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Abstract: The present study projected future climate change for the densely populated Central North
region of Egypt (CNE) for two representative concentration pathways (RCPs) and two futures (near
future: 2020–2059, and far future: 2060–2099), estimated by a credible subset of five global climate
models (GCMs). Different bias correction models have been applied to correct the bias in the five
interpolated GCMs’ outputs onto a high-resolution horizontal grid. The 0.05◦ CNE datasets of
maximum and minimum temperatures (Tmx, and Tmn, respectively) and the 0.1◦ African Rainfall
Climatology (ARC2) datasets represented the historical climate. The evaluation of bias correction
methodologies revealed the better performance of linear and variance scaling for correcting the
rainfall and temperature GCMs’ outputs, respectively. They were used to transfer the correction factor
to the projections. The five statistically bias-corrected climate projections presented the uncertainty
range in the future change in the climate of CNE. The rainfall is expected to increase in the near future
but drastically decrease in the far future. The Tmx and Tmn are projected to increase in both future
periods reaching nearly a maximum of 5.50 and 8.50 ◦C for Tmx and Tmn, respectively. These findings
highlighted the severe consequence of climate change on the socio-economic activities in the CNE
aiming for better sustainable development.
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1. Introduction

Climate change has drastically affected the Mediterranean human and natural systems, including
human health, agriculture, water management, and ecological diversity [1], making it one of the
hotspots of climate change [2]. Increases in the magnitude and frequency of climate extremes have
been observed in the recent decades [3–6] and are projected in the future [7–9].

Global climate models (GCMs) are usually used as a primary tool for studying the changes in
the climate. In recent years, successive efforts have been made to simulate the global climate, and
thus several models have been introduced in the fifth phase of the Coupled Models Intercomparison
Project (CMIP5). They have been extensively used to project the future climate at global and regional
levels [10,11]. Although GCMs can simulate the large-scale characteristics of climate, the credibility
of their historical outputs of different climatic variables (e.g., temperature and rainfall) varies with
the model used and the geographical location [12–16]. This is due to the challenges in simulating
the characteristics of different climatic variables within different synoptic regimes [17]. Therefore,
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researchers usually select as many GCMs as possible to compensate for uncertainty in the intermodel
variability [18]. The selected models should be capable of accurately representing the past climate
of a certain region and encompass a wide diversity of future climate projections [19]. Nevertheless,
typical GCMs present their outputs at coarse resolution spatial grids, which often have a 200 km
spacing increment [20]. These coarse spatial girds are incompetent to represent the mesoscale features
of local climates, which pose challenges for policymakers in making decisions concerning adaptation
and mitigation measures. To bridge the spatial gap between the coarse-scale GCMs’ outputs and the
fine-scale information required, downscaling methods of climate variables have been developed.

The climate downscaling methods can be categorized into two main groups: the dynamical
and statistical downscaling methods [21]. The main idea of the dynamical downscaling method
is to simulate sub-GCMs’ grid-scale features dynamically using a time-varying lateral atmospheric
condition supplied by a GCM over a target domain [22], while the statistical downscaling method
aims to establish a statistical relationship between the GCM outputs and the fine-scale variables using
historical records [23]. Both methods are widely used as means of driving the local-scale climate
from large-scale atmospheric predictor variables. However, the statistical downscaling methods are
favourable as they are easy to implement and do not require high computational powers as are required
for the dynamical downscaling methods [20,23,24].

Egypt mostly depends on the water of the Nile river [25]. Its climate is characterized by low
precipitation and high temperatures and evapotranspiration. Thus, the land of Egypt is subjected to
the lack of natural vegetation, except for the Nile Delta and Valley, with zero values of the normalized
difference vegetation index (NDVI) [26,27]. Due to the desert environment and the limited water
availability, the country is highly vulnerable to the changes in climate [28–30]. Projected climate change
in Egypt, and specifically its central north region (CNE), has received little attention. Most of the
climate change studies focused on the effects of the rising level of seawater on the country [30–35].
Mostafa et al. [9] projected the change in rainfall and temperatures at eight stations in Egypt using the
Coordinated Regional Climate Downscaling Experiment (CORDEX) Africa. Nashwan and Shahid [36]
projected the change in rainfall and temperature signals using a set of credible GCMs over Egypt
by a 2.5◦ × 2.5◦ spatial grid. Furthermore, as Egypt is located at the edge of the Asian, African, and
European CORDEX domains, it was presented in several continental-scale studies [37–39]. However,
the magnitude of the climate change signal from the continental studies differs greatly from the regional
average. Therefore, in order for policymakers to develop effective strategies to mitigate or adapt with
climate change, it is necessary to project the future localized change in rainfall and temperatures, which
shall be more representative of local needs.

