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Abstract: Streamflow alteration and subsequent change in long-term average, seasonality, and 

extremes (e.g., floods and droughts) may affect water security, which is a major concern in many 

watersheds across the globe. Both climatic and anthropogenic activities may contribute to such 

changes. Therefore, this study assesses: (i) Streamflow and precipitation trends to identify 

streamflow alterations in the Extended East Rapti (EER) watershed in central-southern Nepal; (ii) 

relationship of the alterations to climatic and anthropogenic sources; and (iii) implications of 

streamflow changes to the socio-environmental system. The trends in streamflow were analyzed for 

pre-and post-1990 periods considering the abrupt shift in temperature trend in 1990. Results showed 

a general decreasing trends in discharge post-1990 in the EER watershed. Human activities have 

significantly contributed in altering streamflow in the EER. Human-induced streamflow alterations 

have affected the water availability, food security, river health, aquatic biodiversity, and 

groundwater abstraction in the EER watershed. 
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1. Introduction 

Water security is a major concern in many watersheds across the globe [1]. Climate change and 

human-induced activities have made the issue of water scarcity even worse. Climate 

change/variability, coupled with the ever-increasing population and limited availability of 

freshwater, has added challenges in securing water for various uses; both human and environmental 

[2]. Climate change has influenced freshwater systems and their management through impacts on 

water quantity, quality, and timing. Furthermore, climate-induced exacerbations of the hydrological 

cycle have increased or intensified the magnitude as well as the frequency of extreme weather events 

(e.g., floods and droughts), which may have contributed to the variation in the streamflow. As a 

consequence, it is increasing the concentration of pollutants, and sediment transport mechanism, 

endangering the aquatic life, and aggravating the spread of water-borne diseases. Human activities 

such as land use/cover changes and a concurrent increase in water withdrawals for various uses have 

reduced water availability. This trend worsens the issue of water scarcity in the future. Therefore, 

changes in freshwater availability, either due to climatic or human-induced factors, could impact the 

wellbeing of human societies through implications in multiple dimensions, such as social, economic, 

and environmental. Therefore, assessing alterations in water resources, their attributions, and 
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implications are imperative to inform the design and implementation of strategies for safeguarding 

water and food security. 

The assessment of variability in streamflow, an important component of the hydrological cycle, 

is likely to reflect impacts of climate change and land use/cover changes on the water resources 

systems. A large number of meso-scale and micro-scale parameters are responsible for changes in 

hydro-climatic variables at a basin [3]. For example, population growth may lead to higher utilization 

of river water for human needs and subsequent decrease in streamflow, which could propel water 

scarcity in the region, if not managed properly. Similarly, land use/cover is one of such variable that 

may lead the changes in the circulation of moisture to the atmosphere through evapotranspiration, 

which would consequently affect rainfall and runoff characteristics, and thus, alter streamflow 

regimes, such as the baseflow, mean streamflow, and extreme events (magnitude, timing, and 

frequency) [4]. 

The trend analysis in a hydro-climatic time-series, which can be either abrupt (a shift) or gradual 

(a trend) or their combinations, can provide some meaningful insights on the stationarity of the 

hydrological cycle in a watershed. [1]. Abrupt changes in hydrological time-series could be due to 

the shift in the climatic regime, induced by changes in local environment, influence of natural 

disasters, or human interventions [5]. Such a change may influence the mean, median, variance, 

autocorrelation, or any other statistical aspect of the data [6]. Streamflow measurements may exhibit 

variability for various reasons, such as climatic, topographical, land use/cover, and degree of 

streamflow regulation, among others. Therefore, an investigation on the degree of such changes at a 

watershed would provide a comprehensive understanding of runoff change mechanism [7]. 

Streamflow alterations in the watersheds are associated with anthropogenic factors, such as 

irrigation intensification [8], increase in water withdrawal for increasing population [9], deforestation 

and sprawling urbanization leading to landscape alterations [10], in addition to watershed-level 

climatic factors (e.g., air temperature, precipitation and relative humidity) [11,12]. Various methods 

are available and used widely to quantify abrupt (or shift or change point) and gradual (or 

monotonic) changes in streamflow time series. For the abrupt change, Pettit’s test [13] and Standard 

Normal Homogeneity (SNH) test [14] are generally applied by many studies [1,12,15,16]. For gradual 

or monotonic trends, parametric (as well as non-parametric) tests are used. However, Mann-Kendall 

(MK) test [7] or modified MK test [17], the rank-based non-parametric method, is widely used due to 

its applicability to data of any distribution and robustness against the interference to outliers. The 

method is applied in various geographical regions of the world—including Tapi basin in India [1], 

Upper Huaihe basin in China [7], four states in USA [3], 26 river basins in Turkey [18], and 33 

hydrological stations in Nepal [19]. The attribution of the alteration to the drivers (anthropogenic or 

climatic) can be made using statistical approaches, such as climate elasticity [20] and double mass 

curve [21,22] as applied in many studies over the time like Jiang et al. [23]; Zhu et al. [7]; Wu et.al 

[22], Sharma et.al [1]. When many methods are available for trend analysis or attribution of changes 

in streamflow, using multiple methods, where feasible, are valuable to avoid possible limitation and 

uncertainty by the individual method [12]. 

Each watershed is unique in its characteristics and the hydrological phenomenon. The 

fundamental science that derives hydrological processes are of course the same—however, extent of 

implications on streamflow alterations are expected to be different given their unique biophysical, 

climatic, social, and development characteristics. This paper attempts to detect the long-term changes 

in streamflow, their quantitative attribution to climatic and anthropogenic roots, and assess socio-

economic implications in a non-snow-fed Extended East Rapti (EER) watershed located in Central-

Southern Nepal (Figure 1), for which such information are not available for informed decision-

making. Key research questions that the study aims to address are: (i) What are trends in rainfall and 

streamflow in the EER watershed? (ii) What are relative contributions of rainfall variability and 

anthropogenic activities towards streamflow changes? Finally, (iii) what are potential socio-

environmental implications of streamflow alterations in the watershed? 
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2. Study Area 

The EER watershed located in Province-3 in central-southern Nepal extends from 84.148°E to 

85.206°E longitude and 27.353°N to 27.783°N latitude, (Figure 1). The total catchment area of 3202 

km2 above the confluence with Narayani, and including Kulekhani watershed extends over two 

districts, 15 Palikas (i.e., new local government units in federal Nepal), the Chitwan National Park 

and the Parsa Wildlife Reserve. The topography of the watershed varies from 136 to 2579 m above 

the mean sea level (masl). About 29.5% of the watershed area falls in the Hill and the remaining 70.5% 

in the Siwalik. The EER watershed has a dominance of forest (65.5%) and agricultural area (28.8%), 

followed by barren and grassland areas (2.1% each), built-up area (0.9%), waterbody (0.4%) and 

shrubland (0.2%) (Figure 2). There are two hydrological stations and eight meteorological stations in 

the watershed (Figure 2); two of the meteorological stations (Station-902 at Rampur and Station-905 

at Daman) are climatic stations. Details of the hydro-meteorological stations in the study area are 

provided in Table 1. 

 

Figure 1. Location and topography of the Extended East Rapti (EER) watershed and associated 

administrative boundaries. 

Average annual rainfall in the EER watershed, based on data at eight meteorological stations, 

vary from 1750 mm (at st905, Daman, Elevation = 2312 masl) to 2365 mm (at st906, Hetauda NFI, 

Elevation = 474 masl) (Table 1). Analysis of rainfall at Rampur (Station Inde = 902) shows strong 

seasonality in the rainfall, with about 80% of the average annual rainfall is available only during four 

rainy months (June-August). Similarly, average monthly maximum temperature (Tmax) in the EER 

watershed varies from 22.0 °C in January to 35.9 °C in June, whereas average monthly minimum 

temperature (Tmin) varies from 7.7 °C in January to 25.4 °C in August.
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Table 1. Hydro-meteorological data and their characteristics used in the analysis. 

SI SName 
Lat  

(N) 
Lon (E) 

Elev. 

(masl) 

Data 

Type 
River 

Drainage 

Area  

(km2) 

Data Period Mean SD CV* Missing Data Period 

460 Rajaiya 27.442 84.971 332 Q Rapti 443 1963–2014 27.0 6.62 0.25 

Aug-Nov (1978); Jun (1982); Jul, Aug 

(1985); May (1990); All months in 1999; 

Erroneous Data in 2000 

465 Manahari 27.550 84.971 305  Q Manahari 428 1964–2015 22.4 11.96 0.53 Dec (1994); Jan, Feb (1995) 

470 Lothar 27.594 84.717 336  Q Lothar 169 1964–2015 8.9 6.26 0.70 

Jan-Jun (1986); May (1990); May (2001); 

Aug-Dec (2004); All months in 2006; Jun-

Aug (2007) 

902 Rampur 27.610 84.410 256 P - - 1968–2017 1996.8 348.30 0.17 Few days 

903 Jhawani 27.580 84.530 270 P - - 1968–2017 1946.2 441.71 0.23 Few days 

904 Chisapani Gadhi 27.550 85.130 1706 P - - 1968–2017 2123.0 513.62 0.24 Dec (1995) 

905 Daman 27.600 85.080 2314 P - - 1968–2010 1750.2 404.62 0.23 

May-Jun (2003); Feb-Apr and Oct-Dec 

(2004); Jun, Oct-Dec (2007); Jan-May 

(2008); May-Jul (2010) 

