the scope of Industry 4.0 and defines
data Usage Control as one of the fundamental pillars to be addressed in the new digital revolution [10].

In the scope of Usage Control, the Usage Control model (UCON) stated by Sandhu and Park [8]
was presented as a new framework for providing not only traditional data Access Control but also
enabling the control of the data during and after the usage. The UCON model extends the traditional
Access Control models, not only by introducing new concepts of mutability applicable to attributes
of subjects and objects but also by providing a new way of guaranteeing the continuity of policy
enforcement. Moreover, UCON presents a family of ABC models built around three decision factors:
authorizations (A), obligations (B) and conditions (C), which can all be used for pre-decision and
ongoing decisions. As a complementary part of the conceptualization of UCON, one of the formal
model proposals of policies aligned with Usage Control is presented by [11], in which they attach two
sets of predicates, namely provisions and obligations. On the one hand, provisions are concerned with
the pre-decision phase (past and present), corresponding to the traditional Access Control. On the other
hand, obligations deal with the rules applied to the future use of data and are related to the ongoing
decision phase which, instead, is executed after the access is initiated and implements the continuity of
control over the data. The new features introduced by UCON derives in several attempts to implement
Usage Control. However, the development of a complete framework of data Usage Control applied to
industrial data-sharing ecosystems is still an open issue.

This article relies on a comprehensive architecture for providing data access and Usage Control
in industrial data-sharing ecosystems. This proposal incorporates the core concepts from the UCON
model, the key aspects of the IDS Reference Architecture Model and the extended XACML (eXtensible
Access Control Markup Language) Reference Architecture [12]. Moreover, the architecture is integrated
into a complete identity and Access Control solution with support to delegated application-scoped
security management [13,14]. Thanks to this integration, data providers can easily manage access and
usage policies scoped to different application scenarios. The conceptual model of the architecture was
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previously described in [15]. This article extends said work by providing an implementation of the
proposed architecture and a validation with an original case study in the food industry.

The proposed architecture fulfills the main requirements [16] of Internet of Things (IoT)
applications developed in shared data scenarios. It guarantees reliability and interoperability
through the trusted and standardized environment established thanks to the IDS framework.
Likewise, IoT applications are usually very demanding in terms of scalability. Thus, the data Usage
Control architecture needs to meet this requirement. The extended XACML-based architecture
separates each component based on its role, so each of these components can be scaled as needed.
In terms of dynamism, the proposed architecture can easily apply predefined access and usage policies
to the new dynamically added nodes, as it stores and manages those policies in a centralized way.

In this scenario, the FIWARE platform (FIWARE: The open source platform for our smart digital
future, https://www.fiware.org/) seems particularly suitable for implementing a Usage Control
architecture. FIWARE is an open initiative whose mission is to ease the development of new Smart
Applications in multiple sectors by providing a set of components, known as Generic Enablers (GE),
that enable the connection among IoT devices and Context Information Management and other services
such as security or big data analysis. In a previous work [17], we proposed an implementation of the
IDS architecture using FIWARE components focused on data brokering, identity and trust management,
and the development of IDS Connectors. In the present work, we extend such implementation by
adding the components that are needed to achieve Usage Control by data providers based on the
architecture we propose. The newly added components introduced in this work are the Policy
Translation Point (PTP), the Usage Policy Decision Point (uPDP) and the Policy Execution Point (PXP).
A thorough explanation of every one of these components is presented in Section 4.

The article is structured as follows. Section 2 reviews the most relevant related work on data
Usage Control. Section 3 presents a brief description of the architecture that we took as a reference
for this implementation including some additional considerations for this proposal. In Section 4,
an implementation of the proposed solution using FIWARE components is described. Section 5 presents
a validation of said implementation by means of a use case in the food industry, which includes the
results obtained from measuring the enforcement time when applying Usage Control policies. Lastly,
Section 6 finishes with the conclusions of the article and an outlook on future work.

2. Related Work

According to [18-20], the adoption of big data and industrial IoT (IloT) is rapidly growing
in Industry 4.0. Previous works have provided industrial solutions that make use of this type of
technologies such as recommendation and prediction systems, process optimization techniques,
intelligent manufacturing, and Al applications [21,22]. In this regard, many open source big data
tools have been developed to enable companies to process the vast amount of data that are generated
by the IloT. Several proposals present a general view of the big data architecture needed to manage
industrial scenarios in which multiple sources of data are present [23,24]. The authors of [25] present a
five-layer architecture for big data processing and analytics (BDPA): collection, storage, processing,
analytics, and application. Since each layer involves different tasks, many open source tools have been
developed to help overcoming some of them. Some examples include:

e  Collection: Apache Kafka

(Apache Kafka: https://kafka.apache.org/), Apache NiFi (Apache NiFi: https://nifi.apache.
org/), Orion FIWARE Context Broker (FIWARE Orion: https://fiware-orion.readthedocs.io).

e  Storage: CassandraDB (CassandraDB: http://cassandra.apache.org/), HDFS (HDEFES: https:
/ /hadoop.apache.org/docs/r1.2.1/hdfs_design.html), MongoDB (MongoDB: https://www.
mongodb.com/es).

e Processing and analytics: Apache Spark (Apache Spark: https://spark.apache.org/),
Apache Flink (Apache Flink: https://flink.apache.org/), Apache Storm (Apache Storm: http://
storm.apache.org/), FIWARE Cosmos (FIWARE Cosmos: https:/ /fiware-cosmos.readthedocs.io).


https://www.fiware.org/
https://kafka.apache.org/
https://nifi.apache.org/
https://nifi.apache.org/
https://fiware-orion.readthedocs.io
http://cassandra.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.mongodb.com/es
https://www.mongodb.com/es
https://spark.apache.org/
https://flink.apache.org/
http://storm.apache.org/
http://storm.apache.org/
https://fiware-cosmos.readthedocs.io

Sustainability 2020, 12, 3885 4 of 25

e Application: = Apache Zeppelin (Apache Zeppelin:  https://zeppelin.apache.org/),
Kibana (Kibana:  https://www.elastic.co/es/kibana), GeoSpark (GeoSpark:  https:
/ /github.com/DataSystemsLab/GeoSpark).

As stated in [6], big data processing in industry is different in several aspects from other scenarios.
One of the major concerns in this sort of environments is the way in which data are collected,
considering that data can derive from multiple sources. This issue has become more crucial in
data ecosystems shared among multiple organizations, since each organization can process and
store data in different ways and has different access and usage rights over data. Thus, we identify
the need to use a common standard, compatible with the existing big data tools and IoT devices,
that provides a standardized way to gather, extract, process and store data in industrial contexts.
In this regard, NGSI-LD provides a simple and powerful open API published as an ETSI specification
for the management of context information [26]. This specification promotes the adoption of a standard
way to manage data in the whole industrial data processing pipeline. However, the use of a common
standard makes it imperative to use big data tools that can work with data in this format. To address
this issue, we include the FIWARE GEs in the industry’s BDPA pipeline since they comprise a set of
libraries, connectors, and protocols on top of the most widely used big data frameworks provided by
the Apache Community, providing these components with full support for the NGSI-LD standard.
With the adoption of this approach, any organization can not only perform big data operations more
easily using a common standard, but also mitigate additional needs such as enforcing data Usage
Control and securing data exchange.

