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Abstract: Toxic trace elements in farmland soils are potential threats to human health. In this study,
we collected soil samples from the farmlands of southern Guangzhou. We used a sequential indicator
simulation (SIS) to deal with the problem of skewed distribution in the sample data. We assessed the
human health risks, as well as the uncertainties, of five toxic trace elements: arsenic (As), cadmium
(Cd), chromium (Cr), lead (Pb), and mercury (Hg). The results were as follows: (1) The risk indices of
two trace elements (Cd and Hg) were less than the standard threshold, which means that there was
no human health risk due to Cd and Hg in the study area. However, the maximum risk indices of
As, Cr, and Pb exceeded the standard threshold. In particular, the maximum risk index of Pb was
twice the standard threshold; (2) The risk probabilities of As and Cr were less than 25% in most areas,
and only a few parcels of farmland have a 100% risk probability. The risk map of Pb was used to
identify contiguous areas of high-risk probability (i.e., 75%–100%) in the center of the study area.
(3) E-type estimation by the SIS method overestimates the risk when the number of samples with
concentrations above the threshold have a large proportion of total samples. Our conclusions are as
follows: (1) The simulation results show that areas with high-risk indices were concentrated in the
Panyu District, which is close to the Pearl River and the core urban area of Guangzhou; (2) Except
for Pb, these trace elements are not likely to pose health risks in southern Guangzhou; (3) This
study considers the risk probability found with the SIS method to be more reliable for visualizing
regional risk.

Keywords: toxic trace elements; sequential indicator simulation; human health risk; farmland;
risk mapping

1. Introduction

As a common land-use type, farmland affects human well-being [1]. However, with the rapid
development of urbanization and industrialization, toxic trace elements may contaminate farmland soils
through diverse ways, such as irrigation, deposition, and runoff [2]. Toxic trace elements in contaminated
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farmland can easily enter the human body through breathing, skin contact, and food intake [3], which
can result in lesions or cancerous changes in the human body [4]. For example, cadmium (Cd) intake can
cause diseases such as lung cancer, kidney dysfunction, and high blood pressure [5]. Lead (Pb) intake
can cause symptoms such as lead poisoning, anemia, kidney disease, and gastrointestinal cramps [6].
Hexavalent chromium (Cr) is a recognized carcinogen [7]. The body’s central nervous system is
affected negatively by arsenic (As) and mercury (Hg) intake [8,9]. The long-term accumulation of toxic
trace elements in farmland comprises a major threat to human health. Regional health risk status of
toxic trace elements are important for the protection of human health, food security, and farmland
environments [10]. In order to obtain regional health risks accurately and effectively, it is important
to quantify trace element toxicity [11]. Human health risk assessment is a key method for risk
quantification [12,13], which can help in the management of health risks, pollution warnings, and soil
restoration [14].

Human health risk assessment calculates the risk of toxic trace elements by using the elemental
concentrations of the samples [11,15]. There are two types of methods for human health risk assessment:
methods based on deterministic models and methods based on stochastic models.

The first type of method is based on deterministic models. These methods construct a risk assessment
model using the mechanisms of the exposure pathway, dose-response relationship, and crop reflection
relationship. This type of model obtains the required parameters by referring to relevant institutional
guidelines or scholarly research. Then, the health risk of the study area is calculated by the average hazard
index with the soil trace element concentrations at the sampling points [16,17]. For example, Gu et al. [18]
referred to the manual exposure factors and parameters in the technical guidelines for contaminated site
risk assessment [19], in order to obtain human health risk assessments in 28 urban parks in Guangzhou.
They calculated the average hazard index of the carcinogenic and non-carcinogenic risk of each park
and concluded that no human health risk existed in the urban parks in Guangzhou. Sawut et al. [7]
used a series of existing studies to determine the intake rate, intake time, and other parameters of
trace elements. They calculated average hazard indices for both children and adults, and obtained the
human health risks of vegetables in Northwest China. However, due to the individual differences
of soil environmental variables and a lack of prior knowledge, trace element concentrations may
have a high degree of spatial variability. The parameters of this model, therefore, have considerable
uncertainty. Most of these parameters are determined directly by referring to existing guidelines or
research. Moreover, the researchers calculated the average value of the hazard index to obtain the
degree of regional risk, which may lead to smoothing effects. This method might overestimate or
underestimate the risk. Some researchers have estimated the regional risk without considering the
uncertainties involved [20].

The second type of method is based on stochastic models. These methods use stochastic simulation
to calculate the uncertainty of the model parameters for human health risk assessment [21,22].
The stochastic simulation takes values randomly based on the cumulative distribution of the variable
data, and produces multiple simulation results to obtain the risk and its uncertainty [23]. For example,
Chen et al. [20] used a Monte Carlo simulation to solve the parameter uncertainty problem caused by a
lack of prior knowledge when evaluating human health risk in the surface soil of Beijing. They obtained
the human health risk situation and its uncertainty in the Beijing sampling area. Albuquerque et al. [24]
used a sequential Gaussian simulation to obtain the uncertainty of the high and low-risk areas while
studying the risk levels of 14 trace elements in the Aviles Estuary in Spain, and visualized the risk
using a mean value map. However, data conforming to a normal distribution is a requirement for
these methods. For instance, a Monte Carlo simulation may lead to more errors when the number of
samples is not sufficient or the probability distribution is biased. In addition, a sequential Gaussian
simulation loses information when the data are processed and transformed.