906 Hetauda NFI 27.410 85.050 474 P - - 1968–2017 2365.1 387.42 0.16 
Sep-Dec (1969); All months in 1970; Jan 

1971; May 1974 

919 
Makawanpur 

Gadhi 
27.410 85.160 1030 P - - 1975–2017 2196.0 759.46 0.35 Aug-Dec (1987); Jan-Feb (2002) 

920 Beluwa 27.550 84.810 274 P - - 1975–2016 1931.8 425.82 0.22 Few days 

925 Rajaiya 27.430 84.980 332 P - - 1992–2014 2110.6 393.72 0.19 
Jan-Feb (1992,2006); May-Dec (2007); Jun 

(2011); Mar-Dec (2013); Jul-Dec (2014) 

Notes: SI, station index; SName, Station Name; Lat, latitude; N, northing; Lon, longitude; E, easting; Elev., Elevation; masl, meters above mean sea level; Q, discharge; 

P, precipitation; SD, standard deviation with units of m3/s for discharge and mm for precipitation; CV, coefficient of variation; Mean, long-term average annual 

value with units of m3/s for discharge and mm for precipitation. Stations 902, 905, and 906 also have daily maximum and minimum temperature records from 1968–

2017 (missing years 1976 to 1979), 1973–2010 (few days missing), and 1968–2014 (few days missing), respectively.
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Figure 2. Land use/cover (LULC), river network, and location of hydro-meteorological stations in the 

Extended East Rapti (EER) watershed (Source: LULC data are based on ICIMOD [24]). 

About 843.5 thousand people, with 51.01% female, are residing within the EER watershed. The 

population density varies across Palikas, with higher population density in the two large urban 

centers, such as Hetauda Sub-Metropolitan city and nearby areas, and Bharatpur Metropolitan City 

(Figure 3). Hetauda and Bharatpur accounts for 44.7% of the total population in the EER watershed. 

Figure 3. Population density (persons/km2) across 15 Palikas in the EER watershed. 

3. Methods and Data 

The study followed the methodological framework depicted in Figure 4, and the steps are 

detailed as a flow chart in Figure 5. Daily rainfall and streamflow at eight and three stations, 

respectively, are considered in the analysis. Key aspects of methodology, as shown in Figure 4, are 

described in the following subsections. 
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Figure 4. The methodological framework used in this study. Q, streamflow; P, precipitation; SNH, 

standard normal homogeneity. 
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Figure 5. Flowchart with the methodology adopted in this study. ARIMA, autoregressive integrated 

moving average; IDW, inverse distance weighting; MMK, modified Mann-Kendal test, SR, spearman 

rho. 

3.1. Data Collection, Screening and Pre-processing 

Observed daily time series or streamflow at three stations and rainfall at eight stations were 

collected as secondary data (Table 2) from the Department of Hydrology and Meteorology (DHM), 

the government of Nepal. Data quality were assessed in terms of missing data and their 

distribution/concentration, and the reasonableness of recorded values. Data reading, 

hydrograph/hyetographs for different temporal scales, plot of mass curves, and comparison of means 

were used as an approach for assessing data quality. Finally, quality controlled data set was prepared 
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for further analysis. Details of hydro-meteorological stations, data availability, and their 

characteristics, are shown in Table 1 and Table 2. 

Table 2. Description of data used in this study and associated sources. 

Data Description Potential Sources 
Collection 

Method 

Rainfall 
Observed daily rainfall data at eight stations for the last 

30 years (approximately) 
DHM, Nepal 

Secondary 

data 

Hydrological 

data 

Observed daily hydrological data at three stations for the 

last 30 years (approximately) 
DHM, Nepal 

Secondary 

data 

Population 
Current and past population data at newly formed 

Palikas (or earlier VDCs/Municipalities) 
CBS, Nepal 

Secondary 

data 

Land use/ 

cover 
ICIMOD (2010) or any latest products (if available) 

ICIMOD (or any 

other sources) 

Secondary 

data 

Notes: VDC, village development committee; CBS, central bureau of statistics; ICIMOD, international 

center for integrated mountain development. 

In addition to the observed hydrological and rainfall data, population and land use/cover were 

also collected, as mentioned in Table 2. Population data were collected from Village Development 

Committee (VDC) (or Palika) and then aggregated for the watershed level to estimate the basin-

average population. 

Annual time-series of streamflow and basin-average rainfall were generated based on daily 

time-series. Thiessen Polygon method was adopted for generating basin-average rainfall. Basic 

statistics, such as mean, median, range, quartile ranges, and coefficient of variation were calculated 

and analyzed for both streamflow and rainfall time-series to investigate heterogeneity in rainfall and 

streamflow behavior. 

3.2. Dealing with Missing Data 

The status of missing data in hydrological and precipitation time series is indicated in Table 2. 

Missing discharge data were filled using ‘imputeTS’ package in R [25]. One or combination of four 

methods—Kalman Smoothing, ARIMA, seasonal decomposition, and linear interpolation—

depending upon their performance, were used for filling missing data for each of the three series. 

The method that resulted in positive discharge for the station of interest was used—therefore, 

methods varied as per station. For instance, at station 470, ARIMA method yielded negative 

discharges. Seasonal decomposition gave similar results but with few negative values on low flows 

month, whereas linear was not good in filling 2006 data. Hence, seasonal decomposition was chosen, 

but negative values were set to value of the preceding month. At station 465, except linear 

interpolation all other yield negative results. For station 460, ARIMA approach performed well over 

other methods. In the case of precipitation data, missing daily data were imputed using Inverse 

Weighted Distance (IDW) interpolation at daily scale with a power factor of 2. 

3.3. Detection of Abrupt Shift and Gradual Shift (or Trends) 

A number of studies have used change point problem in streamflow analysis for identification 

of time point where anthropogenic activities started to have significant alterations in magnitude of 

flow over the natural changes [1,22,26,27]. Basically, the process involves detection of an abrupt 

change point from an analysis of the statistical characteristics of a long-term hydrological series, and 

then further analysis like quantification of climatic and anthropogenic influences to streamflow is 

carried out for before and after change point series. Statistical tests, such as Pettitt’s test and standard 

normal homogeneity (SNH) tests, are generally carried out to detect change point. Pettitt test has the 

advantage of being non-parametric where the assumption of the prior distribution of data is relaxed 
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[13]. SNH test assumes a normal distribution of data [28]. Wu et al. [22] carried out Pettitt’s test to 

detect an abrupt change point for observed runoff from the Yanhe River basin in China during the 

period 1972–2011, where after 1996, climate change played a dominant role in the decline in the runoff 

from the basin. Likewise, a study by Sharma et al. [1] also used Pettitt’s test, and attributed the decline 

in streamflow in Tapi River Basin, India to anthropogenic activities, such as changes in the land use 

patterns at different points of time in different tributaries of Tapi River. Likewise, SNH test has been 

applied to test the artificial and natural homogeneity of the average annual discharge for eight 

hydrological stations in the Kupa River Basin, between Slovenia and Croatia [29]. It has also been 

used to carry a homogeneity analysis of precipitation in Iran [30]. Due to successful application of 

abrupt change point method in various studies as mentioned, in this study we adopted Pettitt’s test 

together with SNH test [13,14,28] to detect abrupt change (or shift) in the mean of annual runoff, 

precipitation and temperature time series Both of these methods have been applied in order to 

complement each other and reinforce the analysis. The significance of the detected change point is 

determined using a Mann-Whitney U test [31]. Details of the method are provided in Appendix A. 

Data for the period of 1963–2017 was used. In the case of existence of significant change point, entire 

time-series was split into two, and the gradual trend was analyzed for two sub-series, before and 

after the change point. In the case of non-existence of significant change point, gradual shift (or trend) 

analysis was performed on the entire time series. 

Presence of trends in streamflow time series was analyzed using non-parametric Modified 

Mann-Kendall (M-MK) [17], Spearman’s Rho [32] and Sen’s slope estimator [33] tests. Mann-Kendall 

test and Modified Mann-Kendall tests are widely used for the analysis of trends in climatic and 

hydrological time series [17]. Mann-Kendall test is non-parametric in nature, however it suffers from 

bias introduced by autocorrelation in nature. The M-MK test addresses this issue by accounting for 

the presence of autocorrelation in the data in addition to other advantages from the original MK test. 

Spearman’s Rho test, which is also non-parametric is a rank-based approach like M-MK. These tests 

are, therefore, not affected by distribution nature and are relatively insensitive to outliers. The 

magnitude of the trend was estimated using Sen’s slope estimator. The significance of the detected 

trend was evaluated using Spearman’s Rho test. For this study, like other similar studies on 

streamflow and climatic series (such as Pirnia et al. [34], Zhu et al. [7], Zhang et al. [35], Zhang et al. 

[36], Partal and Kahya [37]), the methods mentioned above were used though there are other 

approaches like segmented regression analysis, which also deals with analyzing trend of time series 

having change points [38]). Details on these methods are provided in Appendix A. 

Furthermore, temporal trends in rainfall time-series were also performed using the same 

approach as used for streamflow. Spatial variation of trends in annual rainfall and runoff across the 

study watershed was analyzed in ArcGIS. It was basically done for rainfall data, as there was a good 

spatial representation of rainfall data compared to runoff data. 

3.4. Attribution of Streamflow Alterations to Climatic and Anthropogenic Sources 

The generic concept for this attribution is that for the catchments with streamflow not subject to 

any regulation, it can be modelled as a function of climatic variables and catchment characteristics. 