As far as data Usage Control is concerned, most of the proposals in the literature take the UCON
model [8] as a starting point for the development of their solutions. However, depending on the field
of application, these works take different approaches. For instance, Russello and Dulay presented
xDUCON [27], a cross-domain Usage Control proposal for coordinating and enforcing Usage Control
policies across different collaborating organizations. In said framework, a cross-domain data space
instance is shared among the organizations to be used as a local enforcement point of the control
policies. As a result, the coordination of the enforcement policies is easier to specify since it is not
necessary to include details of the receiving organization structure.

A posterior paper was presented by the same authors [28]. As a complementary part of the
xDUCON framework, they defined cross-domain policies, which are capable of dealing with the
mutability issues of the UCON model and providing a fine-grained decision mechanism that can
be captured by the defined policies. The xXDUCON framework provides a general perspective for
providing capabilities of policy enforcement and specification. Furthermore, Di Cerbo et al. present a
solution for avoiding security risks and providing a mechanism for allowing the data owners to keep
the data under their control. They present [29] a solution that allows the provision of a secure data
sharing across the cloud and mobile engines. This is achieved by relying the enforcing mechanism
and rules definition on Policy Definition Languages (PSLs) like XACML and an extended version of
PPL (PrimeLife Policy Language) [30]. However, these works fall short of providing an architecture
that not only covers the enforcement and definition mechanisms for access and Usage Control but also
provides a full description of the whole process that data Usage Control involves.

Likewise, Lazouski et al. use the principles presented in [31] for providing a Usage Control
solution mainly focused on cloud systems applications. The conducted research is based on the UCON
model and the OASIS XACML standard to regulate the usage of cloud resources [32]. This proposal
was validated by implementing the authorization system integrated with OpenNebula (OpenNebula:
https:/ /opennebula.org). More comprehensive research was presented by Wu et al. [33], in which
data Usage Control is enforced in industrial Wireless Sensor Networks (WSN). Not only do they
provide cross-domain fine-grained Access Control, but they also use fuzzy clustering to analyze
industrial sensing data. This work uses a set of simulations for verifying the suitability of the
overhead time and the effectiveness of the proposed model. A comparable proposal was presented by
Marra et al. [34]. They used the core concepts of UCON model and the XACML reference architecture
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in order to implement a Java application for providing Usage Control operations over IoT devices.
They developed a case study in which they evaluate the performance of the IoT devices and determined
the feasibility of the system by implementing their proposal on real devices.

Recent works provide some interesting solutions for data Usage Control based on the XACML
reference architecture proposal. For instance, Barsocchi et al. use GLIMPSE [35], a flexible
monitoring infrastructure for performing Usage Control on operations over sensors in a smart
home. They demonstrate the feasibility of carrying out Usage Control in this type of environments.
In addition, in said study, the authors provide a low cost, easy to install, user-friendly, dynamic and
flexible infrastructure, capable of performing run-time resource management using control rules [36].
Similarly, Gkioulos et al. present a model that can integrate access and Usage Control mechanisms for
dealing with the distributiveness and heterogeneity of systems like IoT and online banking. At the
same time they bring several improvements regarding resilience on active attacks, policy writing
simplification, run-time efficiency and scalability [37] . Another proposal by Martinelli et al. presents
a framework for applying QoS in a network in a Smart Building environment. They combine UCON
and SDN (Software Defined Networks) in order to enforce a set of management, security, and safety
policies aimed at ensuring the appropriate QoS for the provided services according to both the tenants’
Service Level Agreements (SLAs) and the current context [38]. Lastly, an approach presented by Milan
Petkovi¢ et al. in [39] uses the business model of an organization to detect privacy infringements
and to verify that data have been processed only for the intended purpose. The work presents a
strong point in formal specification using Calculus of Orchestration of Web Services (COWS). These
proposals show the growing interest of the scientific and industrial community in exploiting all the
capabilities of Usage Control, and also demonstrate its application in specific scenarios (IoT, Cloud, etc.).
Nevertheless, these overtures do not cover topics like cross-domain data exchange, data governance
and trust environments, highlighting the need to deal with these topics before using this type of
architecture in industrial data-sharing ecosystems. Moreover, in Industry 4.0, data sharing between
multiple organizations is a key factor to be considered. Thus, guaranteeing the compliance with data
governance rules and the responsible use of organizations’ data by third-party entities is one of the
requirements that needs to be addressed. Therefore, the need to generate a more flexible framework,
capable of adapting to these mixed data ecosystems, is identified.

Moreover, the Data Privacy Directive 95/46/EC [40], currently replaced by the GDPR,
played an important role in data protection. In this regard, many Access Control solutions are currently
presented for protecting personal data. For instance, Bartolini et al. proposed a systematic approach for
authoring Access Control policies that are aligned with GDPR provisions. They present a methodology
for generating templates from the GDPR text and identifying if a GDPR article can be defined as
an Access Control policy. This is achieved by matching actual attributes gathered from the legal
use cases and translating the resulting policies into a given formalism or language [41] in order to
comply with GDPR'’s principle of “data protection by design and by default” [42]. In the same line,
Calabr6 et al. conducted a preliminary study for integrating Access Control and business processes
for GDPR compliance. The main goal of said study was to extend the currently adopted Access
Control mechanisms to enforce GDPR compliance during business activities of data management and
analysis [43]. Nevertheless, although these works provide a first step towards a formal definition of
an Access Control solution based on GDPR, they do not cover the Usage Control of the data once
access is granted, opening an issue that needs to be addressed. Another interesting proposal was
presented by Arfelt et al. who identifies formalizable GDPR articles and, by using Metric First-order
Temporal Logic (MFOTL), formalizes and monitors the articles in which controllers, processors,
or data subjects are required to take specific and observable actions [44]. Moreover, the policies
generated with the previous process are deployed over MONPOLY, a monitoring tool for compliance
checking [45]. Although previous works solve the problems of GDPR formalization and monitoring,
these proposals do not consider other factors such as data governance and trust that affect data sharing
in cross-domain industries.
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Prior works have sought Access Control solutions based on Blockchain for distributed
environments [46-48]. In particular, the authors of [46] describe how contracts can be deployed
in the ledger to perform Usage Control following GDPR provisions and avoiding central entities
in the authorization and authentication processes. Overall, the cited studies outline that relying on
Blockchain provides transparency and trust solutions for Access Control but it may impose scalability
limitations for real-time scenarios.

