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Abstract: With the approaching end of the productive lives of offshore oil and gas platforms, the issue
about decommissioning and what to do with existing structures arises. In this regard, this study aims
to test solutions, at a preliminary level, for the eco-sustainable reuse of platforms at the end of their
extraction phase. In particular, mineral accretion technology is applied by low-voltage electrolysis
of seawater due to the precipitation of calcium carbonate on a cathode material in order to assess
the protection capacity of the platforms against corrosion. This approach allows the extension of
a platform’s “life” under a more sustainable purpose. The results, derived from laboratory and field
experiments, will allow us to reduce uncertainties and define the best operating conditions to increase
the efficiency of the mineral accretion technology in the marine ecosystem. The data collection on the
main parameters that influence the process (i.e., temperature, salinity, and applied current) and the
quantitative analysis of the collected material allowed us to acquire a better knowledge about mineral
composition and deposition rate.
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1. Introduction

The growing concern about the effect of climate change is leading the energy sector in moving from
fossil fuel to renewable energies. The transition may consist in the replacement of production facilities,
or in their conversion or repowering, maximizing the efficiency and minimizing the environmental
impact. An important form of energy transition can be represented by the reuse of offshore oil and gas
(O&G) platforms at the end-of-life production phase [1].

Offshore oil and gas platforms have a limited duration of operations (average productive phase
from 10 to 50 years). In the world, there are currently more than 7500 structures in offshore waters,
located on the continental shelves of about 53 different countries (about 4000 are located in the Gulf of
Mexico, around 950 in Asia, around 700 in the Middle East, and 600 in Europe, the North, and north-east
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Atlantic) [2,3]. About 0.4% of the world’s oil and gas reserves are located in the Mediterranean basin
with 127 offshore platforms. These offshore structures are mainly located in the central Mediterranean
sea, in the northern and central Adriatic Sea at depths from ca. 10 to 120 m, and also in the Ionian Sea
and the Sicily channel [4].

About 85% of O&G platforms will become obsolete and will require removal within the next
ten years [5]. Accordingly, this is raising the issue about how to manage the existing platforms’
decommissioning or reconversion. Possible solutions have been investigated for both fixed offshore
platforms and subsea offshore pipelines (Martins et al., 2019). Figure 1 shows the possible options
available for the decommissioning of O&G platforms, distinguishing between fixed offshore platforms
and subsea offshore pipelines.
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Figure 1. Decommissioning options of offshore assets according to Martins et al., 2019 [6].

Most nations require the complete removal of obsolete structures; however, this practice presents
significant socio-economic and ecological challenges [7,8].

The complete removal policies are based on the assumption of “leaving the seabed as found”
and apparently could represent the most ecologically sustainable option. However, it is known
that, during their productive lives, the platforms are able to support numerous and diversified fish
and invertebrate assemblages, also of commercial interest [9], many of which are of great ecological
importance and/or protected by different international and national legislations. These favorable
conditions are reinforced by the enforcement of exclusion zones around oil platforms that prevent the
exploitation of living biological resources. It is therefore unlikely that the removal of these structures
represents the best practice from an environmental/ecological point of view, and this awareness has led
some nations to leave obsolete structures to act as artificial reefs and/or to find alternative solutions for
their sustainable reuse [9].

The international legal framework on decommissioning has been established over the past fifty
years. Currently, the activities are regulated by three international conventions and by a series of
guidelines, the applicability of which depends on the area in which the infrastructures are located.

The main objective of the conventions is to ensure the safety of navigation and the protection of the
marine environment during the decommissioning operations. The international reference conventions
are summarized below:

• Geneva Convention [10] (1958—United Nations Geneva Convention on the Continental Shelf)
is the first document relating to the removal of offshore installations. In particular, the Art.
5 of this convention states that “all abandoned or unused installations must be removed.”



Sustainability 2020, 12, 3742 3 of 17

However, the Convention does not identify the parts of the infrastructure to be removed; it
follows that, at least for the conduct, the Convention does not establish a strict obligation
to remove.