Human health risk assessment based on the uncertainty model can objectively reflect the risk
of toxic trace elements. However, the current uncertainty model research is based on the condition
that the frequency distribution of the sample data follow a normal distribution. Meeting the normal
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distribution requirements may be difficult when using sample data of trace elements in farmland,
especially when the trace element concentrations have abnormal values. Simple abnormal value
processing methods are prone to smoothing effects, which results in the loss of information in key
areas [14,25]. Moreover, due to the cost limitations of sampling, the number of samples is often
limited. Abnormal values influence the frequency distribution, but often contain information about
contamination by toxic trace elements. Therefore, we cannot simply eliminate the abnormal values.
Therefore, we need to study the use of uncertainty models in obtaining human health risk when the
frequency distribution of the sample data has a non-normal distribution.

To obtain the human health risk of toxic trace elements in farmland, this study uses a non-parametric
statistical sequential indicator simulation method to address the problem of the sample data frequency
distribution. This study focuses on (1) simulating the regional farmland health risk of each trace
element; (2) assessing their uncertainty; and (3) mapping the spatial distribution of the human health
risk probability.

2. Materials and Methods

2.1. Study Area

The accumulation of toxic trace elements in farmland, especially around megacities, may result
in a high probability of human health risks [18,20]. Guangzhou, a rapidly growing city, is one of
the largest cities in South China. Guangzhou is located in the center of Guangdong Province, and is
adjacent to Hong Kong and Macau. Guangzhou has a maritime subtropical monsoon climate, with an
annual average temperature of 22.8 ◦C and average annual precipitation of 1800 mm. The Pearl River
system passes through Guangzhou. It has a population of over 20 million. Human activity has a huge
impact on this city. Due to the high degree of urbanization, few farmlands remain in the main urban
areas of Guangzhou. Therefore, we selected the southern part of Guangzhou (i.e., Panyu and Nansha
District) as the study area in this study, which has a lower urbanization level and contiguous farmland.

2.2. Soil Sampling and Laboratory Analysis

We designed the sampling plan according to land use/cover data of the study area. We sampled
in the farmland as evenly as possible, with 195 samples (0–20 cm) throughout the farmland in 2015.
Figure 1 shows the spatial distribution of the sample points.
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In this study, the selection of trace elements was based on the existing toxic trace element
contamination research of Guangzhou [26–28]; we also refer to the “12th Five-Year Plan for Heavy
Metals Contamination Comprehensive Prevention and Control” of China, and the “13th Five-Year
Plan for Heavy Metals Contamination Comprehensive Prevention and Control” of Guangdong
Province. We selected five trace elements for study: lead (Pb), cadmium (Cd), chromium (Cr), mercury
(Hg), and arsenic (As). We determined the total amounts of these five trace elements. We used
the HF-HNO3-HClO4 digestion method to process lead (Pb), cadmium (Cd), and chromium (Cr).
We determined Cd and Pb by graphite furnace atomic absorption spectrometry and we determined Cr
by flame atomic absorption spectrophotometry. The atomic absorption spectrometer (graphite furnace)
used was the Z-2000 (HITACHI). The flame atomic absorption spectrometer used was the Z-5300
(HITACHI). Arsenic (As) and mercury (Hg) were processed with HCl-HNO3 and were determined by
reduction-gasification atomic fluorometry. The atomic fluorescence photometer used was the AFS-930
double-pipe atomic fluorescence spectrometer (Beijing Titan Instruments).

2.3. Uncertainty Assessment of Human Health Risks

2.3.1. Sequential Indicator Simulation of Soil Data

Sequential indicator simulation is a stochastic simulation method based on non-parametric
statistics. Its indicator model has good flexibility and does not require the data used to satisfy any certain
distribution type [29–31]. Moreover, the simulation has a small smoothing effect. This method does
not ignore abnormal values in areas, which makes the simulation result closer to the real situation [14].
Information about the extreme values in the abnormal region can be utilized [32].According to the
existing research, SIS can be divided into the following four steps [29]:

(1) The original sampled data are indicator transformed. The user obtains a priori conditional
cumulative distribution function (CCDF) according to the Kriging method.

{
Z(xi), i = 1, 2, . . . , n

}
is a

set of sampled data under the K-group threshold (zk). The more quantiles (thresholds) that are selected,
the more reliable the CCDF is [33]. The indicator variables are encoded as 0 or 1 by the indicator
function I(xi) (Equation (1)) [29]:

I(xi) =

{
1, x ≤ zk

0, x > zk
(k = 1, 2, . . . , K). (1)

(2) Using the known raw data as conditional data, the user obtains the conditional prior
probability F(x) = Z(xi) ≤ zk

∣∣∣C(xi) . This probability uses the indicator Kriging estimate to extrapolate
its conditional cumulative distribution function Fz(x).