As can be seen, much of the research up to now has been descriptive in nature. Table 1 presents
a comparison of the Usage Control architectures found in the literature. Most solutions rely only
on ABAC (Attribute Based Access Control) for Access Control and just a few proposals supplement
it with RBAC (Role Based Access Control) or IBAC (Identity Based Access Control), which play
a crucial role in data-sharing scenarios in which it is necessary to provide particular access and usage
permissions to different stakeholders. In addition, the existing Usage Control solutions focus on
policy infringement detection. Only about half of the works studied provide remediation capabilities
for policy violation, rather than just detection. Remediation actions are essential to automatize the
enforcement of consequences for policy noncompliance rather than issuing warnings or notifications
and leaving it up to the wrongdoer to redress the situation. In order to univocally define obligations,
prohibitions and permissions, and the consequences for noncompliance, it is convenient to use a Policy
Specification Language (PSL). Most works found in the literature rely on XACML or U-XACML
as their PSL, although some of them do not use a specific language or define one of their own.
Another important aspect is the support for multi-actor architectures. About half of the works studied
provide support for several actors involved in the data-sharing process, whereas the rest of them
focus on one-on-one exchanges. The former is a key requirement for scenarios in which multiple
stakeholders share data with one another. Furthermore, it is worth mentioning that most of the studies
analyzed in this section fail to provide a data Usage Control solution that is independent of the context
in which data are generated (WSN, IoT, SDN, etc.), with only a couple of them being domain-agnostic.
Lastly, far too little attention has been paid to the topic of trust environments as a pillar for providing
capabilities for secure and trusted data exchange and sharing between multiple organizations.

Table 1. Comparison of usage control architectures

References Access Control Remediation PSL Multi-Actor  Application Domain
Cross-Domain .
[27] ABAC Policy (xDPolicy) v Generic
[29,30] ABAC PPL,XACML v Cloud, mobile
ABAC, RBAC,
[31,32] BAC U-XACML v Cloud
[33] RBAC Industrial WSNs
[34] ABAC v U-XACML IoT
Drools Rule
[36] ABAC,RBAC Language (DRL) v IoT
[37] ABAC v U-XACML IoT
[38] ABAC,RBAC SDN
[39] ABAC v ad-hoc Generic

In light of this information, it becomes apparent that previous works have failed to provide
a standard solution for achieving data Usage Control in data-sharing ecosystems. None of the works
reviewed provides advanced Access Control and Usage Control capabilities in architectures with
several agents involved, while supporting an expressive policy definition language that allows the
definition of obligations, prohibitions and permissions and providing remediation functionalities in
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the event of policy infringement. This research contributes to fill the gap in the existing literature
by providing a generic multi-actor architecture to achieve advanced data access and usage control
capabilities in real-time data-sharing scenarios. Our proposal incorporates the core concepts from the
UCON model, the key aspects of the IDS Reference Architecture Model and the extended XACML
Reference Architecture, and relies on ODRL as its PSL. In addition, we provide an implementation
using one of the core CEF (Connecting Europe Facility) building blocks and FIWARE GEs for providing
a reference framework fully adapted to the requirements of Industry 4.0.

3. Proposed Solution

This section presents an overview of the design principles that we have considered for designing
this proposal. We also summarize the resulting architecture as well as a workflow that illustrates the
interaction between the described components. Details about both the principles and the architecture
can be found in our previous work [15].

3.1. Design Principles

In recent years, industries have experienced an increased need to exchange data among them.
Thus, data protection has become a priority. In view of this necessity, the IDS, which is in close contact
with the industry, has identified the main requirements that need to be fulfilled in order to address
data sharing when multiple organizations are involved. We have taken the IDS guidelines included
in [10] as a starting point and added additional considerations from the literature [17] to concoct the
set of design principles in which we have based our proposed architecture for providing access and
Usage Control in industrial contexts:

e  Trust. IDS Connectors provide a trusted environment that enables the achievement of data Usage
Control [10].

o Interoperability. Standardization of protocols is crucial to ensure the understanding between all
the components involved in the architecture, for managing both Usage Control and identity.

e  Governance. Emerging data-centered businesses need to define data governance programs to
exploit data in a cost-effective manner [49]. Data sharing should comply with the data governance
rules defined by each of the organizations involved. In this scope, providing ways to respect
and protect the data of all the parties involved is one of the main requirements that data Usage
Control must fulfill. Thus, data providers must have access to monitoring and configuration
tools that allow them to control what becomes of their data. Nevertheless, as pointed out
by [50], in collaborative systems, resources can be administered by multiple data owners. Due
to this fact, the aspects of data governance model, policy composition and conflict resolution
need to be addressed. In this context, the concept of “data governance model” defines the
authority that entities have over a resource; “policy composition” describes how the authorization
requirements authored by multiple entities are combined or reconciled to regulate the access
to a resource, and “conflict resolution” indicates the method used to resolve policy conflicts in
order to obtain a conclusive decision [50]. In this regard, the preliminary version of this proposed
architecture takes the work presented by Mahmudlu et al. as a reference, in which they define
multiple ownership, authoritative and predefined mechanisms for addressing the main aspects of
governance model, policy combination and conflict resolution respectively [51].

e  Performance. The accomplishment data Usage Control policies can be only ensured if reaction to
policies violation is quick and efficient.

e  Flexibility. As many data-sharing scenarios and use cases are contemplated, the solution must be
adaptable to the specific requirements of such scenarios.

3.2. Agents Involved

According to the International Data Spaces Association and IDS Reference Architecture presented
by Fraunhofer [10] four agents have to be provided in every system that considers data sharing: Data
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Owner (DO), Data Provider (DP), Data Consumer (DC) and Data User (DU). However, it is very
frequent to assume a two actors model in which the DP and the DO play the same role as well as
the DC and the DU. Taking into account this assumption, the DP is the organization or user who is
the proprietary of the data and decides which data are available for sharing. Additionally, the DP
defines the usage and Access Control policies applicable to the data that the DC can consume. On the
other hand, the DC represent every entity that has the legal rights to use the data provided by a DP
according to the previously defined Usage Control policies.

Besides these two actors, the GDPR, defines an additional component named Data Controller
(DCr) [52]. According to the DCr definition, a third actor needs to be included to cover the IDS reference
architecture and the one proposed by the GDPR. In this case, the DCr and the DP are responsible
for guaranteeing the protection of data owners’ rights and for providing access to data, respectively.
Nevertheless, we consider that a model capable of being GDPR-compliant needs to contemplate some
other factors, as stated in [43]), that are out of the scope of this paper. For instance, one of the additional
factors that should be taken into account is the ability to write GDPR articles formally as algebraic
expressions to transform legal concepts into rules. Also, it is necessary to provide a formal extension
of a PSL to explicitly manage GDPR principles of consent and purpose limitation. Lastly, it would be
useful to include tools for authoring and enforcing GDPR-based policies. Thus, we concentrate our
efforts on presenting a preliminary version of data Usage Control with a two-actor model (DP-DC),
mainly focused on data-sharing ecosystems in Industry 4.0. However, below we present an alternative
proposal architecture including the three-actor model.

Finally, we also consider the Identity Provider (IdP) as an actor presented in the IDS Reference
Architecture: The IdP verifies the authenticity of all the actors involved in the architecture and also
provides all the characteristics related to identity management. These include actor registration,
authentication, password management and the option of grouping actors in organizations to manage
them under identical conditions. In scenarios in which a single DP shares data with one or more DCs,
the DP can integrate its own IdP, since the identities of other DPs do not need to be validated. Said
configuration would lead to an even further simplification of the two-actor model.