Furthermore, human factors are assumed to be independent of climatic factors. Therefore, the total 

change in the streamflow (ΔQ) can be expressed as a sum of ΔQP and ΔQH [22], where subscripts P 

and H stands for changes in streamflow, due to rainfall variability and anthropogenic (or human) 

activities, respectively. We also follow the approach used by Wu et al. [22] for estimating attribution 

of streamflow changes to climate and anthropogenic changes. 

At the local scale, changes in climatic variables are independent to the human behavior shaping 

catchment characteristic. In the absence of any hydro-regulation, the streamflow response of a 

catchment can be modelled as a function of climatic variables and catchment characteristics [1]. Here, 

we have defined the base period (before 1990) and variation period (after 1990). Therefore, the total 

change in the streamflow over these two periods can be expressed as a sum of changes in streamflow, 

due to climatic variability and anthropogenic activities [1,22]. They are expressed as: 
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∆������� =  ����������� −  ���������� (1) 

∆������� =  ∆��������� + ∆������� (2) 

�������� =  
∆���������

∆�������
× 100% and ������ =  

∆�������

∆�������
× 100% (3) 

Here, ∆�������  is the total change in the mean annual runoff between the variation 

period,�����������, and the baseline period, ���������� . ∆��������� and ∆������� are the changes in the 

mean annual runoff caused by climatic variability/change and human activities, respectively. 

��������and ������are the contributions from climate variability/change and anthropogenic factors, 

respectively, on the runoff variation. Methods like empirical statistics (double mass curve) and 

elasticity-based can be applied in estimating ∆��������� and ∆������� . 

In this study, we also applied statistical approaches, such as climate elasticity [20] and double 

mass curve [21,22]. Their details are provided in Appendix A. After attribution to the streamflow 

alterations, we further discussed the linkage of attribution to changes in land use/cover and 

population in the study watershed. 

3.5. Assessing Socio-Environmental Implications 

Streamflow alterations and associated changes in water availability are linked to various aspects 

of society and environment; therefore, changes in streamflow is expected to have implications in the 

socio-environmental system. Based on the understanding of the relative contribution of rainfall 

variability and anthropogenic activities in streamflow changes, necessary secondary data, as well as 

qualitative information, were collected from various sources, including field studies commissioned 

during August to October, 2019. The implications were discussed from following three perspectives, 

which were identified as relevant for the study watersheds after field study: (i) Water and food 

security; (ii) river health and aquatic biodiversity; and (iii) groundwater abstraction. 

4. Results and Discussion 

4.1. Detection of Changes (Both Abrupt and Gradual) in Streamflow 

The three hydrological stations cover approximately 32.5% of the 3202 km2 large EER watershed. 

However, we estimated changes in streamflow in the EER watershed on the daily hydrological 

records at those three stations, based on the best available data. For detecting the possibility of abrupt 

change(s) in the average annual streamflow and precipitation series, the Pettitt and Standard Normal 

Homogeneity (SNH) tests were applied for selected hydrological and meteorological stations. The 

time period of analysis, as well as results, are tabulated in Table 3, and time series are plotted in 

Figure 6. 

Results of change point analysis showed that the majority of hydrological and precipitation 

stations do not exhibit abrupt changes. Statistically significant change point, at 5% level of 

significance, is observed only at Rajaiya hydrological station in the Rapti river (station 460) from the 

Pettitt test with data after 1974. Remaining two hydrological stations did not show significant change 

points. Likewise, these stations show non-uniformity in probable change points ranging from 1974 to 

2011 (Table 3), which is very crude to consider any specific time period for change point. In the case 

of precipitation stations, only Chisapani Gadhi (station 904) displayed statistically significant change 

point, whereas the change points from other stations were statistically insignificant (Table 3). Like 

discharge data, they also show diversity in the occurrence of probable change points, but located after 

1988. Unlike streamflow and precipitation, all temperature stations displayed significant change 

points during the late 1980s and early 1990s (Table 3). 

For temperature signals too, these change points identified by both Pettitt’s and SNH tests are 

spread over a period of 1982 to 2004 (Table 3). However, it is noticeable that in majority cases, these 

changes are between 1982 and 1993. We take this period as a transition phase for changes in 

temperature for the study area. This spread of change points over a period of time have also been 
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reported in papers like Jaiswal et al. [39] and Zarenistanak et al. [40]. Furthermore, the study area 

experienced a major socio-political change in 1990 that established democracy in the country. Given 

the local knowledge of the rise in the development process around 1990 after the democratic 

government started to work in full fledge, cities like Hetauda, located in the eastern part of the basin, 

have expanded with a boost in its economy and developed as a major economic hub after 1990. 

Therefore, after considering the local knowledge, as well as temperature signals, 1990 was identified 

as the change point for this study area. Furthermore, pre-1990 has also been designated as base-period 

for many climate studies and guidelines. For instance, the definition of climate change indices by the 

Expert Team on Climate Change Detection and Indices (ETCCDI) considers 1960–1990 period as 

baseline period (guidelines on analysis of extremes by the World Meteorological Organization) [41]. 

Moreover, methodologically, there are practices to include ‘human-designated’ approach to defined 

change point, and thus, the base-period [22]. We used a mixed approach that consists of looking into 

the hydro-climatic signal (primarily temperature in this case), as well as local stakeholders’ 

knowledge too, using 1990 as the change point. We, therefore, divided the entire time series of above 

variables into two sub-periods—the baseline period (until 1990) and the variation period (post-1990). 

Then we analyzed gradual shifts (or trends) in streamflow and precipitation time series before 

and after the change point (i.e., 1990) in order to better understand the extent of changes in 

streamflow and precipitation and their linkages (if any). We analyzed trends using M-MK approach, 

computed Sen’s slope and tested its significance using M-MK and Spearman’s rho statistics. Table 4 

and Figure 6 shows the results of the trend analysis. Lothar Kholw hydrological station (station 470) 

exhibit a significant decreasing trend in streamflow during 1964–2017 at the rate of 0.073 m3/s/year. 

Although trends before and after 1990 both decrease, they are not statistically significant. In contrast, 

streamflow at Rajaiya (station 460) shows a significant increasing trend after 1990, at a rate of 0.467 

m3/s/year, but the trend for the entire series during 1963–2017 decreases (not significant). The increase 

after 1990 is attributed to diversion of water from Kulekhani watershed to East Rapti during 

operation of Kulekhani hydropower project, which came into operation in the late 1980s. 

Furthermore, the Rajaiya station is just downstream of Hetauda municipality, the urban center. 

Streamflow at Manahari (station 465) show decreasing trends both before and after a990, but they are 

statistically insignificant. 

In the case of precipitation, it is interesting that except stations 919 and 920 during periods 1991–

2017 and 1975–2017 none of the precipitation time series have statistically significant trends. Station 

920 records show a decrease (significant) of approximately 9.3 mm of precipitation per year during 

1975–2017, while after 1990 rate of decrease is only 15 mm/year (insignificant). After 1990, stations 

903 and 905 show positive trend in precipitation (insignificant), while we observed a decreasing trend 

of precipitation at other stations. The highest rate of decrease in precipitation after 1990 is observed 

at station 919 at the rate of approximately 45 mm per year (significant for Spearman’s rho test, but 

insignificant for M-MK test). Likewise, the highest rate of increase (55 mm/year, approximately) in 

precipitation is observed at station 905. Trend analysis for temperature series are presented in 

Appendix B. 
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Table 3. Results of Pettitt and standard normal homogeneity (SNH) tests for change point detection in EER watershed. 

Station 

Index 
Time Period n 

Pettitt 

Test 

P-value 

KT 
Probable Change 

Point/year 

Pettitt Test Result at 

α = 0.05 

SNH Test: P-

value 
Tk 

Probable Change 

Point/year 

SNH Test Result at 

α = 0.05 

Annual Runoff 

460 1963–2014 52 0.1867 238 1974 NS 0.432 4.2 1974 NS 

460 1975–2014 40 0.038 208 2002 S 0.122 6.77 2002 NS 

460 
1975–2014 (excluding 1999 

and 2000) 
38 0.046 188 2002 S 0.138 6.48 2002 NS 

465 1964–2015 52 0.176 241 1988 NS 0.295 5.1 1988 NS 

470 1964–2015 52 0.214 231 1978 NS 0.904 1.92 2011 NS 

470 1979–2015 37 0.447 114 2004 NS 0.926 1.67 2010 NS 

Annual Precipitation 

902 1968–2017 50 0.4579 177 1996 NS 0.5887 3.4236 2010 NS 

903 1968–2017 50 0.13 241 1996 NS 0.1693 6.2395 1996 NS 

904 1968–2017 50 0.01932 314 2007 S 0.0012 14.872 2007 S 

905 1968–2002 35 0.7142 87 1998 NS 0.1902 5.7173 1998 NS 

906 1975–2017 43 0.3976 148 2007 NS 0.4496 4.0251 2007 NS 

919 1975–2017 43 0.06827 214 1988 NS 0.0801 7.616 1988 NS 

920 1975–2017 43 0.05278 222 2007 NS 0.0121 10.82 2007 S 

925 1992–2012 21 0.4811 48 2007 NS 0.3417 4.1944 1992 NS 

Maximum Temperature 

902 1968–2017 50 1.48 e-05 505 1982 S < 2.2 e-16 21.3 1982 S 

905 1973–2010 38 3.43 e-06 353 1993 S < 2.2 e-16 24.25 1993 S 

906 1968–2014 47 2.25 e-06 492 1990 S < 2.2 e-16 23.9 1990 S 

Minimum Temperature 

902 1968–2017 50 0.00028 434 1989 S 0.05 8.62 1988 S 

905 1973–2010 38 0.02942 199 1993 S 0.0314 9.17 2004 S 

906 1968–2014 47 0.00056 380 1983 S 0.00003 16.82 1979 S 

Notes: SNH, standard normal homogeneity; S, statistically significant; NS, not significant (statistically).
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Table 4. Streamflow and precipitation trends in Extended East Rapti (EER) watershed. 