(3) The user divides the study area into grids of uniform resolution and defines a random path
through all grid nodes. This method extracts a value from Fz(x) randomly as the simulation value
at the first grid position. Then, the user obtains the estimated value Î of the CCDF at the target grid
(Equations (2)) [29]:

Î(x0; zk) = Prob∗(Z(xi) ≤ zk
∣∣∣C(xi)). (2)

(4) The above new value is added to the conditional data set. The grid’s prior condition cumulative
distribution function Fz(x) for the next simulation position is modeled by this new data set. This process
is repeated until all grid nodes are simulated.

This method obtains n realizations by repeating the above-mentioned steps. In n realizations,
the number of grid values exceeding the threshold is n1 and the uncertainty (above threshold probability)
of this grid is n1/n. Each realization of the sequential indicator simulation has equal probability [25,32].
Some studies have also used conditional means (E-type estimate) of n realizations to obtain the spatial
distribution of trace element concentrations [29–31]. In the calculation process, we used the GS +

9.0 software to obtain the experimental semivariogram and variogram models of each threshold.
We realized the stochastic simulation with the SGeMS v2.5b software.
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2.3.2. Human Health Risk Assessment

Human health risks contain carcinogenic and non-carcinogenic risks. Toxic trace elements enter
into the human body in different ways, such as oral intake, skin contact, and inhalation [34]. Existing
research has demonstrated that As and Cd have carcinogenic effects [35]. Hexavalent chromium (Cr6+)
is carcinogenic to humans, but trivalent chromium (Cr3+) has not been defined as being carcinogenic
yet [35]. However, Cr6+ is more unstable than Cr3+ in nature [36]. Chromium in the soil is more
inclined towards the stable state of Cr3+ [37]. Therefore, the reference parameter is the parameter
of Cr3+ in this study, and we only consider the non-carcinogenic risk of Cr. The non-carcinogenic
assessment of trace elements include Hg, Pb, and Cr. We used an exposure model based on the US
EPA model [38]. The equations (Table A1) and parameters (Tables A2 and A3) refer to the Technical
Guidelines For Risk Assessment of Contaminated Sites and Regional Screening Levels [19,38]. Due to
the different dietary and living habits of people in different countries, the exposure parameters of
health risk are different. The Technical Guidelines For Risk Assessment of Contaminated Sites was
used to correct some parameters, according to the actual situation in China [19].

This study takes into account the effects of toxic trace elements on adults and children. The tolerance
value for carcinogenic risk (CR) is < 10−4 [19,38]. A non-carcinogenic hazard index (HI) below 1.0
indicates the absence of non-carcinogenic health risk [19,38]. We used the ArcGIS 10.2 software to
visualize the risk. The risk assessment model (Equations (3)–(10)) was as follows [19,38]:

(1) Carcinogenic:
Oral risk : CRois = OISERca ×Csur × SFo (3)

Dermal risk : CRdcs = DCSERca ×Csur × SFd (4)

Inhalational risk : CRpis = PISERca ×Csur × SFi (5)

Carcinogenic risk : CRn = CRois + CRdcs + CRpis (6)

(2) Non-carcinogenic:

Oral risk : HQois = OISERnc ×Csur/(RfDo × SAF) (7)

Dermal risk : HQdcs = DCSERnc ×Csur/(RfDd × SAF) (8)

Inhalational risk : HQpis = PISERnc ×Csur/(RfDi × SAF) (9)

Non− carcinogenic risk : HIn = HQois + HQdcs+HQpis. (10)

2.3.3. Uncertainty Model Accuracy Evaluation

The accuracy of the uncertainty model was evaluated by the symmetric p-probability intervals
(p-PI) [29]. The conditional cumulative probability distribution function F(u; ζ) at any location u allows
for the computation of p-PI bounded by (1-p)/2 and (1+p)/2. For example, the 0.5-PI representation is
[F−1(u; 0.25), F−1(u; 0.75)]. In this case, the correct uncertainty model would show that there is a 0.5
probability that the actual observations at u falls into this interval [29]. We calculated the probability
that an observation falls into p-PIs as follows (Equations (11) and (12)) [29]:

ζ(p) = 1/N ×
∑N

j=1
ζ(u j; p), ( j = 1, . . . , N; N = 195). (11)

ζ
(
u j; p

)
=

 1 i f F−1
(
u j; (1− p)/2

)
< Z

(
u j

)
< F−1

(
u j; (1 + p)/2

)
0 otherwise

. (12)
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A smaller root mean square error (RMSE) means higher accuracy [39]. The RMSE was calculated
as follows (Equation (13)) [39]:

RMSE =

√
1/n×

∑n

i=1

[
pi − ζ(p)

]2
(i = 1, . . . , n; n = 195). (13)

3. Results and Discussion

3.1. Preliminary Data Description

Table 1 shows the results of the descriptive statistics of five trace elements in southern
Guangzhou farmland.