3.3. Architecture and Workflow

Building on the design principles established and the simplified agent model identified for
data processing scenarios (DC, DP and IdP), we have presented an architecture for providing
data usage and Access Control in shared ecosystems. Figure 1 shows the proposed two-actor
architecture, whereas Figure 2 presents the aforementioned alternative architecture including the
DCr as a separate agent.

On the other hand, Figures 3 and 4 show the workflow of the two main scenarios of data sharing:
(1) DP defines the policies that apply to the shared data and (2) DC preforms operations to the
received data.

The DP uses the Policy Administration Point (PAP) to define access and Usage Control policies.
Usage policies are defined using an Open Digital Rights Language (ODRL) extension materialized
by the W3C [53] and translated by the Policy Translation Point (PTP) to a program that runs on the
usage Policy Decision Point (uPDP) and that is updated every time policies are modified by the DP.
Once both access and usage policies are defined, the data in the Data Infrastructure (both real-time
and stored) can be made available in the Shared Data Space (SDS).

When the DC requests access to data available in the SDS (to save them in its Storage System or to
process them using a Processing Engine), the Policy Enforcement Point (PEP) checks with the access
Policy Decision Point (aPDP) if the DC has the necessary access permissions to make the subscription
effective. If the result is positive, the DC starts receiving data from the SDS and processing them
performing the desired operations. As a result of such operations, traces are generated and sent to the
PEP that after validating an authentication token previously generated by the IdP, redirects them to the
uPDP. The uPDP checks the usage policies and in case of noncompliance delegates the responsibility
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of enforcing the established action for policy noncompliance to the Policy Execution Point (PXP) by
sending the corresponding control signal.

Data Consumer Data Provider

Data Infrastructure

Stored Data

Storage System

! Shared Data “Real-Time" Data
Space

II AccesslUsage Control

Processing Engine PEP policies
: : Processing »  aPDP |« PAP
: -« Engine Traces
______ " <
Usage Control uPDP PTP
©Ongoing Decisions

PXP

h
4

Identity Provider < »

Figure 1. Data Usage Control architecture.
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One concern identified in this proposal, is that the logs generated when performing operations on
data could be easily manipulated due to the fact that log generation takes place outside the scope of
the DP. Nevertheless, the reference architecture used in this work relies on the guidelines of the IDS
connectors, which determine that all the connectors involved in a data exchange must run a trusted
(certified) software stack. Worded differently, IDS Connectors require a certification from the IDS
Certification Body to establish trust among all participants.

Moreover, the IDS guidelines also establish that any communication between connectors from
different organizations should be encrypted and integrity protected. Thus, by including the DP and
DC inside IDS connectors, each DP is capable of ensuring that their data are handled by the Connector
of the DC according to the usage policies specified, or else the data will not be sent [10].

4. Implementation Using FIWARE

This section presents an implementation of the proposed architecture using the generic enablers
(GEs) provided by FIWARE and other open source tools. Specifically, the GEs used in this
implementation of the data usage architecture are the following:

o  Keyrock The Keyrock GE (FIWARE Keyrock: https://fiware-idm.readthedocs.io) is responsible
for Identity Management. Using Keyrock enables OAuth 2.0-based authentication and
authorization security to services and applications, as described in [13,14]. In the context of this
implementation, Keyrock plays the role of IdP, manages authorization policies (PAP) and decides
which DCs can access which resources in the data infrastructure (aPDP). Therefore, DPs and
DCs perform the authentication process relying on Keyrock. Guaranteeing the unequivocal
identification of all the agents involved in the data usage architecture is mandatory to ensure a
secure way of providing or consuming data. By using Keyrock, DPs can create authorization
policies to constrain DCs’ access to the data infrastructure.

e Wilma: The Wilma GE (FIWARE Wilma: https://fiware-pep-proxy.readthedocs.io) brings
support of proxy functions within OAuth 2.0-based authentication schemas. It also implements
PEP functions within an XACML-based Access Control schema [12]. In the scope of this
implementation, two Wilma instances are needed. One Wilma instance is in charge of enforcing
access policies over requests sent to the data infrastructure [17]. When a DC is authenticated
through Keyrock, an OAuth 2.0 token is generated, which must be included in every request
sent to the DP’s data infrastructure. Wilma intercepts requests and asks Keyrock to validate
the token, verifying the DC’s identity. Since Keyrock also acts as the aPDP, it checks the DC’s
access authorization policies. In case that the DC’s request complies with the established policies,
Wilma grants access to the requested resource. With regard to data Usage Control, a second
Wilma instance is needed as a PEP proxy to authenticate the traces sent from the DC’s processing
engine to the uPDP.

e  AuthZForce: The AuthZForce GE (FIWARE AuthZForce: https://authzforce-ce-fiware.
readthedocs.io) brings additional support to aPDP/PAP functions within an Access Control
schema based on the XACML standard. It has not been included in the present implementation,
but it could be used to create more advanced fine-grained authorization policies and to make
decisions over requests received from PEPs.

e  Orion: The Context Broker (Orion) GE (FIWARE Orion: https://fiware-orion.readthedocs.io)
manages the entire lifecycle of context information including updates, queries, registrations
and subscriptions. The Context Broker offers the FIWARE NGSI (Next Generation Service
Interface) [54] APIs and associated information model (entity, attribute, metadata) as the main
interface for sharing data among stakeholders. In addition to being the centerpiece of any platform
“powered by FIWARE”, the Context Broker has been recognized as a CEF Building Block, which is
one step forward on its path towards becoming a global standard for large scale contextual
information management [55] . In the context of this implementation, it constitutes the DP’s data
infrastructure and SDS, which enables the sharing of data between the DC and the DP in a secure
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way. In other words, the DP makes use of the NGSI API provided by the Orion Context Broker
in order to publish or expose the data they have to offer, whereas DCs retrieve or subscribe to
said data.

e Cosmos: The Cosmos GE (FIWARE Cosmos: https://fiware-cosmos-flink.readthedocs.io)
provides an interface for integrating Apache Flink and Apache Spark with the rest of the
components in the FIWARE Ecosystem. Over recent years, Apache Flink and Apache Spark
have established themselves as the most popular open source data processing frameworks. Both
provide a wide assortment of resources for processing data both in streaming and batch modes.
Since Apache Spark and Apache Flink provide similar functionalities, an implementation with
only one of these frameworks is enough to validate the proposed architecture. Therefore, for the
implementation presented in this work, we have relied on the Apache Flink as the processing
engine on the DC’s side, in charge of performing operations on the DP’s data.

e Draco: The Draco GE (FIWARE Draco: https://fiware-draco.readthedocs.io) is aimed at
providing storage of historical context data, allowing the reception of data events and dynamically
recording them with a predefined structure in several data storage systems. In the scope of this
implementation, Draco is proposed as the building block for providing the storage system in the
DC'’s infrastructure.