SI Time period Type+ n 

MMK-Z 

Statistic 

after 

Variance 

Correction 

M-MK-P-

Value after 

Variance 

Correction 

Original 

MK Z 

Statistic 

Original 

Mann-

Kendall 

P-value 

Mann-

Kendall’s 

Tau 

Sen’s 

Slope 

(m³/sec 

/year) 

Spearman 

Correlation 

Coefficient 

Value 

Z-

Transform

ed Test 

Statistic 

Spearm

an Test 

P-value 

Significan

ce of M-

MK 

(at α= 

0.05) 

Significance

-Spearman’s 

Rho Test 

(at α= 0.05) 

Discharge/Streamflow 

460 1963–2014 O 52 −0.33 0.741 −0.481 0.63 −0.047 −0.027 −0.08 −0.573 0.567 NS NS 

460 1963–1990 O 28 −1.205 0.228 −1.205 0.228 −0.164 −0.181 −0.221 −1.149 0.251 NS NS 

460 1991–2014 O 24 3.001 0.003 3.001 0.003 0.442 0.467 0.626 3.003 0.003 S S 

465 1964–2015 O 52 0.923 0.356 0.923 0.356 0.089 0.062 0.135 0.965 0.334 NS NS 

465 1964–1990 O 27 −0.917 0.359 −0.917 0.359 −0.128 −0.189 −0.183 −0.934 0.35 NS NS 

465 1991–2015 O 25 −0.49 0.624 −0.49 0.624 −0.073 −0.097 −0.135 −0.663 0.507 NS NS 

470 1964–2015 O 52 −8.181 0 −2.328 0.02 −0.223 −0.073 −0.303 −2.162 0.031 S S 

470 1964–1990 O 27 −1.376 0.169 −1.376 0.169 −0.191 −0.12 −0.218 −1.111 0.266 NS NS 

470 1991–2015 O 25 −1.452 0.146 −0.911 0.362 −0.133 −0.054 −0.22 −1.078 0.281 NS NS 

Precipitation 

902 1968–2017 O 50 0.276 0.783 0.351 0.725 0.035 1.374 0.039 0.276 0.783 NS NS 

902 1968–1990 O 23 −0.951 0.342 −0.951 0.342 −0.146 −8.815 −0.187 −0.876 0.381 NS NS 

902 1991–2017 O 27 −0.208 0.835 −0.208 0.835 −0.031 −2.567 −0.076 −0.386 0.699 NS NS 

903 1968–2017 O 50 0.825 0.41 1.004 0.315 0.099 4.755 0.155 1.084 0.278 NS NS 

903 1968–1990 O 23 0.528 0.597 0.528 0.597 0.083 7.86 0.12 0.561 0.575 NS NS 

903 1991–2017 O 27 0.208 0.835 0.208 0.835 0.031 3.085 0.049 0.249 0.803 NS NS 

904 1968–2017 O 50 −1.245 0.213 −1.522 0.128 −0.149 −8.531 −0.254 −1.78 0.075 NS NS 

904 1968–1990 O 23 −0.898 0.369 −0.898 0.369 −0.138 −15.506 −0.233 −1.094 0.274 NS NS 

904 1991–2017 O 27 −1.418 0.156 −1.418 0.156 −0.197 −24.986 −0.375 −1.911 0.056 NS NS 

905 1968–2002 O 35 0.398 0.691 0.398 0.691 0.049 2.85 0.099 0.575 0.565 NS NS 

905 1968–1990 O 23 0.233 0.815 0.317 0.751 0.051 5.5 0.079 0.371 0.711 NS NS 

905 1990–2002 O 13 0.915 0.36 0.915 0.36 0.205 54.883 0.374 1.294 0.196 NS NS 

906 1975–2017 O 43 0.213 0.831 0.314 0.754 0.034 1.767 0.031 0.2 0.842 NS NS 

906 1975–1990 O 16 1.216 0.224 1.216 0.224 0.233 15.567 0.312 1.207 0.227 NS NS 

906 1991–2017 O 27 −0.125 0.9 −0.167 0.868 −0.026 −1.62 −0.048 −0.246 0.806 NS NS 

919 1975–2017 O 43 0.375 0.708 0.649 0.516 0.07 6.49 0.086 0.56 0.576 NS NS 

919 1975–1990 O 16 −0.099 0.921 −0.135 0.893 −0.033 −17.075 −0.126 −0.49 0.624 NS NS 

919 1991–2017 O 27 −1.811 0.07 −2.377 0.017 −0.328 −45.125 −0.512 −2.609 0.009 NS S 

920 1975–2017 O 43 −2.293 0.022 −1.695 0.09 −0.181 −9.305 −0.268 −1.74 0.082 S NS 

920 1975–1990 O 16 −1.396 0.163 −1.396 0.163 −0.267 −21.736 −0.397 −1.538 0.124 NS NS 

920 1991–2017 O 27 −1.108 0.268 −1.251 0.211 −0.174 −15.28 −0.275 −1.401 0.161 NS NS 

925 1992–2012 O 21 −0.617 0.537 −0.755 0.45 −0.124 −10.618 −0.16 −0.714 0.475 NS NS 
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Notes: O, series with filled values, * NS, not significant; S, significant at α = 0.05; Statistically significant 

series are highlighted in grey; SI, station index; statistically significant trends are shaded. 

4.2. Relative Contributions of Climatic and Anthropogenic Activities to Streamflow Alterations 

We partitioned streamflow changes to climatic and human factors using double mass curve 

(DMC) and climate elasticity methods. The entire time series was divided into baseline (up to the 

change point, i.e., 1990) and variation (post-1990) periods (Table 5). DMC, a non-parametric method, 

uses the long-term relationship between precipitation and streamflow, and provide streamflow 

response to precipitation. However, it does not take the physical processes into consideration. DMC 

reconstructs the cumulative annual streamflow (and thus, annual streamflow) in variation period 

using regression parameters from the baseline period, forced by precipitation in variation period. 

Thus, the difference in observed mean streamflow in variation period and reconstructed streamflow 

gives the contribution by the human activities. Results of DMC analysis indicated that human 

activities are the dominant cause of a decrease in streamflow at stations 460 and 470, and an increase 

in streamflow at station 465 (Table 5). At stations 460 and 470, they account for 82.2% and 100.4% 

decrease respectively. The excess 0.4% of the volume is added to the streamflow by rainfall 

variability/ change (i.e., climate change contribution) at station 470. The increase in streamflow at 

station 465 is unrealistic as there are no notable human activities and/or water inflow from other 

systems to the station 465 watershed were identified during the field study. Further diagnosis 

revealed that observed streamflow at the station 465 for the 2002 and 2003 are 70.83 m3/s and 73.71 

m3/s, respectively, which are 2.7 times higher than the long-term average in the same watershed. 

Since we could not get an adequate basis to drop data of those two years, it influenced overall trends. 

Therefore, the results of station-465 should be used cautiously. In overall, results from the empirical 

statistical method, DMC, reveals that human activities have played a leading role in altering 

streamflow after the 1990s. 

Table 5. Proportional impacts of climate change and human activities on runoff reduction in the 

Extended East Rapti watershed, estimated by double mass curve method. 

Index Period 
Reconstruction 

Equation 

Observed average 

Annual 

Streamflow (mm) 

Change 

(mm) 

Reconstructed 

Average Annual 

Streamflow (mm) 

Human 

Activities-

Induced 

Change; mm (%) 

Climate 

Change-

Induced 

Change; 

mm (%) 

460 

Baseline ����
∗

=  0.891 ∗ �
+ 1480.6 

1974.6 - - - - 

Variation 1887.5 −87.1 1959.1 −71.6 (82.2) 
−15.5 

(17.8) 

465 

Baseline ����
∗

=  0.6411 ∗ �
+ 526.1 

1342.2 - - - - 

Variation 1991.0 +648.8 1269.3 +721.7 (111.2) 
−72.9 

(−11.2) 

470 

Baseline ����
∗

=  0.8568 ∗ �
+ 470.1 

1716.0 - - - - 

Variation 1460.7 −255.2 1716.8 
−256.1 

(100.4) 

+ 0.8 

(−0.4) 

We also assessed the impacts of human activities and climate change on streamflow using 

Budyko hypothesis, an elasticity-based method. Table 6 shows for three sub-watersheds in the EER 

watershed, the climate elasticity for runoff (i.e., the precipitation elasticity for runoff (��)) and the 

potential evapotranspiration elasticity for runoff (���� ) were estimated from eight water-balance 

models, two based on nonparametric methods, and six based on the Budyko hypothesis. As shown 

in Table 6, the �� ranged from 0.267 to 2.075 for the East Rapti sub-watershed (Inde = 460), from 0.821 

to 2.132 for Mahahari sub-watershed (station 465) and from 1.077 to 2.171 for Lothar Khola sub-

watershed. Likewise, the ����  ranged from −1.075 to −0.673 for East Rapti, −1.132 to −0.252 for 

Mahahari and from −1.904 to −0.806 for Lothar Khola. These results, for the East Rapti sub-watershed, 

indicate that a 1% change in precipitation will result in a 0.267% to 2.075% change in the runoff, a 1% 

increase in potential evapotranspiration will lead to a 1.075% to 0.673% decrease in the runoff. There 
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were differences in the estimates of elasticity coefficients among the eight methods. Studies, such as 

Sankarasubramanian et al. [42] and Zheng et al. [20], estimate that the precipitation elasticity for 

runoff ( �� ) is lower in comparison to the estimations from the Budyko hypothesis. However, 

evapotranspiration elasticity for runoff (����) estimates for non-parametric approaches have similar 

values with estimates from the Budyko hypothesis. It is to be noted that aridity index for East Rapti, 

Manahari, and Lothar Khola sub-watersheds are 0.673, 0.714, and 0.744, respectively, implying that 

basin is humid. 