Table 1. General descriptive statistics of each trace element.

Element Mean
(mg/kg)

Minimum
(mg/kg)

Maximum
(mg/kg)

Standard
Deviation
(mg/kg)

Skewness Kurtosis Coefficient
of Variation

Background
Value

(mg/kg)

Kolmogorov-
Smirnov

Significance

Cd 0.18 0.05 0.48 0.06 0.58 1.53 36% 0.11 3.60 × 10−1

Hg 0.13 0.03 0.46 0.08 1.59 2.02 63% 0.13 0
As 10.30 0.66 42.62 8.34 1.67 2.89 81% 25 8.28 × 10−5

Pb 51.75 19.10 122.00 16.48 1.47 3.87 32% 60 1.39 × 10−2

Cr 69.74 20.83 156.47 22.63 0.22 0.23 32% 77 3.57 × 10−1

Note: Kolmogorov Smirnov significance less than 0.05 means that the data do not meet the normal distribution.

The main soil types of farmland were paddy soils and red soils in study area. The main soil texture
was loam. The clay content was in the range of 22%–43%. The maximum, average, and minimum
pH values were 8.2, 5.7, and 3.9, respectively. By comparing the background values of risk screening
values for soil trace elements of the Pearl River Delta area [40], the maximum values of the five trace
elements were seen to be higher than the soil background values. This indicated that trace elements
have external inputs in the study area. Furthermore, the average values for Cd and Hg were larger
than the soil background values, indicating that the Cd and Hg accumulation was high. Previous
studies have found that urban land and mining areas had contamination of toxic trace elements in
Guangzhou [18]. Soil trace elements of farmland in Guangzhou are likely to pose risks to crops,
humans, and the environment. Due to the high urbanization development in Guangzhou, as seen in
Figure 1, farmland in the Panyu and Nansha Districts is very close to urban areas. Therefore, studies of
the human health risks of toxic trace elements in this farmland has been deemed necessary.

The coefficient of variation (CV) is the ratio of the standard deviation to the mean [41]. The CV
reflects the degree of dispersion of variables. The coefficient of variation of the five trace elements was
in the range of 32%–81%. The order of variation was As > Hg > Cd > Cr = Pb. The coefficients of
variation of As and Hg were relatively large, indicating that these two trace elements may be greatly
affected by human activity. The asymmetry coefficients (skewness) of the five trace elements were all
greater than 0, as can be seen in Table 1; therefore, their data frequency distributions had a certain
positive bias. The order of deviation was As > Hg > Pb > Cd > Cr. The Kolmogorov-Smirnov (K-S) test
showed that As and Hg had a significance of less than 0.05, which means that their data distribution
was not normal. We could not use those data to provide a good result with some uncertainty models,
such as Monte Carlo or a sequential Gaussian simulation [42].

3.2. Uncertainty Assessment of Human Health Risk Based on SIS

3.2.1. Human health Risk Threshold of Each Trace Element

We used the concentrations of trace elements to calculate human health risks at each sample point.
Then, we calculated the average values of sample points to obtain the human health risk indices (CR or
HI) for the five trace elements. According to the risk standard value, a cancer risk index (CR) below
10−4 is acceptable, and the non-carcinogenic hazard index (HI) indicates no hazard when it has a value
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less than 1.0. As shown in Table 2, the CR of As and Cd were less than 10−4, and the HI of Hg, Pb,
and Cr were less than 1.0. This result meant that the carcinogenic risk of the study area was acceptable
and non-carcinogenic hazards did not exist in the study area. However, this method may ignore the
risk information of abnormal value of some samples.

Table 2. The cancer risk index (CR), non-carcinogenic hazard index (HI), and threshold of human
health risk of each trace element.

Carcinogenic Elements Non-Carcinogenic Elements

As Cd Hg Pb Cr

CR (Mean) 2.80 × 10−5 6.94 × 10−7 - - -
HI (Mean) - - 0.07 0.98 0.51

Threshold (mg/kg) 36.81 26.27 1.80 52.85 137.34

According to these judgments and the US EPA’s health risk model, we calculated the CR and
HI risk thresholds for each trace element. The threshold of concentration of a carcinogenic trace
element was calculated as Csur = 10−4/ (Oral risk factor + Dermal risk factor + Inhalational risk factor).
The threshold of concentration of a non-carcinogenic trace element was calculated as Csur = 1/ (Oral
risk factor + Dermal risk factor + Inhalational risk factor). Table 2 shows those thresholds. As can be
seen in Table 1, the concentrations of As, Pb, and Cr exceeded their risk thresholds. Therefore, certain
risks existed in some areas of the study area.