To have creditable outputs of regional climates using statistical downscaling, credible historical
observations are required. As gauge data are often scarce and spatially sparse in many regions in the
world [40,41], the high-resolution gridded datasets are often used for this aim. The high-resolution
gridded datasets are mostly based on either satellite data and/or ground-based gauge measurements.
The recent availably of the 0.05◦ gridded Central North region of Egypt (CNE) datasets [42] of
maximum and minimum temperatures (Tmx, and Tmn, respectively), and the 0.1◦ daily African
Rainfall Climatology v.2 (ARC2) dataset [43] have enabled researchers to statistically downscale GCMs’
outputs over the CNE, which is the most populated and economically vital region in Egypt. The present
study took the initiative by statistically downscaling a set of five GCMs—which were found to be
the most credible for Egypt [36]—to understand the specific characteristics of future temperatures
and rainfall over this vulnerable region under the context of climate change. Several bias correction
methods were evaluated for correcting the bias in GCMs’ outputs compared to historical observations.
The most robust methods were then selected for correcting the bias in future projections of climate
under two future scenarios, and the change in future climate compared to the historical period were
projected. This study shall provide insights to the future changes in rainfall and temperatures for this
densely populated Mediterranean region.
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2. Study Area and Data

2.1. Study Area

Egypt is located to the far northeast of Africa with a land area of 1 million km2. It has long coastal
fronts to the Mediterranean Sea and the Red Sea. The Nile River, which originates in central Africa,
penetrates the country from the south and downstream in the Mediterranean. Figure 1 shows the
lights of night-time captured over Egypt using the low-light imaging (day/night band) of the Visible
Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite.
The city lights (shades of grey colour) represents the unique population distribution along the Nile,
which is one of the densest in the world, exceeding 2000 capita per km2 in some cities. Away from the
lights, a uniform black presents the deserts and waters. Nearly 75% of the Egyptian population lives
in the CNE [44]. The CNE (latitude: 29.50◦–31.55◦; longitude: 29.50◦–33.00◦, Figure 1) encompasses
the Greater Cairo metropolitan area, the new administrative capital, and the Nile Delta and Suez
Canal regions. This region is vital for the Egyptian economy because it is the land where most of
the Egyptian cotton, rice, and wheat are planted, which represent 60% of the Egyptian agricultural
land [45]. Furthermore, the region also houses most of the Egyptian industrial activities [46].

The climate of CNE, as well as Egypt, is a hot desert arid climate with two main seasons: summer
from April to September and winter during the remaining months [47]. The summer is hot and dry,
while the winter is cool and wet. Most of the rainfall occurs in the north and east of the country and
the interior of the land is dry with a long-term annual mean rainfall of zero [48]. The temperatures
vary between 22.3–35.0 ◦C for Tmx and 10.0–22.5 ◦C for Tmn through the year.
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Figure 1. Night-time lights of Egypt captured by the Visible Infrared Imaging Radiometer Suite (VIIRS)
on the Suomi National Polar-orbiting Partnership satellite. The night-time lights of Egypt reveal
the unique distribution of its nearly 100 million capita in the Central North region of Egypt (CNE)
(including the Nile Delta) and the Nile Valley.

2.2. Observation Gridded Data

Two high-resolution gridded datasets were used in this study to represent historical observed
climate. They are the CNE temperatures dataset [42] and ARC2 rainfall dataset [43]. The CNE
dataset provides daily estimates of Tmx and Tmn at 0.05◦ spatial resolution from 1981 to 2017 in
the CNE region [42]. It was developed through three steps. First, the Climate Prediction Center
(CPC) global daily temperature dataset was interpolated into 0.05◦ × 0.05◦ spatial grid. Second, the
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interpolated estimates were bias corrected with reference to station observation, using the robust
kernel density distribution mapping (KDDM) method [49]. Third, the bias-corrected estimates where
integrated with WorldClim v.2 high-resolution climatology datasets [50] to obtain the spatial pattern in
temperature variability over the CNE. The CNE datasets were validated against independent ground
observations and other gridded datasets such as University of Delaware (UDel) Air Temperature v5.01
and University of East Anglia Climatic Research Unit time series (CRU TS) v4.01 for monthly averages,
and the climatologies at high resolution for the earth’s land surface areas (CHELSA) v1.2 for monthly
averages and climatology. The validation of CNE datasets (presented in [42]) proved their capability in
reproducing the temporal and spatial variability in observed temperature. The CNE datasets of Tmx
and Tmn are available online within the Figshare open access repository [51]. Figure 2 presents the
annual average temperature during 1981–2005 estimated by the CNE datasets.
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Figure 2. The spatial distribution of annual average (a) maximum temperature (Tmx) and (b) minimum
temperature (Tmn) during 1981–2005, estimated by the CNE datasets.