The aforementioned FIWARE GEs provide all the features needed to implement the components
on the DC’s side (processing engine and data storage), the Access Control components (PAP,
PEP, and aPDP), the SDS, and the IdP. As the FIWARE catalogue lacks any GEs that aid in the
implementation of Usage Control capabilities, we have developed several ad-hoc components for this
purpose. The Technical Steering Committee of FIWARE has shown interest from the conceptualization
of this proposal to its materialization since it covers the key integration aspects of cross-industry data
exchange. As some of the authors of this work are part of such committee, it is directly connected with
the design of our solution. The PTP, uPDP and PXP components are planned to be included as a new
FIWARE GE in the near future:

e  The PTP is a piece of software written in Python in charge of translating the ODRL usage policies
defined through Keyrock into a Complex Event Processing (CEP) program using the Flink CEP
Scala API. Every time the usage policies that apply to a certain DC are modified by the DP, a new
program is generated by the PTP containing a CEP rule for each policy. This program is then
compiled, packaged, and sent to the uPDP.

e  The uPDP is an Apache Flink computation cluster that runs all the CEP programs generated by
the PTP: one for each DC. These programs take advantage of the CEP capabilities of Apache Flink
to verify whether the DC complies with the policies defined by the DP or not. This is done by
analyzing the traces generated by the processing engine on the DC’s side (Apache Flink in this
case) which are sent to the uPDP. In the event of noncompliance, the PXP is notified.

o  The PXP is a piece of software that is notified each time the uPDP detects policy noncompliance.
It is written in Scala and attached to each program that runs on the uPDP. The PXP enforces the
control signal established by the DP for the unfulfilled policy. For instance, in order to stop a DC
from receiving data as a punishment for policy noncompliance, the control signal sent by the PXP
is an unsubscription request to Orion. If the DC is, in turn, processing data in an incorrect manner,
one way to punish this policy violation would be to send a control signal that kills the processing
job on the DC’s side. These are the control signals that have been implemented so far, but the goal
is to extend the capabilities of the PXP to support custom control signals written by the DP.

Figure 5 shows the data usage architecture proposed using the aforementioned FIWARE GEs
and ad-hoc components developed, as well as the workflow mechanism presented in Section 3.3.
Instead of deploying the IdP as an external actor (as proposed in Figure 1), in Figure 5 we include the
IdP as a part of the DD, since the IdP is provided by the Keyrock GE, which also includes the PAP and
aPDP. However, a three-actor configuration like the one proposed in Figure 2 would also be feasible by
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deploying Keyrock separately, since Keyrock supports a multi-tenant configuration in which each DP
would be mapped to a specific application. In such case, the Access Control permissions and usage
policies that apply to a specific DP would be defined and validated in the scope of the corresponding
Keyrock application. Details about the application-scoped Access Control management of Keyrock
can be found in [13].
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Figure 5. Data Usage Control architecture using FIWARE.

The operation flow during one usage decision process is defined as follows:

The DC sends a subscription request to the Orion Context Broker to retrieve data from the DP.
The subscription request is intercepted by the access PEP Proxy and validated by the IdP and the
aPDP by checking whether the token containing the user information is valid an if the user has
the right to access the requested resource.

e  Once the subscription is done, the DC starts receiving data from the Orion Context Broker
at the processing engine. The traces generated by the program containing all the operations
performed on data are sent to the uPDP, verifying the DC’s identity through the usage PEP Proxy.
Moreover, this instance of the PEP Proxy is in charge of redirecting the traces to each specific
uPDP CEP program. When translating the defined ODRL policies for a DC, the PTP generates a
new CEP program and maps the port where it runs to the DC. Thus, when receiving the traces
and after verifying the DC’s identity, the PEP Proxy knows the port in which the corresponding
CEP program is running and can redirect the traces to it. The uPDP then verifies that the DC
complies with all the policies defined through the PAP. Otherwise, the uPDP notifies the PXP,
who sends the corresponding control signal.

To ensure integrity, confidentiality and authenticity in the exchange of traces between DC and DP,
we take advantage of the facilities that IDS Trusted Connectors provide to avoid eavesdropping,
manipulation and impersonation [17]. The IDS defines two layers of security with regards to
communication between Connectors: point-to-point encryption using an encrypted tunnel and
end-to-end authenticity and authorization. The DC sends the traces generated by the processing
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engine to the DP using HTTP requests over the Internet or through a Virtual Private Network (VPN),
depending on the specific scenario. Regardless, HTTPS (the secure version of the HTTP protocol)
is used in both cases. HTTPS [56] makes use of an added encryption layer of SSL/TLS to protect
the HTTP traffic. Therefore, the point-to-point encryption is taken care of by this protocol. On the
other hand, end-to-end authenticity and authorization are covered using the OAuth 2.0 protocol.
As explained above, the DC includes an Authorization Header with the OAuth 2.0 token previously
created by the IdP in the HTTPS requests containing the traces. As the PEP Proxy intercepts such
requests before sending them to the uPDP, the identity and permissions of the DC are validated with
the IdP and the aPDP to ensure authenticity and authorization respectively.

Lastly, verifying the correct timestamping of the traces received is also crucial to avoid
replay-attacks [57]. Replay-attacks consist of resending an already sent request (trace) (maybe
repeatedly). In our proposal, timestamping verification is also delegated to the use of OAuth 2.0
by means of the inclusion of timestamps and nonces (nombers used once) in each one of the traces
generated by the DC. Adopting this mechanism, we can ensure that even if an attacker tries to replay
the trace, this request will be denied by the PEP Proxy because it is not possible to neither change the
timestamp nor the nonce used, since these values are also used in the signature (changing them would
invalidate the signature).

Besides the secure interchange of traces between DC and DP, privacy, non-repudiation and
integrity must be ensured in the whole data-sharing process, including the subscription and publication
requests between the Orion Context Broker (on the DP’s side) and the DC components. These
requests are also protected thanks to the security features of IDS Trusted Connectors explained above.
Thus, using encrypted requests, attackers cannot access shared data by brute force and, since all the
requests are signed, the identity of the actors cannot be impersonated.

5. Validation: A Case Study in the Food Industry

To validate the proposed architecture and implementation using FIWARE, a case study has been
developed in the food industry. The components presented in the implementation section have been
deployed to perform the policy definition and enforcement in a shared data ecosystem. The main goal
of this case study is to perform access and Usage Control over industrial data.

5.1. Scenario Ouverview

The scenario is composed by two actors: a food company (DP) and a marketing company (DC).
The former generates a great amount of data daily every time a client makes a purchase at one of their
grocery stores, which are later used for internal big data analysis. One data record is generated for
each purchase, which consists of the client id, the payment method, and the list of products purchased,
including the product name, price and quantity. The board of the company realizes that if they were
to share these data, they would allow other businesses to find new ways of extracting value from
them, thus creating another source of revenue for the company. A marketing company is interested
in the food company’s real-time data to identify trends and carry out instantaneous special offers
that take these into account. In order for the marketing company to be able to make this analysis,
the food company must provide a real-time channel to make their data available to them. However,
the food company wants to keep the marketing company from making an incorrect use of the data that
would jeopardize customers’ privacy. For the sake of data protection, a set of Usage Control policies
are defined to enforce some constraints over the shared data. In addition, since the communication
channel between the DP and the DC is in real time, it is impossible to know a priori the number of
data events there are going to be generated.