3.2.2. Human Health Risk Assessment Based on SIS

We used the thresholds (Table 2) to perform a sequential indicator simulation. This method needs
the a priori information of the corresponding indicator Kriging. As the distribution of sample points
was non-uniform, we used the average nearest neighbor method to determine the step size. According
to the rule of thumb, the number of steps is equal to half the maximum distance between pairs of
sample points divided by the step size. We took the quartile of each trace element concentrations as the
threshold value, and obtained experimental semivariogram and variogram models of each threshold
condition. Table A4 lists the parameters of the experimental semivariograms and the fitted models for
each trace element. According to the size of the study area and the operation time of grid division,
we divided the study area into of 620 × 510 grid, where the size of each grid was 100 m × 100 m.
We carried out 1000 realizations in each grid by SIS. Then, we obtained the risk index of CR or HI
for each trace element by calculating the E-type estimates. The E-type estimates showed the spatial
distribution of the risk index (Figure 2).

As shown by the risk index distribution map (Figure 2), the clusters with high values of each trace
element were mostly concentrated in the north and central regions of the study area. These areas were
mainly close to the Pearl River and the urban areas of the Panyu District (Figure 1). This showed that
urban areas have an impact on trace elements of farmland around cities. The cancer risk index (CR) of
As exceeded the threshold (10−4) in some areas. The cancer risk index (CR) of Cd did not exceed the
threshold (10−4), which meant there was no risk of Cd in the study area. The maximum non-carcinogenic
hazard index (HI) of Cr and Pb exceeded the threshold (1.0). In particular, the maximum non-carcinogenic
HI of Pb was twice the standard threshold. The non-carcinogenic hazard index (HI) of Hg did not exceed
the threshold (1.0), which meant there was no risk of Hg in the study area. According to the spatial
distribution of risk index, the risk areas comprised only a small part of the study area.
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3.2.3. Uncertainty Assessment

From the above-mentioned CR or HI of trace elements, Cd and Hg were unlikely to pose a risk to
human health in the study area. However, the maximum risk values of As, Pb, and Cr exceeded the
threshold. We calculated the probability of each grid exceeding the risk for As, Pb, and Cr. The process
was as follows: the risk threshold of each trace element was set as the criterion. Then, we counted
the number (n1) of each grid when the trace element concentration exceeded the risk threshold in n
realizations; the risk probability of the grid was calculated with p = n1/n. Figure 3 shows the spatial
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Figure 3 shows that most of the risk probabilities of As and Cr ranged from 0% to 25%, which
indicates a low-risk level. However, areas of high-risk probability (75% to 100%) also existed. The 100%
risk probabilities for As and Cr only existed in a few grids. According to the size of the grid, a few
parcels of farmland had certain health risks. Therefore, the overall risks of As and Cr were acceptable
in the study area. We should give much more attention to the at-risk farmlands. Figure 3 also shows
the risk probability of Pb. Most of the risk probabilities of Pb ranged from 25% to 50%, which indicates
a moderate-risk level. The high-risk probability (75% to 100%) areas of Pb were concentrated in the
central part of the study area. Furthermore, areas of 100% risk probability of Pb existed in some grids.
The management should give priority to and carry out monitoring in these farmlands.

According to the grid statistics (Figure 4), most risk possibilities of As and Cr were less than 25%.
Therefore, most areas were low-risk situations, which indicates that these trace elements were less likely
to pose health risks in southern Guangzhou. The proportion of moderate-risk areas (25% < probability
< 75%) for Pb was 80.06% in the study area. The proportion of high-risk areas (probability > 75%) for
Pb was 1.2%, with an area of 2.8 km2. Therefore, the study area had a moderate-risk of Pb. The risk
probability can help to determine the key risk control areas of farmland. The management should set a
certain monitoring threshold, and consider more sampling and analysis of toxic trace elements in these
farmlands. It is necessary to take more protection measures in these farmlands.

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 18 

 
Figure 3. Spatial distribution for the risk probability of each trace element. 

Figure 3 shows that most of the risk probabilities of As and Cr ranged from 0% to 25%, which 
indicates a low-risk level. However, areas of high-risk probability (75% to 100%) also existed. The 
100% risk probabilities for As and Cr only existed in a few grids. According to the size of the grid, a 
few parcels of farmland had certain health risks. Therefore, the overall risks of As and Cr were 
acceptable in the study area. We should give much more attention to the at-risk farmlands. Figure 3 
also shows the risk probability of Pb. Most of the risk probabilities of Pb ranged from 25% to 50%, 
which indicates a moderate-risk level. The high-risk probability (75% to 100%) areas of Pb were 
concentrated in the central part of the study area. Furthermore, areas of 100% risk probability of Pb 
existed in some grids. The management should give priority to and carry out monitoring in these 
farmlands. 

 
Figure 4. Grid statistics of risk probabilities of As, Pb, and Cr. 