The ARC2 is a satellite-based gauge-corrected precipitation product that has been developed
by the National Oceanic and Atmospheric Administration (NOAA) CPC. It has provided daily
estimations of rainfall at 0.1◦ spatial resolution since 1983, covering only Africa. It integrates the
3-hourly infrared data of Meteosat First Generation Satellites 2–7 (MFG2–7) and the Meteosat Second
Generation (MSG 8-10) with daily rainfall observations of nearly 1200 in situ ground stations from
the global telecommunication system gauge network [43]. The ARC2 data are freely available at the
CPC website. ARC2 was compared against the observed rain gauge data in Egypt and showed an
acceptable performance [52]. Figure 3 presents the annual average rainfall during 1983–2005 estimated
by the ARC2 over the CNE region.
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2.3. Global Climate Models

Five GCMs were statistically downscaled over the CNE region in this study. Table 1 presents a
list of the GCMs, their developing centre, and raw spatial resolution. The five GCMs provide daily
simulations of the climate and have the two representative concentration pathway (RCP) scenarios,
RCP4.5 and RCP8.5. Those GCMs are the most credible GCMs for Egypt’s climate [36]. They were
selected based on a novel past performance evaluation and ranking framework from an initial pool of
31 CMIP5 GCMs [36]. The initial pool of GCMs considered only those having daily outputs of the three
variables for at least RCP4.5 and RCP8.5 and have the “r1i1p1” initial condition. The evaluation and
ranking framework focused on selecting models that can replicate the annual spatial patterns of Tmx,
Tmn, and P accurately. Models that could not accurately replicate any of the three variables were not
selected. The result of the evaluation and ranking can be summarized as (1) MRI-CGCM3 was the overall
best model for the three variables; (2) FGOALS-g2 was the overall best in simulating temperatures
and GFDL-CM3 for rainfall; (3) FGOALS-g2 had the lowest rank for rainfall; (4) GFDL-CM3 had the
lowest rank for Tmx; and (5) the ranks of the other models—excluding GFDL-CM3—were close to each
other per variable. More details about the evaluation and ranking approach leading to the selection
of the five GCMs are available in Nashwan and Shahid [36]. By using an intermediate stabilization
scenario—RCP4.5—and the highest possible climatic change scenario—RCP8.5, this study can be a
lookout to a wide range of possible impacts of climate change for the CNE.

Table 1. The global climate models (GCMs) downscaled for the CNE.

GCM Developing Centre Raw Spatial Resolution

FGOALS-g2 Institute of Atmospheric Physics, Chinese
Academy of Sciences, China 2.8◦ × 2.8◦

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.5◦ × 2.0◦

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.5◦ × 2.0◦

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.9◦ × 1.9◦

MRI-CGCM3 Meteorological Research Institute, Japan 1.1◦ × 1.1◦

3. Methodology

The following steps were adopted in this study to downscale the five GCMs’ outputs of Tmx,
Tmn, and rainfall:

1. Regrid the GCMs’ outputs to 0.1◦ for rainfall and 0.05◦ for temperatures—the same as the
resolution of the observation datasets—using the bilinear interpolation technique.

2. Correct the bias in regridded GCM temperature/rainfall data for the historical period (1983–2005
for rainfall and 1981–2005 for temperatures) using CNE and ARC2 as reference datasets for
temperatures and rainfall, respectively.

3. Evaluate the performance of different bias correction methods for rainfall and temperatures,
separately, and select the best methods based on different statistical metrics.

4. Employ the best bias correction method in regridded projections of future rainfall and temperatures
for the generation of high-resolution climate projections for the period 2020–2099.

Afterwards, the future projected data were used to assess the spatial and temporal changes in
rainfall and temperatures for two future periods (near future: 2020–2059 and far future: 2060–2099)
compared to the historical periods (1983–2005 for rainfall and 1981–2005 for temperature). The details
of methods used for the downscaling and projection of climate in the CNE region are given below.

3.1. Model Output Statistics Downscaling

Statistical downscaling methods are categorized as stochastic weather generators, perfect prognosis,
and model output statistics (MOS) [53]. Among them, the MOS approach has been most widely
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used in recent years for its better capacity in bias correction of GCM simulations [54–59]. In MOS,
a relationship between the observed and the GCM simulated precipitation is developed for the
reference period, which is then applied to correct the biases in future GCM simulations. The MOS
method can correct GCM biases unequivocally and therefore, it is widely recommended for climate
change projections [11,60,61]. Another advantage of the MOS method is that the reliability of climate
projections does not change the climate signal in GCM simulations. Turco, et al. [61] evaluated the
performance of the MOS method for downscaling extreme precipitation in a complex terrain in the
Mediterranean climate and showed its capability in downscaling the extremes of precipitation. Studies
by Turco et al. [62] and Castellano and DeGaetano [63] also reported the capability of MOS models in
downscaling extreme precipitation.