In this scenario, the DC deploys a Flink cluster for performing all the data processing operations.
On the other hand, the DP deploys all the components showed on the right side of Figure 5 (i.e., the
Orion Context Broker, Keyrock, Wilma, and the proposed Usage Control components), including the
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data generated and published by the cash registers on the Context Broker as part of the data
infrastructure stakeholder.

To simulate the grocery store data, we have extracted data from real purchases from an open
dataset released by a very popular French grocery store chain. We converted these data into a stream
of real-time notifications by triggering purchases periodically (in periods ranging from 25 ms to 5 s).
Each notification represents a single purchase and contains a timestamp, the payment method used,
and a comprehensive list of the items purchased, including, for each item, the quantity and the price.
As can be seen, very fine-grained information related to consumer habits can be extracted from these
data. Also, it becomes apparent that the more notifications the marketing company receives, the more
accurate their offers will be for the stores’ customers. It would be interesting to be capable of limiting
the throughput of data events to implement different monetization strategies.

5.2. Policy Specification

In the proposed scenario, the DP defines two main policies regarding data usage that apply to
any external DC. The natural language definition for these policies is:

e  Policy A: The DC shall NOT save the data without aggregating them every 15 min first or else
the processing job will be terminated

e  Policy B: The DC shall NOT receive more than 200 notifications from the Context Broker in 1 min
or else the subscription to the entity will be deleted

Policy A tackles one of the main concerns in data-sharing scenarios, which is anonymization.
For instance, individual purchases could be cross-referenced with credit-card statements inferring the
identity of the client and his/her consumer habits. By requiring the DC to aggregate data, the individual
attribute values in each notification are combined into a single value at least every 15 min (e.g., by
computing the mean, the maximum, the sum, etc.), thus guaranteeing that individual records are
not saved. If, for instance, the DC tries to print the data or send them somewhere else upon receipt,
this policy will be violated since the entirety of the data would be transferred away from the scope of
data Usage Control without anonymizing them first. In the event of policy violation, the job will be
immediately terminated by sending a signal to the DC’s Flink cluster manager. Regarding Policy B,
in scenarios involving large amounts of data, it is often useful to establish a limit in the throughput
of data that is shared (i.e., amount of notifications in a given time). As mentioned, one possible
application would be establishing different monetization strategies based on the maximum throughput
of notifications allowed. In this case, the limit is set to 200 notifications per minute. In the event of
noncompliance, the subscription to the entity for which the limit was surpassed will be removed.

As mentioned, in order to take full advantage of all the capabilities of data Usage Control,
usage policies must be defined by using a policy specification language and, although ODRL provides
a powerful interface to define these [58], in the future, it will be necessary to develop new vocabularies
and ontologies for tackling some currently uncovered cases. However, in this case study we include
a first approximation of the use of ODRL to declare the two policies that have been presented in natural
language. In Listing 1, we present the ODRL definition of policies A and B. ODRL defines three ways
to declare policy rules: “permissions”, “obligations” and “prohibitions”, providing different options to
express a policy. We use “obligations” combined with “constraints” and “consequences” for defining
our two policies. In each obligation, there is a “target”, which refers to a resource that is subject to a
rule, and an “action”, which is the operation that is forced to be perform on the target as part of the
obligation. Actions can be limited by “constraints”, which can be temporal, spatial, amount-based, etc.
In addition, “consequences” allow definition of what happens in case of noncompliance.

The first obligation represents Policy A. In this case, the “target” is the NGSI notification received
from the Context Broker. The action that the DC is required to perform in this policy is “aggregate”
(combine data individual values into one). In addition, we define constraints applied to said action:
the use of the terms “leftOperand”, “operator”, and “rightOperand” allow us to define the logical
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constraints to be applied. The values presented in this fragment of code means that the DC is
obliged to aggregate the notifications received at least every 15 min before generating an output.
Finally, as a consequence, we establish that a kill signal for stopping the running program associated
with this rule will be sent (“killJob” action). As can be seen, a similar approach is followed in the second
obligation, which represents Policy B. The aim of using ODRL is to provide dynamic capabilities so
as to enable the PTP to generate an extended automaton on the basis of the policies that will run on
the uPDP.

Listing 1: ODRL Specification of Policy A and Policy B.

"@context": ["http:/ /www.w3.org/ns/odrljsonld",
"http:/ /keyrock.fiware.org/FIDusageML /profile/FIDusageML.jsonld"],
"@type": "Set",
"uid": " http:/ /keyrock.fiware.org/FIDusageML/policy:1010",
"profile": "http:/ /keyrock.fiware.org/FIDusageML/ profile",
"obligation": [{
"target": "http://orion.fiware.org/NGSInotification”,
"action: "aggregate",
"constraint": [{
"leftOperand":"WindowNotification",
"operator": "gt",
"rightOperand": {
"@value": "PT15M",
"@type": "xsd:duration"}
1,
"consequence": [{
"action": "killJob",
"value": "http://orion.fiware.org /NGSIkilljob"
1

"target": "http://orion.fiware.org/NGSInotification”,
"action": "NGSIEventLimit",
"constraint": [{
"leftOperand": "NGSlevent",
"operator": "1t",
"rightOperand": {
"@value": "200",
"@type": "xsd:integer" }},
{
"leftOperand":"WindowNotification",
"operator": "gt",
"rightOperand": {
"@value": "PTIM",

"@type": "xsd:duration"}
1

"consequence": [{
"action": "unsubscribe",
"value": "http:/ /orion.fiware.org /NGSIunsubscribe"
H,
b

]
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The code that the PTP generates from the ODRL specification is showed in Listing 2. This program
is in charge of correlating complex events generated by the DC’s operations with the rules regarding
data usage. The value countPattern represents the maximum number of events (timesOrMore)
that can be received in the time window (within) specified in Policy A. Whenever the program
detects a behavior that fails to comply with this rule, it immediately passes the control to the PXP
(Signals.createAlert) in order to send the control signal to the corresponding component according
to the punishment previously defined. A similar pattern is applied to Policy B.