According to the grid statistics (Figure 4), most risk possibilities of As and Cr were less than 
25%. Therefore, most areas were low-risk situations, which indicates that these trace elements were 
less likely to pose health risks in southern Guangzhou. The proportion of moderate-risk areas (25% < 
probability < 75%) for Pb was 80.06% in the study area. The proportion of high-risk areas (probability 

Figure 4. Grid statistics of risk probabilities of As, Pb, and Cr.

3.3. Accuracy Evaluation of the Uncertainty Model

We evaluated the accuracy of the risk uncertainty. Nine p-PI intervals (“10%”, “20%”, “30%”,
“40%”, “50%”, “60%”, “70%”, “80%”, and “90%”) were calculated to obtain the probability that the
sample point fell into the p interval. The closer the scatter is to the standard line (i.e., y = x), the more
accurate the result. The results in Figure 5 show the accuracy of the evaluation results for the risk
probability (CR or HI). The scattered lines are all close to the standard line. The RMSE level was also
low: the RMSE of As, Pb, and Cr were 0.0218, 0.0208, and 0.0211, respectively. The RMSE indicated
that the overall accuracy of the uncertainty evaluation was effective [39].
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3.4. Discussion

3.4.1. Comparison of Human Health Risk Results

The coefficient variation (CV) of As was large, which means that the accumulation of As was
mainly caused by human factors. The areas with high concentrations of As were close to the Pearl
River basin in this study. The Panyu and Nansha District are delta areas where the sediments of the
Pearl River accumulate, and the irrigation of the farmland in these areas depends on the Pearl River
and its tributaries. The discharge of sewage and wastewater results in the increase of As concentrations
in the Pearl River [43,44], which may cause the accumulation of As. At the same time, the productive
process of Guangzhou’s non-ferrous metal production is the main source of As in the atmosphere.
Dust deposition has a negative impact on outdoors environments, and the CR of As has been found to
exceed the threshold in urban areas of Guangzhou [45], which is consistent with the results of this study.
However, we also found that most of the risk of As did not exceed the unacceptable level in farmland
of Guangzhou, and the risk management can be strengthened according to the risk probability.

From the results of the risk assessment for Cr, the risk probabilities of most farmlands were at a
low-risk level (0%–25%). The health risk of Cr was found to be acceptable in Guangzhou City in other
studies [18,45,46], in accordance with the results of this study. Very few farmlands exhibited a high-risk
situation, and the spatial distribution did not show any tendency for aggregation. Therefore, we should
analyze the high-risk fields, in order to determine if they are associated with point-source pollution.

Traffic activities have been shown to have a serious impact on the Pb pollution in the urban
surface soil of Guangzhou [28,47]. The concentration of Pb in the soil has been positively correlated
with the traffic load of the road [48]. The spatial distribution of Pb’s human health risk in farmland
was scattered in this study. Most grids of risk probabilities (50%–100%) were near roads. In addition,
most of these roads are expressways. Furthermore, Pb-containing substances enter the ground through
industrial emission, coal combustion, and waste incineration [49,50]. Those problems also affect the
farmland soil of this city. In this study, Pb is a toxic trace element which can pose health risks in some
farmlands. Management should monitor the tendency of Pb accumulation to control the risk.

We found that there has no human health risk of Cd and Hg in the farmland soil of southern
Guangzhou under the current conditions. In other studies on toxic trace elements in Guangzhou,
the areas with high concentrations of Cd and Hg appeared in the core urban area of the city [51]. Those
core urban areas are close to the north of the study area. At the same time, the human health risks of
Cd and Hg in other studies were found to be acceptable for Guangzhou’s urban environment and
atmospheric particles [18,52,53]. These conclusions were similar to our results.
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3.4.2. Selection of Risk Mapping Based on the SIS Method

The SIS method can obtain the probability (above threshold) and conditional means (E-type
estimate) for each variable grid [29]. Some studies have obtained the spatial distribution of regional
trace element concentrations by using E-type estimates [3,14,31]. According to the risk threshold,
the spatial distribution of regional trace element concentrations also can provide a reference for regional
risk management [3,31].

We considered three kinds of numbers: the number of sample points whose sample concentration
exceeded the risk threshold, the number of grids whose E-type estimated value exceeded the risk
threshold, and the number of grids with 100% risk probability (Table 3). Combined with the spatial
distribution of risk probability (Figure 3), locations of the sample concentration above the threshold
were consistent with 100% risk probability locations. The numbers were equal or close for sample
points and 100% risk probability grids. At the same time, the number and distribution (Figure 6) of
over-risk grids (E-type estimate) of As and Cr were consistent with the over-risk sample point and the
100% risk probability grid. However, the number of over-risk grids (E-type estimate) of Pb were much
greater than the 100% risk probability grid. This shows that these grids have a low risk probability but
have a high E-type estimate value: which means that the high values in the grid have a small quantity,
but a large contribution of the E-type estimate.

Table 3. Grid statistics for exceeding risk threshold of each trace element.