 

 

Figure 6. Trends in annual streamflow and precipitation time series in Extended East Rapti (EER) 

watershed. s, Sen’s slope, with positive and negative values representing increasing and decreasing 

trend, respectively. The red dashed line shows the mean values before and after 1990.
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Table 6. Climate elasticity for streamflow and proportional impact of climate change on streamflow changes in the EER watershed. 

Methods ∆�� ∆��  ∆������
� �� ���� ∆���������

�  ∆���������
���  ∆��������� ∆������� ∆���������(%) ∆�������(%) Remark 

Station 460—East Rapti sub-watershed 

Sankarasubramanian et al. [42] 81.1 −87.1 80.9 0.267 −0.940 19.5 −101.8 −82.3 −4.8 94.5 5.5    

Zheng et al. [20] 81.1 −87.1 80.9 0.328 −0.753 23.9 −81.5 −57.6 −29.5 66.1 33.9    

Schreiber [43]  81.1 −87.1 80.9 1.673 −0.673 122.2 −72.9 49.3 −136.4 −56.7 156.7    

Ol’dekop [44] 81.1 −87.1 80.9 2.075 −1.075 151.6 −116.4 35.2 −122.3 −40.4 140.4    

Budyko [45] 81.1 −87.1 80.9 1.838 −0.838 134.2 −90.7 43.6 −130.7 −50.0 150.0    

Pike [46], Turc [47]   81.1 −87.1 80.9 1.870 −0.87 136.6 −94.2 42.4 −129.5 −48.7 148.7    

Fu et al. [48] 81.1 −87.1 80.9 1.995 −0.995 145.8 −107.8 38.0 −125.1 −43.6 143.6 m = 3 

Zhang et al. [49] 81.1 −87.1 80.9 1.743 −0.743 127.3 −80.4 46.9 −134.0 −53.8 153.8 w = 1 

Station 465—Manahari river sub-watershed 

Sankarasubramanian et al. [42] −12.2 648.8 69.5 0.821 −0.252 −8.5 −20.9 −29.4 678.2 −4.5 104.5    

Zheng et al. [20] −12.2 648.8 69.5 0.834 −0.915 −8.7 −75.9 −84.6 733.4 −13.0 113.0    

Schreiber [43] −12.2 648.8 69.5 1.714 −0.714 −17.8 −59.2 −77.0 725.8 −11.9 111.9    

Ol’dekop [44] −12.2 648.8 69.5 2.132 −1.132 −22.1 −93.8 −116.0 764.8 −17.9 117.9    

Budyko [45] −12.2 648.8 69.5 1.883 −0.883 −19.6 −73.2 −92.8 741.6 −14.3 114.3    

Pike [46], Turc [47]   −12.2 648.8 69.5 1.918 −0.918 −19.9 −76.2 −96.1 744.9 −14.8 114.8    

Fu et al. [48] −12.2 648.8 69.5 2.058 −1.058 −21.4 −87.7 −109.1 757.9 −16.8 116.8 m = 3 

Zhang et al. [49] −12.2 648.8 69.5 1.779 −0.779 −18.5 −64.6 −83.1 731.9 −12.8 112.8 w = 1 

Station 470—Lothar Khola sub-watershed 

Sankarasubramanian et al. [42] 7.0 −255.2 62.7 1.149 −1.815 6.4 −122.5 −116.1 −139.1 45.5 54.5    

Zheng et al. [20] 7.0 −255.2 62.7 1.077 −1.904 6.0 −128.5 −122.5 −132.7 48.0 52.0    

Schreiber [43] 7.0 −255.2 62.7 1.744 −0.744 9.8 −50.2 −40.5 −214.7 15.9 84.1    

Ol’dekop [44] 7.0 −255.2 62.7 2.171 −1.171 12.2 −79.1 −66.9 −188.3 26.2 73.8    

Budyko [45] 7.0 −255.2 62.7 1.916 −0.916 10.7 −61.9 −51.1 −204.1 20.0 80.0    

Pike [46], Turc [47]   7.0 −255.2 62.7 1.954 −0.954 11.0 −64.4 −53.4 −201.8 20.9 79.1    

Fu et al. [48] 7.0 −255.2 62.7 2.103 −1.103 11.8 −74.5 −62.7 −192.5 24.6 75.4 m = 3 

Zhang et al. [49] 7.0 −255.2 62.7 1.806 −0.806 10.1 −54.4 −44.3 −210.9 17.4 82.7 w = 1 

Note: Aridity index for East Rapti, Manahari, and Lothar Khola sub-watersheds are 0.673, 0.714 and 0.744, respectively. ‘m’ and ‘w’ are model parameters relating 

to catchment characteristics in Fu et al. [48] and Zhang et al. [49] models. 
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The influence of climate change and human activities on streamflow alteration as calculated by 

different climate elasticity methods are shown in Table 6. For the East Rapti sub-watershed, non-

parametric methods and the Budyko hypothesis showed two contrasting results. Non-parametric 

methods showed that climate change-induced runoff declined by 57.6 to 82.3 mm, which accounts to 

66.1 to 94.5% of total change, and we notice that evapotranspiration played a major role in this 

decline. In contrast, the Budyko hypothesis attributed the climate factor for the addition of runoff by 

38 mm to 49.3 mm, while human factor reduced runoff by 125.1 to 136.4 mm; thus, with a net effect 

of reduction of runoff. From the field study, it is clearly seen the anthropogenic activities are the major 

reason for alterations in streamflow. In the Manahari river sub-basin, runoff is reduced by 29.4 to 93.8 

mm, due to climate effects, both precipitation and evapotranspiration leading to a reduction in the 

runoff. In the Lothar Khola sub-watershed, non-parametric approaches yield similar magnitude of 

decrease in the runoff (45.5% to 48% by climate factor and 54.5% to 52% by an anthropogenic factor) 

in the basin. In contrast, Budyko hypothesis-based method showed that the influence of climate 

change is limited to 15.9% to 24.6 % only, the rest (75.4% to 84.1%) is due to the human factor. 

In a nutshell, human activities are playing a dominant role in altering, more specifically, 

decreasing streamflow after 1990 in the EER watershed. Climate change is also contributing to 

alterations in streamflow, but less dominantly compared to anthropogenic activities, and 

contribution of evapotranspiration is significant in climate change-induced alterations. 

4.3. Socio-Environmental Implications of the Streamflow Changes 

Alterations in streamflow have implications in various sectors. Growing population (Appendix 

C), urbanization (eight out of 15 Palikas in EER watershed are Municipalities), land use/cover changes 

(Appendix D) and climate change/variability, among others, are contributing to alterations in 

streamflow. As a result, there are implications on water availability and food security, river health 

and aquatic biodiversity, and groundwater abstraction, among others. 

4.3.1. The Implication to Water and Food Security 

The EER watershed is home for nearly 765,000 populations [50] distributed across 15 Palikas 

with varying densities (Figure 5). In Chitwan district, which covers nearly 55% of the EER watershed 

area, the population has increased by 123% during 1981–2011 (Appendix C). Furthermore, feeding to 

the growing population needs more food production, and most of the irrigation water for food 

production is withdrawn from rivers within the EER watershed. 

As per the National Irrigation Master Plan [51], Chitwan district currently has 20,643 ha of 

irrigated land through 53 irrigation projects, which is nearly half of total irrigable areas of 42,000 ha. 

Similarly, in Makwanpur district, out of 23,500 ha of irrigable areas, only 2406 ha are covered by 

irrigation through 33 irrigation projects. Therefore, with a future emphasis of all the three-tier 

governments on intensifying agricultural activities to feed a growing population, more irrigation 

coverage is expected in near to mid-future. With more increase in irrigated areas and associated water 

use coupled with altered streamflow, crop production and food security are likely to get affected 

unless climate-resilient agricultural practices are put in place. The alterations in streamflow either 

from climatic or anthropogenic origin can introduce new challenges for watershed-level management 

of water resources, and more specifically, transboundary water management in the EER watershed, 

which are shared by 15 local governments in the new federal governance structure of Nepal. 

From the analyses presented in Section 4.1, it is clearly seen that the EER watershed exhibits a 

decreasing trend in streamflow post-1990. The persistence of such trends in the near future would 

potentially escalate the water crisis and conflicts in the watershed. Thus, rapidly increasing 

population and declining freshwater availability may affect the food grain production, which would 

likely manifest food shortages in the area. 