Listing 2: uPDP code generated from the ODRL Specification by the PTP.

val operationStream : DataStream|[ExecutionGraph] = stream
.filter (_.isRight)
.map(_.right.get)
.flatMap (_.msg. split (" — "))
.map (ExecutionGraph)

// Entity Stream

val entityStream : DataStream[Entity] = stream
. filter (_.isLeft)
.map(_.left.get )
.flatMap (_. entities)

// First pattern: At least N events in T. Any other time
val countPattern = Pattern.begin[Entity]("events" )
.timesOrMore ( Policies .numMaxEvents+1)
.within (Time.seconds(Policies . facturationTime))
CEP. pattern (entityStream , countPattern)
.select(events =>
Signals.createAlert (Policy .COUNT_POLICY, events, Punishment.UNSUBSCRIBE))

// Second pattern: Source —> Sink. Aggregation TimeWindow
val aggregatePattern = Pattern.begin[ExecutionGraph]
("start", AfterMatchSkipStrategy.skipPastLastEvent())
.where(Policies .executionGraphChecker(_, "source"))
.notFollowedBy ("middle")
.where(Policies.executionGraphChecker(_, "aggregation" ,Policies .aggregateTime))
.followedBy ("end")
.where(Policies .executionGraphChecker(_, "sink"))
.timesOrMore (1)
CEP. pattern(operationStream , aggregatePattern).select(events =>
Signals.createAlert (Policy . AGGREGATION_POLICY, events, Punishment.KILL_JOB))

5.3. Data Processing and Policy Enforcement

Once the policies have been defined, the DC may start to deploy processing jobs on their own
infrastructure with the aim of extracting value from the supermarket data received. In order to validate
the two policies defined by the DP, we have created two sample jobs that operate on the DP’s data:

Job I: Direct sinking of ticket data

The first job reads the data received from the DP and sends them somewhere else, outside of the
scope of the data usage architecture, in which operations on data are not monitored. Since this use
allows the DC to process each piece of data individually, without prior aggregation, it is a clear violation
of Policy A. When the DC deploys this job in the Flink cluster, an Execution Graph is calculated from
the program code. The Execution Graph is the central data structure that coordinates the distributed
execution of a data flow. It contains a representation of each parallel task, each intermediate stream,
and the communication among them. Figure 6 shows the Execution Graph generated for Job I,
in which all the operations performed on data are included. The first item in the Execution Graph
is a Custom Source. It indicates that the program uses a custom connector as an input for receiving
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data streams, in this case, the custom source is the one provided by the FIWARE Cosmos GE. Since no
additional operations are performed on data, the Source is immediately followed by a Data Sink, which
consumes Data Streams and forwards them to files, sockets, external systems, etc. or prints them on
the standard output.

Custom

Source | 7| SNk

Figure 6. Simplified Execution Graph of Job I.

The log containing the chain of operations (as shown in Listing 3) generated by the DC’s Flink
processing engine is sent to the uPDP, which will detect that the Execution Graph contains no
aggregation of data, thus failing to comply with Policy A. The uPDP will inform the PXP of this
violation, which will send the corresponding control signal described in the policy; in this case,
terminating the job as a punishment for noncompliance.

One major concern about using the Execution Graph for policy enforcement is ensuring that it
has been correctly generated. The processing engine itself is in charge of detecting all the operations
performed within a program and generating the Execution Graph. The integrity of the processing
engine relies on the use of trusted environments, achieved through IDS connectors, in which no
alteration of the run-time environment is allowed. Thus, all the operations that the processing engine
detects it must perform within a certain program are reflected on the Execution Graph and no operation
is overlooked or disregarded. The Execution Graph is reflected on a log which is then sent to the uPDP.
As far as the integrity, confidentiality and authenticity of the in-transit logs is concerned, it is ensured
by means of the mechanisms explained at the end of Section 4.

Listing 3: Sample Execution Graph Log generated by the DC’s Flink processing engine for Job L.

org.apache. flink .runtime . executiongraph . ExecutionGraph — Source: Custom Source —> Sink: Print to Std. Out
(1/1) (5dd7£fd1626577£325e61feleffc996c2) switched from SCHEDULED to~DEPLOYING.

Job II: Calculating average ticket price

The second job calculates the average ticket price for all the purchases of each store every hour.
This operation is an aggregation of data so, when the Execution Graph is checked by the uPDDP, it will
be verified that it complies with Policy A. Figure 7 represents the Execution Graph generated for this
use case. The logs that are sent to the uPDP containing this Execution Graph are shown in Listing 4.

Custom Trigger

Source || FlatMap —»  Map —» Map e oce R Sink

Figure 7. Simplified Execution Graph of Job II.

Listing 4: Execution Graph Log generated by the DC’s Flink processing engine for Job IL

2019-07—-18 11:07:59.773 [flink—akka.actor.default—dispatcher —2] INFO
org.apache. flink .runtime . executiongraph . ExecutionGraph — Source: Custom Source —> Flat Map —> Map —>
Map (1/1) (b613fa2767c444587f05a3502b8fc7b0) switched from SCHEDULED to~DEPLOYING.

2019—-07-18 11:07:59.773 [flink—akka.actor.default—dispatcher —2] INFO
org.apache. flink . runtime . executiongraph . ExecutionGraph — Deploying Source: Custom Source —>
Flat Map —> Map —> Map (1/1) (attempt #0) to~fc98c42cd3a0l

2019—-07—-18 11:07:59.778 [flink—akka.actor.default—dispatcher —2] INFO
org.apache. flink . runtime . executiongraph . ExecutionGraph — TriggerWindow (TumblingProcessingTimeWindows
(15000), AggregatingStateDescriptor {name=window—contents, defaultValue=null,
serializer=org.fiware.cosmos.orion. flink.cep.examples.examplel. AveragePrice$$anon$26$$anon$l1@3bbaf7ca},
ProcessingTimeTrigger (), AllWindowedStream.aggregate (AllWindowedStream.java:475)) —>
Sink: Print to Std. Out (1/1) (de683f055949331f5602e94b306ael0d) switched from SCHEDULED to~DEPLOYING.
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Besides sending the Execution Graph logs to the uPDP, each time the DC receives information
from one ticket, this event is logged and sent to the uPDP as well (as shown in Listing 5). If the uPDP
detects that the DC has received more tickets than the amount specified by Policy B (200), the PXP
will be notified and will enforce the corresponding punishment (i.e., removing the subscription to the
tickets” data).

Listing 5: Sample notification Log generated by the DC’s Flink processing engine for Job II.

2019—-07—-18 15:15:32.032 [nioEventLoopGroup—3—2] INFO
org.fiware.cosmos.orion. flink.connector.OrionHttpHandler —

{"creationTime":1563462932031," fiwareService ":"555" ," fiwareServicePath": "application/json;

charset=utf —8","entities ": [{"id":" ticket", "type":" ticket", "attrs":{" _id":{" type":" String","value":75,
"metadata":{}} ,"items":{"type":" object","value":[{"net_am":4.99 ,"n_unit":1," desc":"BREAD"} ,{"net_am":
5.5,"n_unit":2,"desc":"PIZZA HAM/CHEESE"} ,{"net_am":2.39 ,"n_unit":1," desc":"FRANKFURT SAUSAGES"},
{"net_am":0.05,"n_unit":1,"desc":"SHOPPING BAG"}]," metadata":{}} ,"mall":{"type":" String","value":1,
"metadata":{}} ," date":{"type":"date","value":"01/14/2016","metadata":{}} ," client ":{" type":"int"," value":
77053280208,"metadata ":{}}}}]," subscriptionld ":"5d308d139d5b4d3e64685da0 "}

Overall, the case study presented in this section, including the deployment of both DC’s jobs,
shows that the data usage architecture provides a way of verifying that the DC complies with a set of
predefined policies by the DP and of executing punishments in case of noncompliance.

5.4. Results

This subsection presents a series of metrics carried out in the case study presented that aim
to calculate the enforcement time of the policies defined. To this end, the two jobs presented were
deployed, achieving noncompliance conditions for both of them.