• United Nations Convention on the Law of the Sea (UNCLOS) [11], which aims to protect and
preserve the marine environment as well as conserve and manage living marine resources.
The article specifies that: “Every installation or structure that has been abandoned or disused
must be removed to guarantee the safety of navigation, taking into account all the generally
accepted international standards issued by the competent international organization in this regard.
It is carried out with due regard to fishing, the protection of the marine environment, the rights
and duties of other States. Adequate information must be provided in relation to the depth,
positioning, and size of installations or structures not completely removed.”

• IMO Conventions (International Maritime Organization) [12], whose main objective is the
promotion of cooperation between countries on navigation issues.

• London Convention on the Prevention of Pollution of the Seas Following Discharges [13] (1972):
Explicitly regards the sale of offshore platforms at sea, even if only partially, contemplating a general
ban on the discharge of any “waste or other materials in any form or condition except as otherwise
specified”; it lists the specific substances and types of waste and the management methods;

• Oslo (1972) and Paris (1992) Conventions (OSPAR: Convention for the Prevention of Marine
Pollution by Dumping from Ships and Aircraft, signed in Oslo on 15 February 1972, succeeded by
the Convention for the Protection of the Marine Environment of the North-East Atlantic, signed in
Paris on 9 September 1992) [14], which adopted a document in 1998 related to the disposal of
disused installations and how to implement the necessary measures to protect the north-east
Atlantic against the adverse effects of human activities;

Moreover, the following are worthy of noting: The Barcelona Convention for the Protection of the
Mediterranean Sea against Pollution (1976) [15], the Basel Convention on the Control of Transboundary
Movements of Hazardous Wastes and their Disposal (1989) [16], and the Helsinki Convention on the
Protection of the Marine Environment in the Baltic Area (1992) [17].

Recently, there has been an increase in the number of research projects about the assessment of
obsolete O&G platforms as a potential source of multi-use hubs for wind and wave energy, as well
as other environmental issues (e.g., MAREenergy [18], MERMAID [19], SDWED [20], THESEUS [21],
MUSES [22]). The high demand from the fishery sector and the more and more stringent environmental
constraints are driving aquaculture development and blue energy farms to go further offshore [23,24].

In Italy, recently, the Ministerial Decree dated 15 February 2019 [25] defined the “National
Guidelines for the disposal of mining platforms for the cultivation of hydrocarbons at sea and related
infrastructures.”

The Decree promoted innovative principles such as the reuse of existing platforms. In particular,
the concept of “reuse project” was introduced, which considers the analysis of the production potential
in relation to fish farming, agriculture, and offshore renewable energy. Thus, the Italian Guidelines
represent a first concrete step towards the achievement of one of the sustainable energy policy objectives
in the upstream sector through the identification of the best technologies available for mining disposal,
and focusing on evaluating any innovative alternative uses with a view to the circular economy and
“blue growth”.

In this context, the PLaCE [26] project aims at investigating for the first time at the national
level cutting-edge technologies and solutions for the eco-sustainable reuse of offshore platforms
close to end of their productive phase and located in the Adriatic Sea in the offshore waters
of the Abruzzo region. The cutting-edge activities of the project will include the application of
innovative eco-sustainable strategies of aquaculture based on integrated shellfish and holothurian
farming, design and development of innovative systems for renewable energy generation needed for
multipurpose platform activities, the development of innovative integrated systems for the assessment
of ecological sustainability of multipurpose platform activities and their maintenance, cost–benefit
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analyses, and business scenarios that also take recreational aspects into account. All of the activities
revolve around a refurbished decommissioned O&G platform, to be electrified in a way similar to
Impressed Current Cathodic Protection methods, but with different voltages and current intensities. In
particular, the project will test a life-extension strategy for reutilization of offshore platforms into a new
and eco-sustainable economy, based on mineral accretion technology under low-voltage electrolysis of
seawater. The technology offers both protection against corrosion and precipitation of a thick layer of
calcium carbonate over the structure. The high compatibility of the accretion (mineral deposition) with
the marine environment promotes rapid ecosystem enhancement. This technology is already used
for coral reef restoration [27,28] in areas presenting favorable water temperature conditions (i.e., high
temperatures) and promotes higher yield or deposition rates.