Agricultural areas in the Chitwan and Makwanpur districts in the EER watershed have 

increased from 28.5% to 29.7%, and from 19.7% to 22.2%, respectively, during 2000 to 2010 (Appendix 

D), which have manifested an increase in irrigation water requirements. The annual production of 
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main crops (i.e., paddy, wheat, maize, and millet) have increased in general in both the districts that 

share the EER watershed (Table 7). The rising trend in the production of water-intensive crops, such 

as paddy, is further posing stress on available water resources in the watershed. It would further be 

aggregated by land use/cover change in the watershed. Though there are no data available on land 

use/cover change trends, as well as future projections to quantify impacts, a general tren is the 

decrease in forest areas as in other regions of Chure belt in Nepal, decrease in open areas, and increase 

in built-up areas in and around the urban centers. This phenomenon has socio-economic implications 

in terms of increase in intensity and frequency of flash floods, deterioration of water quality, and 

decrease in recharge to groundwater aquifers, among others; all of which have implications on water 

(quantity, quality, and timing). Projecting future land use/cover and quantifying the extent of impacts 

on the aforementioned aspects of water could be considered as a next step for furthering this research. 

Alterations in streamflow may affect the production of paddy and other crops and therefore 

have implications in food security. Interactions with locals in the watershed further confirm that 

changes in agricultural areas are already a reality. Due to declining water availability, farmers are 

resorting to growing crops like maize that require less water than growing water-intensive crops or 

leaving the land fallow altogether. The impact is further exacerbated, due to the fact that many 

farmers practice subsistence agriculture, and few are sharecroppers. 

On the other hand, the alarming rise in population (e.g., a 123% increase during 1981–2011 in 

Chitwan district) has manifested an increase in water and food demands. Availability of edible food 

(defined here as rice, maize, wheat, barley and buckwheat) has decreased from 87,662 metric tons 

(MT) in 2011/12 to 67,448 MT in 2014/15 in Makwanpur district [52,53]. Similar trends are observed 

in Chitwan district as well; a reduction from 86,581 MT to 22,875 MT for the same period. As the 

population is growing at the rate of 2.3% in the area, the per capita food availability (kg/yr) during 

the period is also certainly decreasing. Though the quantitative impact of water stress conditions on 

per capita food availability could not be ascertained (due to lack of data), it is highly likely. If it 

persists for longer period, it may lead to food insecurity in the watershed. 

Table 7. Trends in annual crop production (metric tons) in the EER watershed districts (Source: 

References [54–56]). 

Crop District 2010/2011 2013/2014 2016/17 

Paddy Makwanpur 36,630 38,381 41,458 

Wheat Makwanpur 11,796 12,007 12,980 

Maize Makwanpur 40,456 67,870 68,759 

Millet Makwanpur 3206 3280 3251 

Paddy Chitwan 110,944 100,555 108,996 

Wheat Chitwan 26,533 29,899 22,119 

Maize Chitwan 52,463 29,250 19,250 

Millet Chitwan 1868 1600 1490 

To ensure food security and avert a crisis in the future, strategies for water demand management 

(e.g., efficient irrigation methods, develop and practice climate-adaptable crop varieties, etc.), as well 

as supply side management (e.g., practice rain water harvesting, implement water conservation 

measures, such as efficient recycle and reuse of water, educate and raise awareness of users on water 

conservation, etc.), need to be devised. Moreover, implementation structures need to be put in place, 

and monitoring and evaluation of effective implementation must be carried out. 

4.3.2. The Implication to River Health and Aquatic Biodiversity 

Healthy rivers have the potential to provide surrounding communities with a variety of benefits. 

Streamflow regime plays a key role in shaping the structure and health of water environments [57]. 

Alteration in the natural flow regime, due to interventions on water and land resources, can impact 

adversely on riverine ecology, morphology, riparian rights of the downstream users, and 

downstream water environments [1,58]. Land use/cover change in the form of deforestation may 

contribute to the degradation of landscape, soil erosion and sedimentation, which have adverse 

implications to river health and aquatic biodiversity. Furthermore, change in the river regime as a 
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result of land use/cover change may affect the growth and reproduction of some flora and fauna in 

the riverine ecosystem. Other aspects of land use/cover change, such as urbanization, may contribute 

to flash floods and the subsequent change in flow regime, as well as the discharge of polluted water 

directly to the freshwater system, which can disrupt natural environments and degrade ecosystems 

[59,60]. This phenomenon can ultimately cause irreversible consequences for both human and 

ecosystems [61]. Therefore, alterations in water availability, but increasing water demands in the EER 

watershed will increase competitions between human use and environmental needs, which further 

affects adversely to river health and aquatic biodiversity. 

The decreasing streamflow in the study area has deteriorated capacity of rivers to dilute 

pollutants, due to excessive use of chemical fertilizers and pesticides in agricultural lands and 

industrial pollutions generated from at least 134 various types of industries [62] in the Hetauda 

Industrial District. Therefore, river systems are more polluted than before, even though there are no 

studies to quantify the extent of degradation in river health. As more industrial districts (e.g., 

Shaktikhor in Chitwan and Mayurdhap in Makwanpur [63], etc.) are planned in the EER watershed, 

if industrial wastewater is not pre-treated before disposing to the river, it will certainly affect 

negatively to aquatic biodiversity. Washing of vehicles in the river, which is widespread in the East 

Rapti River, and associated mixing of automobile chemicals will have impacts on aquatic flora and 

fauna, which are not yet all studied. In addition, riverbed mining, which is widespread in the EER 

watershed, is also affecting adversely to river ecology, river health, and aquatic biodiversity. There is 

also a hypothesis that recent cases of deaths of over 40 rhinos in the Chitwan National Park, as well 

as the decline in fish production in Markhu, Kulekhani over the decade, could potentially be linked 

to the deteriorated water quality of the rivers as one of the causes, though there is no proof so far. 

In a nutshell, although there are no scientific studies to quantify them, anthropogenic activities 

(such as industrialization, intensified agriculture, and urbanization) are degrading river health, and 

affecting adversely to aquatic biodiversity in the EER watershed. Moreover, they may also accelerate 

the eutrophication in water bodies through an increase in the rate of nutrient inputs draining into the 

streams. Alteration in streamflow coupled with extensive eutrophication, may affect adversely the 

already degraded self-purification capacity of the river system, degrades water quality, and pose a 

threat to the aquatic flora and fauna. Therefore, a cooperation framework among local riparian 

governments for managing the shared EER watershed could be the potential pathway for the 

prosperity of the local governments, as well as of the watershed. The framework, from the perspective 

of maintaining river health and preserving aquatic biodiversity, could potentially be operationalized 

by introducing the concept of Environmental Flow (E-flows) and ensuring commitments of all the 

local governments to comply with that. As new governments are ready to frame their development 

strategies, it is the right time to introduce this intervention for ensuring healthy rivers, maintenance 

of aquatic biodiversity, and sustaining human life for a long run. 

4.3.3. Implications on Groundwater Abstraction 

It is estimated that population growth in the EER watershed has increased domestic water 

demand alone by 140%, during 2011–2019, which is projected to increase further by 2050. 

Furthermore, need for food, energy and other resources for the increased population has resulted in 

an increase in agricultural areas over the past decades (Appendix D). The trend is expected to increase 

further in future, in order to cater for more food for growing population. This will have implications 

in water demand. As identified in the field study carried out during October 2019, average duty in 

the study area is 2 liters per second (lps) per hectare in the study area. It means that per hectare 

increase in the irrigated area increases water demand by 2 lps. In this context, given relatively flat 

topography of the EER watershed (about 33% of the EER watershed lying in Tarai, i.e., at the elevation 

below 300 m) and availability of groundwater resources, pressure on the precious groundwater 

resources are likely to increase. Domestic and agricultural activities in various locations within the 

EER watershed are critically dependent on groundwater resources. About 46% of the water used by 

households in the watershed for drinking purpose is abstracted through groundwater sources [50]. 

Potentially declining groundwater levels, coupled with alterations of streamflow, is expected to have 
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an impact on domestic uses, as well as food security. If the groundwater abstraction is not regulated 

properly, groundwater resources are likely to deplete, though there are no scientific estimates on 

groundwater recharge, the current level of groundwater abstraction, and potential impacts of an 

increase in water demand. For example, Hetauda Sub-Metropolitan City (HSMC) area alone has 

nearly 25 tubewells with depths and discharge varying in a range of 76–105 m and 5–32 lps, 

respectively, are drilled during 2004–2009 (Source: Personal communication with Groundwater 

Resources Development Board, Chitwan in September 2019) to abstract groundwater for irrigation. 

Furthermore, the Irrigation Master Plan [51] has included Chitwan as one of the priority districts for 

groundwater projects. These trends are expected to continue to cater to water demands in the EER 

watershed for domestic, irrigation, industrial, and other purposes. 

Urban pockets in the EER watershed, such as HSMC, Bharatpur Municipality, and others, are 

expected to abstract more groundwater resources while moving farther in the future, thus exerting 

more pressure on the precious resource Population in the HSMC areas grew at the rate of 2.6%, but 

urban areas increased by four-fold during 1995–2011 [64], which is continuing to increase after it 

became a sub-metropolitan city with the recent change in the governance structure of the country to 

federal. Water-intensive lifestyle in urban areas, which are getting supply mostly from groundwater, 

is already adding more pressure on groundwater resources through increased abstraction. 