Elements Sample Point Grid Quantity
(100%)

Grid Quantity
(E-type)

As 3 3 3
Cr 1 1 1
Pb 73 65 14,614
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The risk threshold may have an impact on the accuracy of risk judgement made by the E-type
estimate. Before the calculation of the E-type estimate, the sample data is divided into sub-intervals by
quantiles. We then multiply the subinterval probability by the average of the subinterval to obtain the
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E-type estimate. The average value of the sub-interval is calculated by the head and tail values of these
sub-intervals [54–56]. The number of sampling points whose sample concentration (Pb) exceeded
the risk threshold was 42% of the total. We divided the Pb data into four sub-intervals (by quartile).
We can see that the risk threshold was lower than the average of the third sub-interval (i.e., 2nd quartile
to 3rd quartile). This is the reason why the E-type estimate is easily greater than the risk threshold.
Therefore, when the number of samples with concentration above threshold has a large proportion of
total sample amount, the E-type estimate overestimates the risk. Therefore, we tend to use the risk
probability by using the SIS for risk judgement.

4. Conclusions

This study assessed the human health risks of toxic trace elements in the farmland of southern
Guangzhou, a rapidly developing area of China. We also analyzed the risk uncertainty and visualized
the regional risk probability. We drew the following conclusions.

The high-value areas of the human health risk index were concentrated in the north-central area
(Panyun District) of the study area, which is close to the main urban area of Guangzhou, and has
frequent human activities. We found that high urbanization poses a hazard to human health in
farmland. We calculated the risk index of each trace element by using a risk assessment model of
human health. The maximum risk indices of Cd and Hg were less than the standard threshold,
while the maximum risk indices of As, Cr, and Pb exceeded the standard threshold. In particular,
the maximum risk index of Pb was twice the standard threshold.

We visualized the risk uncertainty to obtain the risk probability distribution map. Most of the
risk probabilities of As and Cr were between 0% and 25%, which indicates a low-risk level. The 100%
human health risk probability areas of As and Cr were only a few parcels of farmland. Most of the
risk probabilities of Pb were between 25% and 50%, which indicates a moderate-risk level. Some
areas (2.8 km2) had a 100% probability health risk of Pb; we should give more attention and take more
protection measures for farmland in these areas. The RMSE of the risk uncertainty model was low.
The order of RMSE was As > Pb > Cr and the accuracy of the uncertainty model was acceptable.

We found that the mean estimate using traditional methods may underestimate the human health
risks. Moreover, the E-type estimate by the SIS method overestimated the human health risk when
the number of samples with concentration above the threshold had a large proportion of total sample
amount. Therefore, we suggest using the risk probability by the SIS method to visualize regional
human health risks. Using the risk probability makes interpreting the risk situation more intuitive. It is
relatively reliable and realistic, and can provide guidance for the prevention of toxic trace elements
influencing human health.
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Appendix A

Table A1. Equations of each parameter.

Parameter Type Equation

Carcinogenic
exposure value

Oral OISERca =
(OISERc × EDc × EFc/BWc + OISERa × EDa × EFa/BWa) ×ABSo × 10−6

Dermal DCSERca = (SAEc × SSARc × EFc × EDc × EV/BWc + SAEa × SSARa ×

EFca × EDa × EV/BWa) ×ABSd/ATca × 10−6

Inhalational
PISERca = PM10 ×DAIRc × EDc × PIAF×

( f spo× EFOc + f spi× EFIc)/(BWc ×ATca) × 10−6 + PM10 ×DAIRa × EDa ×

PIAF× ( f spo× EFOa + f spi× EFIca)/BWa ×ATca × 10−6

Non-carcinogenic
exposure value

Oral intake OISERnc = OISERc × EDc × EFc ×ABSo/BWc ×ATnc × 10−6

Dermal DCSERnc = SAEc × SSARc × EFc × EDc × EV ×ABSd/BWc ×ATnc × 10−6

Inhalational PISERnc = PM10 ×DAIRc × EDc × PIAF×
( f spo× EFOc + f spi× EFIc) /BWc ×ATnc × 10−6

Note: OISER means oral ingestion of soil exposure. DCSER means soil exposure through skin contact routes. PISER
means soil exposure to inhaled particulate matter.

Table A2. Values of each parameter.

Parameter Symbol Units Value Reference

Exposure duration of children EDc a 6 (MEPPRC, 2014)a

Exposure duration of adults EDa a 24 (MEPPRC, 2014)a

Exposure frequency of children Efc d·a−1 350 (MEPPRC, 2014)a

Exposure frequency of adults Efa d·a−1 350 (MEPPRC, 2014)a

Average body weight of children BWc kg 56.8 (MEPPRC, 2014)a

Average body weight of adults Bwa kg 15.9 (MEPPRC, 2014)a

Absorption factor of oral ingestion ABSo unitless 1 (MEPPRC, 2014)a

Average time for carcinogenic effect ATca d 26,280 (MEPPRC, 2014)a

Average time for non-carcinogenic effect Atnc d 2190 (MEPPRC, 2014)a

Exposed skin surface area of adults SAEa cm2 5074.89 (MEPPRC, 2014)a

Exposed skin surface area of children SAEc cm2 2447.56 (MEPPRC, 2014)a

Adherence rate of soil on skin for adults SSARa mg·cm−2 0.07 (MEPPRC, 2014)a

Adherence rate of soil on skin for children SSARc mg·cm−2 0.2 (MEPPRC, 2014)a

Daily exposure frequency of dermal contact event Ev times/d 1 (MEPPRC, 2014)a

Content of inhalable particulates in ambient air PM10 mg·m−3 0.15 (MEPPRC, 2014)a