It is now clear, however, that the implications of the eco-sustainable reuse of offshore platforms
can be feasible only if an extension of the original anticipated operational lifetime of the asset can be
guaranteed. In fact, for aging facilities, an increasing number of defects due to degradation has to be
expected [29]. O&G platforms are exposed to conditions of stress that will ultimately degrade the
material from its initial state. Therefore, it is imperative to boost the interest of researchers and engineers
to develop economic and environmentally friendly solutions for life extension of offshore platforms.

In this vein, the present work, carried out within the PLaCE project, aims to improve the knowledge
on mineral accretion technology in order to protect the structures from corrosion, allowing the potential
extension of lifetime with the changed purpose of the structures, and generating a substrate/matrix
of calcium carbonate that is highly colonizable by marine organisms. The steel/calcium carbonate
structure integrates the carbonate matrix’s high compressive strength with the metal’s tensile strength,
thus creating a material with greater rigidity and stability than the steel alone.

The results presented here derived from experiments carried out both in the field (on a site
in the North Sea) and in the laboratory. The experiments will constitute the base of knowledge
about mineral deposition technology in conditions of waters cooler than tropical/subtropical waters,
allowing the reduction of uncertainties and the definition of the most suitable operating conditions for
the application of mineral accretion technology in marine systems with water temperatures below
21 ◦C.

2. Mineral Accretion Technology

The mineral accretion technology uses seawater electrolysis to precipitate calcium carbonate on
a cathode. This technology was designed in its original form by Wolf [30] as an innovative process
for the production of sustainable material at a low cost and to replace or implement cementitious
applications. In recent years, this technology has been used mainly in tropical areas to restore
and stabilize shorelines, control erosion of shorelines, and create artificial reefs [27,28,31]. Figure 2
shows an example of a mineral electrodeposition used for the creation of an artificial coral reef in
subtropical waters.
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Deposition of CaCO3 is common in the field of cathodic protection (CP) of steel and has therefore
been widely investigated [33]. In seawater, during the application of cathodic protection, a scale layer
forms on the metal surface. As a function of its chemical composition and compactness, it can improve
the metal’s protection against corrosion by reducing the oxygen diffusion [34,35].

Material is accumulated by applying a low-voltage electric current to submerged conductive
materials, a process known as electrolysis, which causes the precipitation of some dissolved elements
(i.e., Mg2+, Ca2+) present in the seawater (Table 1) on the cathode [36].

Table 1. Major elements present in seawater at 3.5% salinity.

Ion Concentration, g/kg Percent Free Ion, %

Cl− 19.353 100

Na+ 10.784 98

Mg2+ 1.284 89

SO4
2− 2.712 38

Ca2+ 0.412 89

K− 0.399 98

HCO3
− 0.107 * 79

* For pH 8.1, P = 1 atm, t = 25 ◦C.

In more detail, electrolysis is a method separating bonded elements and compounds by passing
an electric current through the elements. As the electricity from the power supply passes through the
water between electrodes (cathode, negatively charged, and anode, positively charged), the water will
be able to split into its compounds: Positively charged hydrogen and negatively charged hydroxide
ions [37].

2 H2O→ 2 H2 + O2 (1)

Seawater can be electrolyzed because it contains positively charged sodium ions (Na+) and
negatively charged chloride ions (Cl−). This specific liquid contains ionic compounds and can conduct
electricity when they dissolve in water. This is called an electrolyte.

Electrolysis in saltwater will split into hydrogen (H+) and chlorine (Cl) gas; the chlorine is reached
by a secondary reaction.