Groundwater production by Hetauda Water Supply Management Board (HWSMB) has increased by 

25% during 2016–2018 to supply water for the HSMC dwellers. Furthermore, groundwater 

abstraction as the major source of irrigation supply in the vast majority of agriculture areas is 

expected to continue for, at least, the foreseeable future. In the context of further alterations in surface 

water, groundwater abstraction would further be accelerated as a safe and reliable source of water 

supply for various uses in the parts of the watershed where feasible. On the other hand, land 

use/cover change in the form of urbanization has decrease open and cultivation areas in the HSMC 

area, which recharge the groundwater system, by at least 7% during 1995–2011 [64], which affects 

adversely to recharge and then to groundwater availability. Though there is no detailed mapping of 

groundwater potential and aquifer depths in the EEER watershed, groundwater aquifer in the flat 

southern part of the watershed is expected to be a single unconfined aquifer with about 200 m 

thickness in HSMC areas with variation in depth across the watershed. The static groundwater level 

in the HSMC area is at a depth of 10–58 m below the ground surface, and groundwater in the area is 

being abstracted from nearly 25 wells to cater for nearly 86% of the water demand in the HSMC 

(source: Authors analysis based on secondary information collected during a field visit in 2019). All 

these scenarios reflect continued increase groundwater abstraction in the future. 

From interaction with stakeholders during a field visit in mid-2019, it was noted that 

groundwater levels in a couple of wells were depleted over the years. As new governments are keen 

to do something new to contribute to the prosperity of their constituency, it is likely to put more 

pressure on groundwater resources, but it is not well understood and represented to inform decision-

making. In overall, increase in industrial and urbanization activities and continued need of water for 

agricultural intensification to fuel food security is expected to impact adversely to groundwater levels 

in parts of the EER watershed. Furthermore, lowering groundwater levels will likely reduce 

groundwater contribution to natural streams, which will further contribute to declining streamflow 

across the basin. Therefore, a baseline study for stock-taking of the current state of groundwater 

availability, withdrawal, recharge, and estimates on the allowable level of groundwater abstraction 

would be helpful for strategically using groundwater resources, without conflict with adjoining local 

governments, for the prosperity of the EER watershed. 

5. Conclusions 

This study, regarding the Extended East Rapti (EER) watershed in central-southern Nepal, 

evaluated trends in rainfall and streamflow, estimated relative contributions of rainfall variability 

and anthropogenic activities towards streamflow changes, and discussed potential socio-

environmental implications of the streamflow alterations. Key conclusions from the analysis are: 
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 Two distinct trends in hydro-climatic time series (temperature) exist before and after 

1990. The rate of decrease a, therefore, 1990 can be considered as the change point for 

the abrupt change in the EER watershed. 

 There is a decreasing trend in streamflow observed at two hydrological stations post-

1990. The rate of decrease at Manahari (station 465), a major tributary of the EER 

watershed, and Lothar Khola (station 470) for the period of 1991–2015 are 0.097 

m3/s/yr and 0.054 m3/s, respectively. In the case of precipitation, most of the 

precipitation has statistically insignificant trends. For example, station 920, though 

there is a statistically significant decrease for the period of 1975–2017, there is a 

decreasing trend of 15 mm/year (insignificant) after 1990. 

 Most of alterations/decrease in streamflow in the EER watershed after 1990 are 

attributed to the anthropogenic origin, though the rate of alteration varies across the 

stations. Climate-induced alterations in streamflow are associated dominantly to 

evapotranspiration. 

 Streamflow alterations are having implications to water and food security; river 

health and aquatic biodiversity; and groundwater abstraction. However, a separate 

study is required to quantify precisely the extent of impacts. 

To ensure water and food security, river health, aquatic biodiversity, and to be able sustainably 

abstract groundwater, it is recommended to devise strategies for water use efficiency through both 

supply-and demand-side management of water. It is also crucial to develop a water co-operation 

framework among the local governments, which share the same water resources, for strategic and 

sustainable use the water resources, and river health preservation. 
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Appendix A 

Methods for Trends Analysis and Attribution of Streamflow Changes 

A1.1 The Pettitt Test 

The Pettitt method [13] is a non-parametric approach to the change-point problem. Given a 

sequence of random variables split at any arbitrary point into two segments, the null hypothesis is 

that there is no change in the mean value of each of those segments. Mathematically, when a sequence 

of random variables �� , ��, ��, … , �� are divided into two segments at τ represented by 

�� , ��, ��, … , ��  and  ���� , ����, ����, … , ��  with common distribution functions ��(�) and 

��(�), respectively; then the sequence is said to have a change point at τ if ��(�)  ≠  ��(�), where, 1 ≤

� < � . Here, null hypothesis is given by ��(�) =  ��(�). To detect change point, a statistical index 

��,� is defined as follows, 

��,� =  � � ���(�� − ��)

�

�����

�

���

, 1 ≤ � < �  

where 

���(�) = 1 �� � > 0, 0 �� � = 0, −1 �� � < 0  

Here, the statistic ��,�  is equivalent to Mann-Whitney statistic for testing that the two samples 

��, ��, ��, … , ��  and ����, ����, ����, … , �� come from the same distributions. The most probable 

change point τ is found at maximum of ���,��, i.e., when statistics 

�� = max
�����

|��.�|  

Significance probability associated with value �� is approximately evaluated as, 

� = 2 ��� �
−6��

�

�� + ��
�  

The null hypothesis, i.e., no change in the mean, is rejected if p < α where α is given significance level, 

and that sequence has significant change point at τ is accepted at given α. 

Pettitt test was carried out in Python 3.x. 

A1.2 Standard Normal Homogeneity (SNH) Test 

Along with Pettitt test, Standard Normal Homogeneity (SNH) Test [14,28] was also applied for 

change point problem. If a normal standardized series from series �� , ��, ��, … , ��  is defined as 

�� , ��, ��, … , ��  where, 

�� =  
(�� − �̅)

�
  

then, ��, the null hypothesis, and ��, the alternative hypothesis are defined as follows: 

��: � ∈ �(0,1), ∀�  

�� : �

��� ���� 1 ≤ � < � ��� �� ≠ ��

� ∈ �(��, 1), ��� � ≤ �,

� ∈ �(��, 1), ��� � > �
  

Here, � ∈ �(0,1) means that Z has a normal distribution with mean value equal to zero and standard 

deviation equal to one. The test statistic (��) is given by: 

�� = � ��
� + (� − �) ��

� ��� 1 ≤ � < �  

�� and �� can be computed as: 
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�� =  
1

�
 �

(�� − �̅)

�

�

���

  

�� =  
1

� − �
 �

(�� − �̅)

�

�

�����

  

where, � ̅and � are the mean and the standard deviation of series {��}. The point τ is considered as 

change point in the series where �� attains the maximum value, i.e., max (��). Significant probability 

p associated with T is estimated by a Monte Carlo simulation using the implementation in Pohlert 

[65]. Given a certain significance level α, if p < a, we reject the null hypothesis and conclude with 

change point at point τ. 

A1.3 Modified Mann-Kendall (M-MK) Test 

Modified Mann-Kendall (M-MK) test [17] for the trend is a modified version of non-parametric 

rank-based Mann-Kendall (MK) test [66,67]. Original MK does not require the data to be normally 

distributed, robust to influence of extremes and has low sensitivity to abrupt breaks due to 

inhomogeneous time series [39]. However, MK test is often biased in the presence of the 

autocorrelation, i.e., when the time series is influenced by previous observations [17]. In order to 

account for the presence of autocorrelation in data, Hamad and Rao [17] proposed variance correction 

in original MK. 

In the MK test, the null hypothesis H0 is that data are independent and randomly placed with 

no serial correlation structure among the observations. The test statistics are given as: 

� =  � � ���(�� − ��)

���

���

�

���

  

where n is the total length of the data, �� ��� ��  are two generic sequential data values. 

������ − ��� =  �

1, ��  ��� − ��� > 0

0, ��  ��� − ��� = 0

−1, ��  ��� − ��� < 0

  

The test statistic S has mean zero, and the variance is given by: 

���(�) =  
[�(� − 1)(2� + 5) − ∑ �(� − 1)(2� + 5)� ]

18
  

where n is the length of time series, and t is the extent of any given tie, and Σt denotes the summation 

over all tie number of values. In cases where the sample size n > 10, the standard normal variate z is 

computed using Douglas et al. [68] as: 

� =  

⎩
⎪
⎨

⎪
⎧

� − 1

����(�)
, �� � > 0

0, ��  � = 0
� + 1

����(�)
, ��  � < 0

  

The positive value of z statistic represents a rising trend and negative value indicate a declining 

trend in series. The null hypothesis is accepted if |�| ≤ ��/2 at α level of significance in a two-sided 

trend of the test. 

Hamad and Rao [17] proposed the following changes in ���(�) with correction needed due to 

the autocorrelation in the data, which is as follows: 

���(�)��� =  ���(�) ×
�

��
∗  
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where ���(�)���is modified variance, and 
�

��
∗  is a correction due to autocorrelation in data. 

�

��
∗  is 

computed as: 

�

��
∗ = 1 +

2

�(� − 1)(� − 2)
× �(� − �)(� − � − 1)(� − � − 2)��(�)

���

���

  

where n is the actual number of observations and ��(�) is the autocorrelation function of the ranks 

of the observations. For the computation of ��(�) autocorrelation should be significant. 