Several bias correction methods have been developed and used in different studies [64–67]. In this
study, three widely used bias correction methods were employed for the correction rainfall outputs
(Table 2), namely linear scaling (LS), power transformation (PT), and empirical quantile mapping
(EQM). For the correction of temperature outputs, the variance-scaling bias correction method was
used instead of PT with the other two methods mentioned above. The bias correction methods are
described in detail below. The downscaleR package of the R software was used for the bias correction
of GCMs’ outputs.

Table 2. Methods used for correction of biases in the GCMs’ rainfall and temperature data.

Bias Correction for Rainfall Bias Correction for Temperatures

Linear Scaling (LS),
Power Transformation (PT), and

Empirical Quantile Mapping (EQM)

Linear Scaling (LS),
Variance Scaling (Var), and

Empirical Quantile Mapping (EQM)

3.1.1. Linear Scaling

The LS method, introduced by Lenderink, et al. [68], uses the difference in observed and simulated
monthly mean data as a monthly correction factor, which is then applied to uncorrected daily data for
correction of bias. The daily rainfall is corrected using Equation (1) and the daily temperatures are
corrected using Equation (2).

Pcor,m = Praw,m ×

 µ
(
Pobs,m

)
µ(Praw,m)

 (1)

Pcor,m = Praw,m ×

 µ
(
Pobs,m

)
µ(Praw,m)

 (2)

where Pcor,m and Tcor,m are the corrected precipitation and temperature of m month, Praw,m and Traw,m

are the same as previous but for raw interpolated GCM data, Pobs,m and Tobs,m are the precipitation and
temperature observation data of m month, and µ represents the mean.

LS is a simple method that requires only monthly data to calculate the scaling factor [69]. However,
Diaz-Nieto and Wilby [70] and Maraun et al. [71] found that in the case of precipitation, the correction
using only the monthly mean can distort intermonthly precipitation distribution and the probability
distribution of monthly precipitation.

3.1.2. Empirical Quantile Mapping

EQM, introduced by Piani et al. [72], is a nonparametric bias correction method that can be
applied to any kind of climatic variables, thus it can be used for both temperature and precipitation.
Its main idea is based on constructing daily empirical cumulative distribution functions (eCDFs).
The main difference between EQM and other distribution mapping-based methods is that the others
focus on precipitation by estimating the eCDFs only for wet days. Thus, they cannot be used for
temperature time series. EQM considers both mean and extreme values, so it is considered as one
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of the most efficient bias correction methods for precipitation [72–74]. The adjustment of rainfall or
temperature using EQM can be expressed in terms of the eCDF and its inverse (eCDF-1), as formulated
in Equations (3) and (4), respectively.

Pcor,m = eCDF−1
obs,m.[eCDFraw,m(Praw,m) ] (3)

Tcor,m = eCDF−1
obs,m.[eCDFraw,m(Traw,m) ]. (4)

3.1.3. Power Transformation

Though the LS method is capable of correcting the bias in mean precipitation, it does not consider
correcting the biases in the variance of time series. Thus, PT considers the bias in the mean and the
differences in the variance for the correction of model outputs [75]. In PT, a nonlinear correction in
the exponential form, a.Pbm, can be used for the adjustment of variance. Parameter bm is determined
iteratively [76] by matching the coefficient of variation (CV) of daily GCM precipitation with the
CV of observed daily precipitation for each month. This is carried out using Brent’s method [77] of
root-finding algorithm. The parameter bm is only a function of CV as presented in Equation (5), and a is
the ratio of the mean of the observed and the mean of the transformed (Pbm

raw,m) values. Thus, parameter
a depends upon bm and not vice versa [78]. Then, the raw precipitation is transformed into corrected
precipitation using Equation (6).

Find bm such that f (bm) = 0 = CV
(
Pobs,m

)
−CV

(
Pbm

raw,m

)
(5)

Pcor,m =

µ
(
Pobs,,m

)
µ
(
Pbm

raw,m

) × Pbm
raw,m. (6)

3.1.4. Variance Scaling

Though the PT method can correct both the mean and variance in precipitation time series, it is
not suitable for correcting the bias in temperature time series as temperature time series are known
to be approximately normally distributed [79]. Therefore, the Var method was proposed to correct
the bias in normally distributed variables, such as temperature, by correcting both the mean and
variance [79]. In Var, the temperature is bias-corrected using the following equation where σ is the
standard deviation.