Cathode: 2 H+ (aq) + 2e−→ H2 (g) (2)

Anode: 2 Cl− (aq)→ Cl2 (g) + 2e− (3)

Two electrodes are used, one negatively charged (i.e., the cathode), and the other positively
charged (the anode). Positively charged ions (cations) attract the negatively charged ions (anions)
and vice versa. This means that the positively charged ions will move towards the cathode and the
negatively charged ions will move towards the anode.

Metals have different electrode potentials. The anodes used for electrolysis are sacrificial anodes,
which means that they sacrifice themselves, keeping the cathode from corroding. Sacrificial anodes
are created from metal with a more negative electrochemical potential than the cathode. The anode
metal dissolves into the electrolyte, and deposit collects on the cathodic metal. The electrolyte and the
impressed potential provide an ion-crossing movement, which means that ions move from the anode
to the cathode. This reaction results in a faster corrosion of the anode than it otherwise would, and the
corrosion at the cathode is inhibited. This means that a specific anode material, such as titanium,
should be used for the mineral deposition.

When at least 1.23 V of power is supplied to the structure, electrolysis is initiated. Experiments that
were conducted before [27,37] in the world have used different voltages and currents, as well as
different structures for the cathodes.
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Water is broken down into H+ and OH− ions, making the surrounding environment both acidic
(around the anode) and alkaline (around the cathode).

Hydrogen ions created on the anode dissolve in water and then react with CaCO3,
which neutralizes them:

H+ + CaCO3 = Ca2+ + HCO3
− (4)

After this, the HCO− ions are consumed by the precipitation of CaCO3 directly on the cathode
surface:

Ca2+ + HCO3
− + OH− = CaCO3 + H2O (5)

The lower the pH, the more soluble the calcium carbonate. This is because the changes in pH are
directly correlated to changes in carbonate ion concentrations in water. Bicarbonate and carbonate are
both forms of the same ion, but at a lower pH, the bicarbonate form (HCO3

−) predominates, whereas at
a higher pH, the carbonate form (CO3

2−) does.
At high pH levels (9+), brucite (Mg(OH)2) will be favored to precipitate instead of aragonite.

At a normal pH (7), the seawater will cause the brucite to dissolve and release hydroxyl ions.
The hydroxyl ions will therefore raise the pH and convert bicarbonate to carbonate ion, which
reacts with calcium ions. In this act, the material grows and brucite ages, and it is replaced by aragonite.
Brucite is similar in appearance to aragonite, but it is structurally weak and easily mechanically
broken off.

The process of electrolysis also creates oxygen gas on the anode, which attracts sea life [31].
The size and shape of the submerged conductive structure determines the shape of the material
structure created. The rate of the growth could reach up to 2 cm per year [27], depending on different
environmental conditions, including temperature and salinity, but also imposed potential. As long as
the power is supplied to the structure, the coating keeps growing under the constant accumulation of
calcium carbonate. It possesses the ability to regenerate if a piece is broken off or manually removed,
which makes it a great self-regenerating material for structures that require a lot of resources to
maintain, compared to other marine construction materials.

The self-regenerating property is the result of the electrical field distribution. At first, the electrical
gradient between the anode and the cathode cause the growth of the mineral all over the cathode
surface, beginning close to the connection points and on sharp extremities. The metal used for the
cathode has the same voltage potential throughout its whole length. If, at any point, a piece of the
mineral is removed, it creates an increased current density and mass transfer flow through water at
that point, causing increased precipitation until the new material is as resistive as the rest of the coating.
The hydrogen gas production is also increased, and that is normally associated with a more porous
structure of the precipitated material [32].

3. Materials and Methods

3.1. Study Area

Field experiments were carried out in the waters of Hanstholm port (Denmark). This is the
first time that that the technology is used in a cold-water marine system. Seawater was analyzed by
Inductively Coupled Plasma analysis (ICP) before the beginning of the experiments (Table 2).