In accordance with the scheme presented in the implementation section, we define the deployment
of all the components as follows: every building block of the DC and DP was deployed using Docker
containers (Docker: https:/ /www.docker.com). However, in order to test the Usage Control policies
and obtain more accurate metrics, we deployed the DC and the DP in different platforms. On the
one hand, the DP’s containers were placed inside of a VM (Virtual Machine) in an Edge Computing
Infrastructure using OpenStack (OpenStack: https:/ /www.openstack.org), this VM has the following
features: 2VCPU’s, 4 GB RAM, 40 GB Disk. On the other hand, the DC’s containers were placed in a
local server located in the same network as the DP’s VM with the following specifications: 4.0 GHz
Intel core I7 CPU with 8 GB RAM and 256 SSD Disk. This deployment allowed testing different
policies and measure overhead time. The workflow of submitting a job on the DC’s side, detecting the
policy noncompliance, and enforcing the due punishment was repeated N times (N = 100) for each
policy. Through the system logs generated by the DC’s and DP’s containers, three different metrics
were calculated:

o  Decision time (T4): Time between the policy infringement on the DC’s side and the detection of
said infringement at the uPDP on the DP’s side.

e  Execution time (Ty): Time between the policy infringement detection at the uPDP and the
execution of the punishment at the PXP.

e  Total enforcement time (T}): Sum of T4 and Ty.

Table 2 summarizes the results obtained for each policy and interval, including the mean time (M)
and the standard deviation (SD). The results for each iteration can be seen in Figures 8 and 9.
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Table 2. Summary of enforcement time metrics.

Policy A Policy B

M SD M SD

T4 (ms) 1258 338 946 314
Tx(ms) 37 50 40 15
T (ms) 1295 345 986 316

As is apparent from the results shown in Table 2, the times registered for Ty are significantly larger
than those recorded for Tx. The main reason for this difference is the fact that T4 involves generating
the logs on the DC’s side, writing them on the processing engine’s log file and sending them to the
uPDP, which will receive them after they are first verified by the PEP. By contrast, the T is very low
since the PXP is embedded in the same program that the uPDP is running, which means that the delay
introduced stems from the time it takes to receive an acknowledgement from the control signal sent to
the system in charge of performing the actual punishment (to the Context Broker in order to remove
a subscription, or to the DC’s processing engine to cancel the job).

Furthermore, the slight difference in measurements for Ty between policies A and B draws from
the difference in response times between the Context Broker and the processing engine on the DC'’s side.
On the other hand, the difference in T4 between policies A and B is due to the fact that in the former,
the noncompliance is detected by inspecting the Execution Graph, which is received by the uPDP as
a single log, whereas in the latter, the uPDP needs to inspect the message history to confirm that the
notification limit established within the policy has been exceeded, which is a more costly operation.

As far as the total time (T;) is concerned, the Tx can be neglected for its calculation if the
punishment does not involve interacting with stakeholders outside a shared network (the Context
Broker, for instance). Otherwise, the network latency needs to be taken into account. This holds true
for the T4 as well, since typically the DC and the DP are in physically separate networks. The results
obtained for T; fall within a reasonable range of values for most use cases, in which new data are
generated every second or few seconds. However, in scenarios in which new data are published within
milliseconds, there could be a period between the infringement of the rules and the enforcement of the
punishments in which new data are unduly received by the DC. In order to verify that this was not the
case, we tested our solution under different stress situations. We deployed the use case scenario using
different frequencies of generation of new data. The main goal was to corroborate that no additional
data events arrived from the moment an infringement was committed and the moment that the due
punishment was executed. The use case scenario was tested for data generation periods ranging from
5sto25ms (5s,1s,500 ms, 250 ms, 100 ms, 50 ms, 25 ms), repeating each simulation 100 times.
We found that all the situations of data infringement were detected, and the appropriate punishment
was enforced in due time in 100% of the cases. Thus, no new information was unduly received after
failing to comply with a certain policy. Nevertheless, it is worth pointing out that for periods under 25
ms, we have to consider the throughput limit of the SDS (in our case the Context Broker) since this
component is the one that determines the actual speed at which data will be sent to the endpoints that
are subscribed to new data.

Prior works [33,34] have also collected a series of metrics to validate their models. For example,
Marra et al. [34] determine if the performance of their Usage Control system is higher whether
it is applied to local or remote attributes. Furthermore, instead of measuring enforcement time,
Wau et al. [33] focus on performance at the Access Control level. Although an exact comparison
between said models and the one presented in this work cannot be performed, since none of the works
found in the existing literature provide measurements of the decision and enforcement times, it can be
seen that the measurements for delay and response times are in the same order of magnitude.
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6. Conclusions and Future Work

The implementation of the architecture presented in this paper provides a comprehensive and
affordable solution for providing access and Usage Control in industrial data ecosystems. One of
the advantages of this proposal stems in the fact that it is suitable for being implemented in a wide
range of different scenarios since it is a technology-agnostic solution. This characteristic, along with its
fine-grained Access and Usage Control capabilities and its multi-actor architecture contributes to fill
the gap in the existing literature.

Moreover, this piece of research also presents an implementation of the referenced architecture
using FIWARE Generic Enablers that completes the previously proposed implementation of IDS
architecture [17]. The implementation presented has been validated with a use case in the food industry,
presenting a series of metrics of the response time of policy compliance verification and punishment
enforcement. The data Usage Control components developed in the scope of this work (uPDP,
PXP and PTP) have been proposed and accepted as a new Generic Enabler in the FIWARE catalogue.

As a conclusion to this work, we identify the need for defining a policy specification language
capable of handling the fine-grained policy definitions to provide data Usage Control capabilities
in Industry 4.0. Furthermore, we consider that this architecture could be extended to become
GDPR-compliant by introducing the GDPR regulation rules inside the definition of the policies and
deploying them inside this architecture. The work presented in [59] provides a preliminary version of
the definition of ODRL policy specification oriented to GDPR. This is still an ongoing research topic.
We consider that providing an ODRL vocabulary for GDPR and some policy examples can lead to
the inclusion of this vocabulary as an ODRL extension in the W3C working groups and further be
supported by the community interested in this topic. We will focus our future efforts on the Policy
Specification Language definition, conceived as an extension of ODRL, as well as the definition of
a common vocabulary that allows standardization and identification of the events and traces of the
system for the different processing engines. Additionally, we intend to develop new and more complex
tests that allow us to extract additional metrics in the scope of data protection.

Another possible area of future research would be to investigate the integration of Blockchain
technologies within the Usage Control proposed architecture. Data Providers could store the Usage
Control policies that are applied to specific data and to specific Data Consumers in the distributed
ledger and check them whenever the latter perform an operation. Blockchain scales best with
lightweight information types, so the data itself should remain out of the ledger and only the metadata
representing the data to which Usage Control policies are applied should be stored in the ledger.
This approach would enhance trust and transparency over data accountability and traceability between
consumers and providers. However, further research needs to be performed on how to integrate
Blockchain in dynamic environments with high density of requests such as those in IoT scenarios.
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