Daily air inhalation rate of adults DAIRa m3
·d−1 14.5 (MEPPRC, 2014)a

Daily air inhalation rate of children DAIRc m3
·d−1 7.5 (MEPPRC, 2014)a

Retention fraction of inhaled particulates in body PIAF unitless 0.75 (MEPPRC, 2014)a

Fraction of soil-borne particulates in indoor air fspi unitless 0.8 (MEPPRC, 2014)a

Fraction of soil-borne particulates in outdoor air fspo unitless 0.5 (MEPPRC, 2014)a

Indoor exposure frequency of adults EFIa d·a−1 262.5 (MEPPRC, 2014)a

Indoor exposure frequency of children EFIc d·a−1 262.5 (MEPPRC, 2014)a

Outdoor exposure frequency of adults EFOa d·a−1 87.5 (MEPPRC, 2014)a

Outdoor exposure frequency of children EFOc d·a−1 87.5 (MEPPRC, 2014)a

Soil allocation factor SAF unitless 0.2 (MEPPRC, 2014)a

Dermal absorption factor of Cd ABSDCd unitless 0.001 (USEPA, 2013)b

Dermal absorption factor of CR ABSDCr unitless 0.001 (USEPA, 2013)b

Dermal absorption factor of As ABSDAs unitless 0.03 (USEPA, 2013)b

Dermal absorption factor of Hg ABSDHg unitless 0.05 (HC, 2004)c

Dermal absorption factor of Pb ABSDPb unitless 0.006 (HC, 2004)c

a Chinese MEP. (2014). Technical guidelines for risk assessment of contaminated sites (HJ25.3-2014, published in
Chinese). China Environmental Science Press Beijing. b USEPA. (2013). Regional Screening Levels (RSL) for Chemical
Contaminants at Superfund Sites. Washington DC: USEPA. c Health Canada. (2004). Federal Contaminated Site
Risk Assessment in Canada-Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific
Factors. Ottawa.
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Table A3. Parameters for each trace element toxicity.

Parameter SFo
(mg/kg-day)

SFd
(mg/kg-day)

SFi
(mg/kg-day)

RfDo
(mg/kg-day)

RfDd
(mg/kg-day)

RfDi
(mg/kg-day)

Carcinogenic
Elements

As 1.50 1.50 16.84 - - -
Cd 3.80 × 10−1 2.00 329.05 - - -

Non-carcinogenic
elements

Hg - - - 3.00 × 10−4 2.10 × 10−5 7.66 × 10−5

Pb - - - 3.50 × 10−4 5.25 × 10−4 3.52 × 10−2

Cr - - - 1.50 1.95 × 10−2 2.55 × 10−5

Note: SFo means oral intake carcinogenic slope factor. SFd means skin contact carcinogenic slope factor. SFi means
inhalation carcinogenic slope factor. RfDo means oral intake reference dose. RfDd means skin contact reference
dose. RfDi means inhalation reference dose.

Table A4. Parameters of indicator semivariograms theoretical models for variables.

Element Quantile Threshold
(mg/kg) C0 C0 + C1

Fitted
Model Range(m) R2

Cd
0.25 0.1440 0.1182 0.2704 Exponential 24,380 0.80
0.5 0.1751 0.0710 0.2560 Gaussian 2760 0.90
0.75 0.2208 0.0560 0.171 Gaussian 2060 0.91

Hg
0.25 0.0776 0.0001 0.1982 Exponential 1530 0.70
0.5 0.1057 0.0082 0.2484 Exponential 1270 0.83
0.75 0.1520 0.0569 0.1938 Spherical 21,920 0.96

AS
0.25 4.4085 0.0187 0.2014 Spherical 3210 0.65
0.5 8.1937 0.1001 0.2962 Exponential 7460 0.95
0.75 12.6000 0.0419 0.1948 Spherical 17,490 0.98

Pb
0.25 41.7199 0.1280 0.4010 Exponential 71,100 0.83
0.5 48.9496 0.1194 0.2548 Exponential 2850 0.88
0.75 57.9000 0.0607 0.1834 Exponential 1350 0.73

Cr
0.25 53.1686 0.1218 0.4286 Exponential 71,100 0.83
0.5 69.3163 0.0863 0.2506 Exponential 1830 0.94
0.75 87.6570 0.0264 0.1938 Exponential 510 0.60
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