Ideally, the tests would last one year, but North Jutland was hit by record wind storms between
2018 and 2019, and the facility was severely damaged only 40 days after the set up was in place; there
was a power short-circuit a few hours after we installed.
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Table 2. Inductively Coupled Plasma (ICP) water analysis results.

ICP Elements mg/L

Ca 481.4

Mg 1269

Na 7252

K 757.9

Sr 6.2

3.2. Hanstholm Experiment and Monitoring

The experimental system in Hanstholm harbor consisted of a self-contained hard plastic box
adequately perforated to allow water circulation, containing the 6 sets of cathodes (2 per shape,
all pre-weighted), anode, data logger for conductivity and water temperature, and secured connections.
The cathodes were placed around the anode at an average distance of circa 16 cm from the centroids.
All electrical connections were isolated and the anode connection was waterproof (silicon).

The experimental system was located at ca. 20 cm above the sea bottom (at 5 m below surface)
with a rope to minimize the deposition of fine particles over the electrodes, as much as possible which
can negatively influence calcium carbonate accretion and yields [38,39].

The cathodes were pieces of circa 10 × 10 cm of metal grid, untreated steel, and net shaped by
hand into cylinders and blocks. The Dimensionally Stable Anode (DSA) was 9.5 × 4.6 × 0.2 cm.

Once in the water, a voltage of 5–5.5 V was applied for few seconds until bubbling on the anode
was observed, and then the voltage was set to 2.5 V with 0.3 A. The power was sourced from the
electrical grid from a pole 100 m away from the installation. Power consumption was monitored.
The experiments were run at a constant 2.5 V. The current was initially 0.3 A, and then shifted to 0.2 A
until the end of the tests.

During the inspection of the site, there was a bit of wind and some ripples/small waves on the
surface of the sea. Everything worked properly, and a layer of solid white material covered the cathodes.
The conductivity was measured directly with a probe during installation and at each inspection.

Once recovered, the cathodes were transported to the laboratory and washed with deionized water
before drying. Dried samples were then treated in a muffle furnace at 550 ◦C for 4 h to remove any
traces of organic matter. The total amount of deposited material was obtained by differences between
the weight of the cathode at the end and before the beginning of the experiment. The composition of
material, after grinding to fine powder, was determined by X-ray diffraction (XRD) analysis.

3.3. Laboratory Experiment

The laboratory experimental system consisted of a plastic tank (20 × 20 × 31 cm),
containing approximately 9 L of water, with stirring, water inlet and outlet, and a pump for water
exchange (Figure 3). The water inlet was placed 4 cm from the bottom of the tank, while the outlet
was placed 15 cm from the bottom. The tank was either placed in room temperature or in a fridge,
depending on the temperature of the experiment.

The power supply used was a Powerbox LBX 30-200 (0–30 V, 0–200 A). The electrodes were
connected to the power supply with bolts through a metal ring in the end of the electrode cable. Up to
four experiments were connected to the power supply. The power supply has permission to execute
constant current experiments because it was believed to be convenient to have a constant current
density to the cathode for the production of electrodeposited mineral material.
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Preliminary experiments showed that a constant applied current of 0.25 A made it possible to
produce aragonite, so this was chosen as the lower level of applied current. After the first series of
samples at 0.25 A, it was observed that the material had a greater amount of brucite than aragonite.
It was therefore decided to reduce the lower level of the experiments to 0.22 A. The application of
current lower than this level did not cause mineral deposits. The maximum applied current level,
also known from preliminary experiments, was 0.31 A.

For the experiments, synthetic seawater prepared with different compositions was used. One was
prepared according to the standard solution of marine water by the American Society of Testing
and Materials (hereinafter referred to as ASTM) (ASTM D1114-98) [40], while the other had the local
concentration of Mg2+ and Ca2+ (hereinafter referred to as ESBJ).