Tcor,m = [Traw,m − µ(Traw,m)] ×
σ
(
Tobs,m

)
σ(Traw,m)

+ µ
(
Tobs,m

)
. (7)

3.2. Evaluation Metric

The performance of each bias correction method was evaluated upon the basis of the capability to
generate the distribution of the historical reference data. The probability distribution function skill
score (PDFss) was used as an evaluation metric. The PDFss is a robust score that measures the overlap
between the bias corrected and the observed probability distribution functions (PDFs) by computing
the cumulative minimum value of their distributions [80], as in Equation (8). It ranges from 0–1 and
1 indicates a perfect distribution overlap. Based on the evaluation results, the best bias correction
method was selected to bias-correct future projections of all GCMs’ outputs, separately. One bias
correction method was selected for rainfall data correction and another for both Tmx and Tmn.

PDFSS =
n∑
1

min
(
Zy, Zx

)
(8)
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where Zy and Zx are the ratios of the values for a given n number of bins from the observed and GCM
PDFs, respectively.

4. Results

The daily rainfall and temperature outputs of the selected five GCMs were regridded into a
fine resolution (i.e., 0.1◦ for rainfall and 0.05◦ for temperatures) over the CNE region using bilinear
interpolation. Then, different bias correction models were developed to correct the bias in rainfall
and temperatures data using ARC2 and CNE, respectively, as historical reference datasets. The bias
correction methods were then evaluated to select the best method for correcting rainfall data and
another for the temperatures data. The following is the evaluation results.

4.1. Evaluation of Bias Correction Methods

The performance evaluation of the different bias correction methods using box plots is given
in Figure 4. The evaluation was carried out by comparing the bias-corrected downscaled output of
the GCM historical simulation against the reference datasets at each grid. Each box represents the
statistical metric obtained for a GCM using a particular bias correction method. The results revealed
that all the bias correction methods were capable of improving the raw GCMs simulations to varying
degrees. In general, all the bias correction methods performed better for temperatures than for rainfall.
In case of rainfall, the LS outperformed the EQM and PT in term of median PDFss. However, the LS
was found to be the worst method in the case of temperatures. The three methods were more capable
in bias-correcting Tmn than Tmn in terms of PDFss. The Var method showed better PDFss than EQM
for both Tmx and Tmn. Based on the evaluation results, the LS and Var methods were selected as the
best methods for correcting bias in rainfall and temperatures, respectively in the CNE.
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methods used for correcting the five GCMs estimates of (a) rainfall, (b) Tmx, and (c) Tmn.

Figure 5 presents the scatter plots of the raw and bias-corrected monthly rainfall and temperatures
for five GCMs using linear and variance scaling, respectively, against historical observations. The figure
shows that the bias-corrected values (red dots) are more aligned with the observations than the raw
GCM outputs (blue dots). Although the LS models were found to improve the rainfall estimation of
the downscaled GCMs considerably, the scatter plots indicate that the LS model overestimated the low
rainfall amounts, while it underestimated extreme rainfall amounts. The large mismatch in rainfall was
due to the large bias in GCM rainfall. The bias in GCM raw rainfall is also highly nonlinear (Figure 5).
Therefore, correction of such bias was not possible by comparing the mean, variability, or distribution
of GCM rainfall with the observed rainfall. On the contrary, the corrected Tmx and Tmn using the
variance scaling model were found to be almost perfectly alligned with the CNE datasets’ estimates.
It was capable of correcting the over- and underestimated raw temperatures of the different GCMs.
The bias in GCM temperature was found to be less and linear (Figure 5). Therefore, the bias correction
model was able to correct it perfectly.
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Figure 5. Scatter plots of the monthly observed R, Tmx, and Tmn against raw and downscaled GCM
estimates. The columns of the panel represent the scatter plots of P, Tmx, and Tmn, and each row
of the panel presents the scatter plot of the corresponding GCM. The black line represents the ideal
line, while the blue and red lines represent the regression lines of the raw and downscaled GCM
estimates, respectively.
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The good performance of both models was also observed using the density plots presented in
Figure 6. It clearly shows the improvement in the bias-corrected estimations (red colour) in replicating
the PDF of the observations (black colour) compared to the PDF of raw GCM estimations (blue colour).
The PDFss values (presented in Table 3) represent the overlap between the PDFs of the bias-corrected
and the observed time series (presented in Figure 5). The PDFss of the downscaled Tmx and Tmn were
almost perfect (0.99) while they were high for rainfall in the range of 0.91–0.94.
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Figure 6. Density plots of the monthly observed data, and the raw and downscaled GCM estimates
of P, Tmx, and Tmn (columns). Each row of the panel presents the density plot of the corresponding
GCM. The rainfall and temperatures estimates were bias-corrected using linear and variance scaling
methods, respectively.
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Table 3. The PDFss of different bias-corrected GCMs in replicating observed PDF.