A1.4 Spearman’s Rho Test 

Spearman’s rho test [32,69] is also a non-parametric test that can be applied in order to detect 

the trend in the time series. It is based on Spearman coefficient rs. In this test, the observations 

{��, ��, ��, … , ��} with order � = {1 , 2, 3, … , �} are replaced by its rank ��  which is given to them 

when they are arranged in ascending order of magnitude. The test statistic is the correlation 

coefficient rs between � and ��series, which is given as: 

�� = 1 −
6

�(�� − 1)
× �(�� − �)�  

The null hypothesis is that the distribution of �� is asymptotically normal with 

�(��) = 0 and ���(��) =
�

���
 

Significance probability associated with value ��  is given by �(|�| > |�(��)|)  where u is 

standard normal variate. �(��) is given as: 

�(��) = �� × √� − 1  

 

Given the significance level α, the null hypothesis is rejected if p < α. An increasing or decreasing 

trend is observed depending on whether �� is positive or negative. 

A1.5 Sen’s Slope 

The true slope in a time series data in the presence of linear trend can be estimated by a method 

developed by Sen [70]. Linear model �(�) can be described as; 

�(�) = �� + � 

where m is slope and c is constant. To derive an estimate of the slope m, the slopes of all data pairs 

are calculated, 

�� =  
�� − ��

� − �
, �, � = 1,2,3 … �, � > � 

If there are n observations, we have N= n(n−1)/2 slope estimates ��. The Sen’s estimator of the 

slope is the median of these N values of ��. 

A1.6 Double Mass Curve (DMC) Method 

The DMC is an empirical statistics-based method based on the relationship of cumulative values 

of variables that are widely used when analyzing the consistency and trends in long-term hydro-

meteorological data [21]. We use the relationship between cumulative runoff and cumulative 

precipitation in the baseline period to form linear regression, which can be expressed as Equation A1: 

 � ��
��������

�

���

= � � ��
��������

�

���

+ �, � = 1,2,3 … � (A1) 

 � ��
���������

�

���

= � � ��
���������

�

���

+ �, � = 1,2,3 … � (A2) 

where, c and d are model coefficient. ‘c’ represents the rate of change in the accumulated runoff with 

changes in accumulated precipitation, d denotes the intercept, and n is the length of the annual time 

series. We use these model coefficients in the variation period to simulate cumulative runoff (as 
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expressed in Equation (A2)), which can again de deduced to obtain the reconstructed runoff 

(������������� ) for the variation period, which represents runoff due to influence of factors in baseline 

period only. Thus, the contribution to changes in the runoff from human activities can be calculated 

as expressed in Equation (A3): 

∆������� =  ∆����������� − ∆������������� (A3) 

Furthermore, the contribution to the runoff from climate change can be calculated using Equation 

(A4): 

 ∆��������� =  ∆������� − ∆������� (A4) 

Here, ������������� and ����������� , respectively, represent the average of the reconstructed runoff 

and the observed runoff during the variation period 

A1.7 Elasticity-Based Approaches 

In an unregulated catchment, the runoff from the catchment is the function of precipitation, 

evapotranspiration and catchment characteristics. In the elasticity approach, assuming that the 

changes in precipitation and potential evapotranspiration are the main relevant climatic changes, we 

can write as in Equation (A5): 

 ∆��������� =  ��  
∆�

�
+ ����  

∆���

���
   (A5) 

where, ��  and ����  are precipitation elasticity for runoff and the potential evapotranspiration 

elasticity for runoff, respectively. In general, we can define the climate elasticity of runoff (ε) is 

defined as the ratio of the runoff variation rate to the variation rate of a certain climate factor 

(precipitation or potential evapotranspiration in this study). 

The precipitation elasticity for runoff (��) and the potential evapotranspiration elasticity for 

runoff (����) can be estimated using various ways. In this study, we used the two nonparametric 

approaches and six water balance-based approaches (from the Budyko hypothesis) to estimate the 

precipitation elasticity for runoff (��) and the potential evapotranspiration elasticity for runoff (����). 

A1.7.1 Non-Parametric Approach: 

Sankarasubramanian et al. [42] proposed a nonparametric method to estimate climate elasticity 

directly from the data, which is shown as Equation (A6): 

 �� =  
∆��/��

∆��/��
=  

(�� − ��)/��

(�� − ��)/��
 (A6) 

where ∆��  and ∆��  are the changes in annual runoff and the relevant climate variable (e.g., 

precipitation, potential evapotranspiration), respectively. �� , �� are the annual runoff and climate-

variable values, and �� , �� are the average annual runoff and climate-variable values. 

Sankarasubramanian et al. [42] used the median of �� as the estimated value for elasticity. 

Zheng et al. [20] developed a method of estimation of elasticity using the least squares estimator 

as in Equation (A7): 

 � =  
��

��
 
∑(�� − ��) (�� − ��)

(�� − ��)�
 (A7) 

A1.7.2 Budyko-Based Methods: 

Climate elasticity can be often obtained from the long-term water balance of the catchment. 

Water balance of a catchment is given by Equation (A8): 

� = � + � + ∆� (A8) 

where P, E, Q and ∆S are precipitation, actual evapotranspiration, runoff and change in storage of a 

catchment. When a long-term period is considered, the change in storage is assumed to be zero. 

Therefore, a ratio of Q and P is expressed as Equation (A9), 

 
�

�
= 1 −

�

�
 (A9) 
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According to Budyko [45,71], the actual evapotranspiration E is a function of the dryness index 

or aridity index, ϕ=ET0/P. Now, from the definition of elasticity and above equations, we can 

calculate the precipitation elasticity coefficient and potential evapotranspiration elasticity coefficient 

for runoff as Equation (A10) and Equation (A11): 

 �� = 1 +
� �′(�)

1 − �(�)
 (A10) 

 �� + ���� = 1  (A11) 

F(ϕ′) represents the derived function (derivative) of F(ϕ). Estimation of F(ϕ) are given by six 

approaches are given in Table A1. 

Table A1. Estimations of actual annual evapotranspiration based on the Budyko hypothesis. 

Source Function 

Schreiber [43]  �(�) = 1 − ���  

Ol’dekop [44]  �(�) = � tanh (
�

�
)  

Budyko [45] �(�) = �� tanh �
�

�
� (1 − ���)�

�/�

  

Pike [46]; Turc [47]   �(�) =
�

�����  

Fu et al. [48] �(�) = 1 + � − (1 + ��)�/�  

Zhang et al. [49] �(�) =
����

(�����
�

�
)
  

The parameters m in the Fu et al. [48], and ω in the Zhang et al. [49] function are functions of the 

vegetation, soil, topography, and climate [7]. 

Appendix B: Trends in Temperature Time Series. 

 

Figure A1. Trends in annual maximum and minimum temperature series in Extended East Rapti 

watershed. ‘s’ is Sen’s slope with positive and negative values representing increasing and decreasing 

trend, respectively. The red dashed line shows the mean values before and after 1990. 
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Measured maximum and minimum temperature series in three stations in the study area during 

their observational length (1968–2017) show significant increasing trend at a rate between 0.02 °C and 

0.09 °C per year. In contrast to the observation for the entire period, in the case of maximum 

temperature, we can observe that stations 902 and 906 show a decreasing trend after 1990 (NS) at a 

rate of 0.005 °C/year and 0.016 °C/year, respectively. Station 905 showed an increasing trend (S) at a 

rate of 0.09 °C per year. All the stations showed an increase in minimum temperature after 1990, with 

a maximum increase of 0.093 °C per year for station 905. Station 905 also shows the highest rate of 

increase in maximum temperature at a rate of 0.09 °C per year. Stations 902 and 906 showed an 

increasing rate at 0.003 °C and 0.025 °C per year, respectively. 

The trend of increase in daily minimum temperature is an indication of growing warmness 

during the night in the study area. This will relate to an increase in evapotranspiration in the basin. 

From trend analysis precipitation, we observe that six out of eight stations data show a decrease in 

annual precipitation (though only one is statistically significant). This follows a decrease in mean 

annual runoff in stations 465 (Manahari River) and 470 (Lothar Khola) after 1990. Significant increase 

in the runoff after 1990 in station 460 (East Rapti) can be attributed to two reasons; first reason can be 

the increase in rainfall in station 905 (though data is limited to say definitely) and second reason can 

be the addition of discharge from KuleKhani reservoir hydropower project. The influence of climatic 

factors and human factors will be further analyzed in the following sections. 

Appendix C 

Table A2. Population trends in EER watershed districts [50]. 

District 1952/54 1961 1971 1981 1991 2001 2011 

Chitwan 42,724 158,530 183,644 259,571 354,488 472,048 579,984 

Makwanpur - - 163,766 243,411 314,599 392,604 420,477 

Appendix D 

Table A3. Areas under different land use/cover (LULC) categories in EER watershed districts (Source: 

Calculated based on data from ICIMOD [24]). 

District/Year Forest Agriculture 
Barren 

Land 

Water 

Body 

Built-up 

Area 
Grass/Shrubs Total 

Chitwan 

1990 66.3 28.5 0.8 2.2 1.0 1.2 100.0 

2000 63.4 28.5 2.7 1.4 1.0 3.0 100.0 

2010 63.4 29.7 2.0 1.3 1.1 2.5 100.0 

Makwanpur 

1990 76.3 19.9 1.1 1.3 0.1 1.3 100.0 

2000 72.0 19.7 3.7 0.3 0.1 4.2 100.0 

2010 70.7 22.8 3.9 0.3 0.4 1.9 100.0 
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