The synthetic seawater was prepared in batches of 10 L. NaCl, Na2SO4, KCl, and NaHCO3 were
dissolved in 1 L of deionized water, MgCl2 was dissolved in 2 or 3 L of water for ASTM and ESBJ,
respectively, and CaCl2 was dissolved in 1 L deionized water. This procedure was necessary to
prevent the salt from precipitating during preparation. The dissolved salts were then mixed together
in deionized water for a total of 10 L, followed by a pH adjustment to 8.2 by addition of 0.1 M NaOH.

The experiment was carried out at two temperature levels, 7 ◦C (low level) and room temperature,
22 ◦C (high level). The low level is that of the typical temperature of local sea water, while the high
temperature falls within the range in which the electrodeposition was described in the literature.

For the electrolysis reaction, two inert anode materials were tested, the dimensionally stable anode
(DSA), optimized for the oxygen reaction and consisting of a titanium plate covered with mixed metal
oxides, and a platinum-coated titanium anode (Pt-Ti). The connection between the anode and the cable
was modeled in silicon, as contact with water caused corrosion by interrupting the connection.

The cathodes are 2 mm carbon steel plates cut into 6 x 10 mm pieces. Silicone was added to the
top 2 cm of the cathode to prevent this part from reacting with synthetic seawater. Before starting the
experiment, the cathodes were subjected to pretreatment, and constant voltage was applied for 24 h
to create an initial layer of material. This initial layer was necessary to increase the resistance of the
system so that it could add the required voltage to a given current applied. The pretreatment procedure
involved the preparation of approximately 3 L of ASTM seawater solution for each cathode that had to
be pretreated. There was no water flow during these 24 h. During pretreatment, DSA anodes were
used and a constant voltage of 2.2 V was applied.

The experiments were divided into “groups” of four that were connected to the same power
supply and run simultaneously at the same applied current. Two experiments were running at the
low temperature, while the other two used the setup at room temperature. The water composition
and the electrode materials were randomly distributed between the experiments. Each experiment
lasted for 14 days, for a total of 21 experiments. Some of the experiments had to be repeated, as the
applied current was too high to produce aragonite (0.25 A). These experiments were repeated (marked
N) at 0.22 A. Material produced by applying 0.25 A was only analyzed once, while the other samples
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were analyzed three times by XRD. After 14 days of experiments, the cathode was removed from the
tank and washed in deionized water to avoid the deposition of crystals from the synthetic seawater
(e.g., NaCl) over the electrodeposited material during drying. The mass of the deposited material was
obtained by differences between the weight of the cathode at the end and before the beginning of the
experiment. The material, once removed from the cathodes, was ground using a pestle to obtain a fine
powder for XRD analysis.

4. Results and Discussion

4.1. Field Experiments in the Hanstholm Harbor

Seawater temperature and conductivity values, recorded every 30 min (for a total of about
13,770 data values for each of the parameters) during the installation, are reported in Figures 4 and 5,
respectively. The temperature ranged from 2.4 to 20.0 ◦C. The conductivity varied from 6700 to
37,530 µS/cm. Such high variability of thermo-haline conditions reflects the typical temporal variations
occurring in the study sites, including changes induced by meteorological forcing (cold winds,
precipitation/evaporation processes), as the harbor a small and semi-enclosed basin.
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The XRD analysis of the mineral sample (Table 3) showed that the material became stronger over
time, with an increase of the quantitative relevance of aragonite from 65.9% to 75.8%. This composition
is rather similar to the one found for a sample kindly provided to us from the installation in the Hin
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Fai location of Koh Tao island in Thailand. This features 78% aragonite and 22% brucite. By this
comparison, we can say that equally hard material can be precipitated in cold waters too.

Table 3. Comparison of mineral composition analyses after two weeks and after three months.

Composition after 2 Weeks Composition after 3 Months

Aragonite: 65.9
Brucite: 33.2%

Aragonite: 75.8%
Brucite: 23.3%

Calcite: 0.8% Calcite: 0.8%

4.2. Weight of the Mineral Deposition

The layer of deposited material was between 2–7 mm depending on the location, showing thicker
deposition where the mashes on the cathodes intersect. Accordingly, the amount of deposited material
changed on the basis of the shape and dimension of the grids of the cathodes (Tables 4–6 and
Figures 6–8).