GCM Rainfall Tmx Tmn

FGOALS-g2 0.94 0.99 0.99
GFDL-CM3 0.92 0.99 0.99

GFDL-ESM2G 0.92 0.98 0.99
MPI-ESM-MR 0.91 0.99 0.99
MRI-CGCM3 0.94 0.99 0.99

4.2. Projected Change in Spatial Patterns of the Climate Variables

The projected changes in Tmx, Tmn, and P for two futures (i.e., near future: 2020–2059 and far
future: 2060–2099) for RCP4.5 and RCP8.5 compared to the base period, 1981–2000 for temperatures
and 1983–2000 for rainfall were estimated from the downscaled and bias-corrected GCM simulations.
The bias-corrected GCM projections using LS for rainfall and Var for temperatures are only presented
here as those methods were found best in correcting biases in GCM rainfall and temperature simulations,
respectively. Figure 7 presents the spatial patterns in the change in the annual mean of daily Tmx
projected by different GCMs during the near and far futures for the two RCPs. Each of the five
downscaled and bias-corrected GCMs showed a distinct spatial pattern; however, most of them
projected a higher increase of Tmx in the east and southeast of the CNE. A higher increase of Tmx in
the far future than the near future was also projected. The average increase of Tmx in the near future
was projected to be 1.13 ◦C and 1.45 ◦C for RCP4.5 and RCP8.5, respectively, while 1.80 ◦C and 3.48 ◦C
in the far future. The GFDL-CM3 and GFDL-ESM2G estimated the highest and lowest change in Tmx,
respectively. GFDL-CM3 projected a median increase of 1.83 ◦C and 2.94 ◦C for RCP4.5 and 2.34 ◦C
and 4.50 ◦C for RCP8.5 during the two futures, respectively. MRI-CGCM3 projected an increase in
Tmx by 0.96 ◦C and 1.43 ◦C for RCP4.5 and 1.18 ◦C and 2.71 ◦C for RCP8.5.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 23 
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Figure 7. Changes (◦C) in the annual mean of daily maximum temperature for the periods 2020–2059
and 2060–2099 projected by the selected GCMs for RCP4.5 and RCP8.5 scenarios.

The spatial patterns in the projected increase of Tmn by the selected GCMs are presented in
Figure 8. Unlike Tmx, the bias-corrected GCM projections showed a similar spatial pattern in the
change of Tmn, but with different magnitude. The increase of Tmn in the north of the CNE region was
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projected to be more intense than in the south. The average increase in the near future was projected to
be 1.23 ◦C and 1.58 ◦C for RCP4.5 and RCP8.5, respectively, while 1.88 ◦C and 3.49 ◦C in the far future.
The GFDL-CM3 and GFDL-ESM2G estimated the highest and lowest changes in Tmn, respectively.
GFDL-CM3 projected a median increase of 2.21 ◦C and 3.23 ◦C for RCP4.5, and 2.76 ◦C and 5.24 ◦C
for RCP8.5 during the two future periods, respectively. MRI-CGCM3 projected an increase in Tmx
by 0.90 ◦C and 1.40 ◦C for RCP4.5 and 1.17 ◦C and 2.72 ◦C for RCP8.5 for the near and far futures,
respectively. The GFDL-CM3 projected the highest increase (8.43 ◦C) of Tmn in the far future for RCP8.5
in a small area in the northeast of CNE that coincides with the 2nd largest city in Egypt, Alexandria.
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The spatial pattern in the percentage of change in rainfall over the CNE projected by the selected
and bias-corrected GCMs is presented in Figure 9. Most GCMs projected an increase of rainfall in both
the near and the far futures (mean change 45.04% and 36.51%, respectively) under RCP4.5. However a
decrease in rainfall was projected for both periods (mean change: −95.46% and −96.04%, respectively)
under RCP8.5. All the GCMs except GFDL-CM3 projected a higher increase of rainfall in the south
than in the north of CNE for RCP4.5. FGOALS-g2 estimated the highest increase in rainfall by 200%
and 182% for RCP4.5 during the near and far futures, respectively. Also, all the GCMs estimated a
common decrease in rainfall amount under RCP8.5 with nearly the same spatial patterns. GFDL-CM3,
the top-ranked GCM for rainfall projected a 9.15% increase of rainfall in the near future and 12.60%
decrease in the far future for RCP4.5. For RCP8.5, 96.71% and 97.00% decreases of rainfall in the near
and far futures, respectively, were projected.
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Figure 9. Changes (%) in the annual mean rainfall for the periods 2020–2059 and 2060–2099 projected
by the selected GCMs for RCP4.5 and RCP8.5 scenarios.

4.3. Projected Regional Changes

The regional changes in rainfall against temperature in the CNE during the near and far futures
for the two RCP scenarios are presented in Figure 10 as a scatter plot. Rainfall change is presented by
calculating the median change in rainfall estimated by each bias-corrected GCM for different periods
and scenarios, while the temperature change is presented by calculating the average of the median
changes in Tmx and Tmn estimated by each bias-corrected GCM. Each symbol in the plot indicates a
GCM. The grey-colored symbols represent the changes for RCP4.5 and the dark blue represent the
changes for RCP8.5. The symbols of red outline represent the changes in the far future and those
without a color outline represent the changes in the near future. The intersection between the points
of the same future period and RCP were connected to generate boundaries of future changes and
to present the uncertainty in projections by the ensemble of GCMs. As shown in the figure, each
GCM showed different mean changes in rainfall and temperature. The mean projected changes in
temperature ranged between 0.92 ◦C and 3.08 ◦C for RCP4.5 and 1.17 ◦C and 4.87 ◦C for RCP8.5.
Furthermore, the mean projected changes in rainfall were between –12% and 114% for RCP4.5 and
−93% and −98% for RCP8.5. GFDL-CM3 projected the driest and hottest future changes for RCP4.5
and RCP8.5 scenarios. The boundary of future changes for RCP4.5 (highlighted in blue shades) was
found to be much bigger than that for RCP8.5 (highlighted in red shades), indicating that the changes
of rainfall projected under RCP4.5 using the selected GCMs were more uncertain compared to those
under RCP8.5, while it was vice versa for temperatures.
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Figure 10. Scatter plot showing the regional change in rainfall (%) and temperature (◦C) for the CNE
estimated for the near and far futures (NF, and FF, respectively) for two RCP scenarios.

4.4. Projection Change in the Climate Variables Distribution

Density plots of the historical and bias corrected projected annual P, and monthly Tmx and Tmn
data for different GCMs under RCP4.5 and RCP8.5 scenarios are presented in Figure 11. The aim of
presenting these plots is to display the change in distribution between the projected and historical
data. They were calculated for the areal average rainfall and temperature. Furthermore, the PDFss
were calculated to measure the overlap in PDFs of the historical and projected data for RCP4.5 and
RCP8.5 for the two future periods. Then, the differences in PDFs (1-PDFss) were calculated and
presented in Figure 12 to provide quantitate values of the projected distributional changes in rainfall
and temperatures.

For rainfall, all GCMs, except FGOALS-g2, projected nearly the same annual distribution of
rainfall in the two future periods under both RCP scenarios yet the changes projected under RCP8.5
were more than those under RCP4.5. This was indicated by the low values of the PDFss difference
(=1-PDFss) for the four GCMs, as shown in Figure 12a,b. For FGOALS-g2, a decrease in the number of
“less wet” years was projected for both the future periods and scenarios. The downscaled MPI-ESM-MR
projected an increase in the number of “less wet” years under RCP8.5 for the far future. For RCP4.5,
the distributions of the annual rainfall of the GFDL-ESM2G and GFDL-CM3 models were projected to
change more during the far future than the near future, as presented in Figure 12a,b. But for RCP8.5,
the PDFs of MRI-CGCM3 and FGOALS-g2 for the far future were projected to change more compared
to the near future, while it was vice versa for the remaining models.

For temperature, the models showed nearly similar distributions for Tmx and Tmn compared to
the historical periods, but shifted to the right indicating hotter climate, as presented in Figure 11. Also,
they projected a gradual change in temperature distribution, Figure 12c–f, as the differences in PDFs
between the projected near-future data and historical data were less than those for the far future data.
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5. Discussion

Several bias correction methodologies have been proposed to correct the GCMs’ outputs on
a regional scale before the analysis of the projected change in the climate. These methodologies
vary from the simple linear scaling technique to the more advanced quantile mapping techniques.
As the performance of downscaling methods varies by case, there is an ongoing need to evaluate their
performances in bias-correcting the historical GCM simulations before applying them to the future.

Several studies have reported that raw GCM outputs are always biased [16,81]. The direct use
of their raw outputs in climate change is not advisable as they might lead to misleading conclusions
about future change. The results of the present study (Figures 5 and 6) also proved that raw GCMs
underestimate the historical rainfall in the CNE. Also, most of the raw GCMs underestimate Tmx and
overestimate Tmn.

All used bias correction methods showed their capability in improving the GCM outputs at
different levels of accuracy. The two simplest methods, linear and variance scaling, were found to be
the best methods in bias-correcting the rainfall and temperatures, respectively, of the different GCMs.
Both methods showed better statistics compared to others. The scatter and density plots also proved
the improvement in their bias-corrected estimates compared to raw GCMs outputs. Other related
studies also found that both methods are better in correcting the biases in climate variables [82–84].