Table 4. Comparison of cathode weight before and after electrodeposition (fine grid).

FINE GRID

Squared shaped, plates

Side 1 (cm) Side 2 (cm) Weight before (g) Weight after (g) Gain (g)

9.5 10 13.25 27.97 14.72

Squared section, columns

10 13.5 26.41 12.91

Table 5. Comparison of cathode weight before and after electrodeposition (wide grid).

WIDE GRID

Squared shaped, plates

Side 1 (cm) Side 2 (cm) Weight before (g) Weight after (g) Gain (g)

9.5 10 9.0 17.3 8.3

Round section, columns

9.5 3 8.5 20.43 11.93

Table 6. Comparison of cathode weight before and after electrodeposition (box with small stones).

BOX WITH SMALL STONES

Squared shaped, plates

Side 1 (cm) Side 2 (cm) Side 3 (cm) Weight before (g) Weight after (g) Gain (g)

5.5 2.5 3.5 45.25 59.45 14.2
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4.3. Laboratory Experiments

The mass and composition of the deposited material on the cathodes following 14 days of
laboratory experiments using different conditions in terms of anode and seawater typology and
current are reported in Table 7. Three different constant currents were applied in the experiments,
0.22, 0.25, and 0.31 A, with a corresponding voltage ranging from 2.05–3.20 V. Depending on the
experimental conditions, differences in the mass and composition of the deposited material were
observed. Notably, the quantitative relevance of aragonite was generally much higher at the constant
current of 0.22 A compared with higher current regimes (i.e., 0.25 and 0.31 A).

Table 7. Mass and composition of deposited material using different experimental conditions.
A = aragonite, B = brucite, C = calcite.

Run Anode Temperature
(◦C)

Constant
Current (A) Water Material

Weight (g)
Material

Composition

1 DSA 7 0.31 ASTM 3.9815 A: 2.6% B: 97.3% C:
0.0%

2 DSA 22 0.25 ASTM 2.6434 A: 58.9% B: 40.9%
C: 0.2%

2N DSA 22 0.22 ASTM 2.7212 A: 44.1% B: 55.9%
C: 0.0%

3 Pt-Ti 22 0.25 ESBJ 3.7891 A: 6.8% B: 93.2% C:
0.0%

3N Pt-Ti 22 0.22 ESBJ 2.5981 A: 49.1% B: 50.8%
C: 0.1%

5 Pt-Ti 22 0.31 ASTM 3.4643 A: 28.8% B: 71.1%
C: 0.0%

5NY Pt-Ti 22 0.31 ASTM 12.9968 A: 0.2% B: 99.8% C:
0.0%
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Table 7. Cont.

Run Anode Temperature
(◦C)