It has been argued that in climate change studies, the most relevant result is the climate change
signal and not absolute values [85]. In this study, lower climate change signals for rainfall (except
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for RCP8.5) and temperatures were obtained for the bias-corrected future climate data than for the
noncorrected data. The projected changes in Tmx and Tmn were smaller using the bias-corrected data
than using the raw signals of GCMs presented in Nashwan and Shahid [36]. However, in the case of
rainfall, higher climate change signals were obtained for different GCMs, especially for RCP8.5.

The high-resolution projections showed a rise in maximum (1.80–3.48 ◦C) and minimum
(1.88–3.49 ◦C) temperature and change in rainfall depth (−96.04–36.51%) by the end of the century in
CNE. This finding complies with the finding of Tabari and Willems [86] with respect to the fact that the
dry areas are getting wetter and the wet areas are getting drier in the Middle East, as opposed to the
general concept of “wet gets wetter and dry gets drier” [87]. Based on the previous studies [88,89],
the projected decrease in rainfall amount is linked to the weakening of the Eastern Mediterranean
storm track. Also, the finding of this study agrees with Mostafa et al. [9] in regards to the projected
rate of increase in temperature and decrease in rainfall in CNE at three stations’ locations.

Nashwan and Shahid [36] found the five GCMs used in this study to be the most capable of
replicating the spatial and temporal variability of historical patterns of the three climatic variables,
collectively. Which means, that they did not consider the models that had a poor past-performance
in any of the three variables, even if they were performing well for the others. However, there is an
intermodel variability in the performance of the selected GCMs for different variables. This is evidenced
by the ranks obtained from different GCMs presented in Nashwan and Shahid [36] and summarized
in Section 2.3. Due to their distinctive performances, the projected changes in FGOALS-g2 and
GFDL-CM3 were found to be distinct from those from the remaining GCMs (Figure 10). Furthermore,
the remaining models were more likely to project closer climatic conditions because of their adjacent
ranks, thus they are positioned close to each other in the plot of Figure 10.

The bias-corrected models’ outputs projected a reduction in rainfall during the far future,
which would make the winter rainfed cropland become completely irrigation dependent. Furthermore,
the possible reduction in rainfall would limit the groundwater recharge, which certainly increases the
seawater intrusion from the Mediterranean Sea in the Nile Delta aquifer, which is severely susceptible
to seawater intrusion at present [90]. The decrease in future rainfall coupled with the increase in
temperature may increase the evapotranspiration, resulting in a reduction of atmospheric water
availability, thus increasing irrigation water demand. This may increase agricultural water stress
in the country [91], leading to more frequent crop failures. The anticipated decrease in rainfall and
increase in temperature shall increase the aridity in the CNE. These changes have been reported in
different regions and countries nearby to the CNE [92,93]. The increase in aridity in CNE could lead to
a reduction in the crop yield due to the increase of water stress in agriculture land. This may severely
affect food security in Egypt as most of the agriculture land is located in this region.

Bias correction methodologies generally assume that the deviation found between the raw GCMs
outputs and the historical observations data remain constant over time in the future. This can be
doubtful, as it was argued by Lafon, et al. [69] that the downscaling can be sensitive to the selection of
the reference period. They found that the LS is more robust and least sensitive to the choice of the
calibration period, while the empirical quantile mapping method can be highly accurate, but very
sensitive to the choice of the calibration period. Therefore, it should be kept in mind that downscaling
and bias correction introduce additional uncertainties, which are greater for higher-order moments.

6. Conclusions

This work provided a picture of the future climate conditions expected in the CNE, as projected
by a credible subset GCMs over Egypt. Different bias correction methods have been applied to correct
the bias in the five interpolated GCMs’ outputs onto a high-resolution horizontal grid. The LS and Var
were found to be better for bias-correcting rainfall and temperatures of historical GCMs, respectively.
They were used to transfer the correction factor to the projections under two RCPs.

The five statistically bias-corrected climate projections presented the uncertainty range in the
future change in the climate of CNE. The rainfall is expected to increase in the near future but drastically
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decrease in the far future. The Tmx and Tmn are projected to increase in both the future periods,
reaching to 5.50 and 8.50 ◦C, respectively. These findings highlighted the severe consequence of climate
change on the socioeconomic activities in the heavily populated CNE. While much work remains to be
done for the indepth impact study, the high-resolution climate projections developed in this study
would help to bridge the gap between climate and impact models.

Future work is warranted to increase the reliability and credibility of climate projections over the
CNE by forming a multi-model ensemble by using the downscaled GCMs’ outputs.
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