Constant
Current (A) Water Material

Weight (g)
Material

Composition

7 Pt-Ti 7 0.25 ASTM 2.3055 A: NA B: NA C:
NA

7N Pt-Ti 7 0.22 ASTM 2.0922 A: 75.9% B: 24.1%
C: 0.0%

8 DSA 7 0.25 ESBJ 2.8110 A: 35.7% B: 64.3%
C: 0.0%

8N DSA 7 0.22 ESBJ 1.9526 A: 41.5% B: 58.3%
C: 0.2%

9 Pt-Ti 7 0.31 ESBJ 3.0697 A: 30.0% B: 69.9%
C: 0.0%

10 DSA 7 0.31 ESBJ 2.6577 A: 14.7% B: 85.3%
C: 0.0%

11 DSA 22 0.31 ASTM 9.8694 A: 1.5% B: 98.5% C:
0.0%

12 Pt-Ti 22 0.31 ESBJ 3.4800 A: 22.0% B: 78.0%
C: 0.0%

13 DSA 7 0.22 ASTM 0.9534 A: 80.4% B: 19.5%
C: 0.0%

15 DSA 22 0.22 ESBJ 2.8917 A: 21.3% B: 78.6%
C: 0.1%

20 DSA 22 0.31 ESBJ 8.0931 A: 2.7% B: 97.2% C:
0.0%

22 Pt-Ti 7 0.22 ESBJ 1.3819 A: 81.0% B: 19.0%
C: 0.0%

26 Pt-Ti 22 0.22 ASTM 0.9650 A: 99.4% B: 0.6% C:
0.0%

32 Pt-Ti 7 0.31 ASTM 2.9358 A: 36.0% B: 63.9%
C: 0.0%

In particular, we found an inverse relationship between the percentage of aragonite deposited
on the cathode and the applied current (Figure 9). We also observed that the highest percentages of
aragonite produced at 0.22 and 0.31 A were found in the samples where the Pt-Ti anode was used.
This tendency is especially pronounced for the samples prepared at 0.31 A. This phenomenon could be
explained by the difference in activation potential for the two anodes.

Conversely, the temperature and seawater composition did not seem to have a major effect on the
deposited material.

The percentage of deposited aragonite was also inversely related to the total mass of the material
precipitated on the cathodes (Figure 10). These results suggest that brucite can be produced to a larger
extent compared to aragonite.
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5. Conclusions

The results from this study allowed a better understanding of the most suitable operating
conditions for the application of mineral accretion technology in terms of the main parameters that
influence the process (temperature, salinity, applied current), as well as the best anode and cathode
materials to be used.
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In particular, from the field and laboratory experiments carried out in the present study,
the following conclusions can be drawn:

(a) Temperature

A larger quantity of aragonite is deposited at a lower seawater temperature (7 ◦C) compared to
that at a higher temperature regime (22 ◦C). This can be explained by differences in kinetic reactions
at the two temperatures, since water electrolysis is more effective (more OH− is produced) at higher
temperatures compared to when the same constant current is applied at lower temperatures. More OH−

at the cathode means that more brucite precipitates.

(b) Anode material

The application of a DSA anode generally resulted in higher amount of brucite produced and more
material deposited compared to the experiments where the Pt-Ti anode was used. The two electrode
materials have different activation potentials, meaning the minimum potential that is required for the
electrolysis reaction to start. The results indicate that the DSA anode has a higher activation potential
than that of the Pt-Ti anode.

(c) Seawater composition

The use of ASTM water determines only a slightly higher deposition of aragonite compared to the
use of ESBJ water. Such limited differences in ion concentrations between the two synthetic seawaters
are not meaningful to appreciate differences in the composition of the deposited mineral.

(d) Applied electrical current

The applied constant electrical current seems to have a major effect on the composition of the
deposited mineral at the cathode surface, since more brucite is formed at higher levels of applied
current, and vice versa for aragonite. This result was expected, as the concentration of hydroxide ions
(OH−) increases with increased applied current. As a result, brucite forms in a competing reaction to
deposition of aragonite.

(e) Deposition rate

On the basis of the total amount of precipitated material (0.121 kg) and the energy consumed
(3,4 kWh), we estimated a deposition yield in Hanstholm waters of 0.04 kg/kWh, which is ca. 100 times
lower than that reported in the literature [36]. Thus, further studies are needed to reduce energy
consumption in relation with mineral precipitation as much as possible.

From this study, the governing conditions for the production of aragonite are low current (0.22 A)
and low temperature (7 ◦C). In contrast to what was expected from the literature [41], these results
indicate that lower temperature results in a higher percentage of aragonite compared to when the
material is produced at a higher temperature. The results from the two tested anode materials indicate
that the Pt-Ti anode produces material with a slightly higher percentage of aragonite compared to the
DSA anode, although the latter produced promising results when used for field experiments.

Overall, the findings reported in the present study provide new elements for the application of
an effective mineral accretion strategy in different marine environmental settings in addition to the
tropical ones, aiming to protect steel structures from corrosion and promoting biological colonization
processes [42], thus contributing to the sustainability of the natural capital.
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