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Abstract: Eucalyptus is a fast-growing, short-cycle, and high-efficiency tree species that is widely
planted all over the world. Weeding is a special practice for Eucalyptus plantations that aims to
cultivate seedlings and reduce vegetation competition for nutrients. In this study, a typical Eucalyptus
plantation was selected as the research object, and the effects of two different weeding methods on
soil evaporation and plant growth were studied. The results showed that mechanical weeding could
effectively remove harmful weeds at an early stage, but after 30 days of weeding, all kinds of plants
gradually recovered; herbicide weeding required long-term maintenance. The herbicide had the best
control effect on Microstegium vagans (Nees ex Steud.) A. Camus, Dicranopteris dichotoma (Thunb.)
Bernh, and Blechnum orientale, but the effect on shrubs was not obvious. The evaporation rate of soil
increased rapidly within five days after mechanical weeding. After 139–200 days of weeding, the
differences in evaporation between non-weeding, herbicide weeding, and mechanical weeding was
decreased. The average daily evaporation was 0.52, 0.48, and 051 mm/d under these three practices.
Meanwhile, weeding could promote Eucalyptus growth. Our results showed that weeding could
significantly increase the height, diameter at breast height, and volume of Eucalyptus. One month
after herbicide weeding or mechanical weeding (July), the height, DBH, and volume of Eucalyptus
were significantly greater than those under non-weeding, but there was no significant difference
between herbicide weeding and mechanical weeding. In addition, according to the different initial
moisture contents, the evaporation rate increased with increasing initial moisture content and showed
a very significant correlation.

Keywords: Eucalyptus plantation; weed; soil evaporation; vegetation biomass; forest growth

1. Introduction

Eucalyptus belongs to the myrtle family, which originated in Australia [1]. Eucalyptus has the
advantages of high productivity, wide adaptability, and rapid economic returns, and thus has undergone
rapid development driven by the market economy [2]. At present, a special Eucalyptus industrial
chain has been formed, and Eucalyptus can be used as raw material to produce paper, furniture,
everyday items, and medicine. In recent years, the total value of the global Eucalyptus industry has
reached trillions of US dollars, of which the annual output value of China’s Eucalyptus industry is
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more than RMB 550 billion [3]. In 2010, the area of Eucalyptus plantations in China reached 3.6 million
ha, and Guangxi had the largest planting area of 1.647 million ha, accounting for approximately 45%
of the total area of Eucalyptus plantations in China [4]. However, this increasing area has resulted
in widespread focus on and controversy regarding the development of Eucalyptus forests, and the
negative impact on the ecological environment has become an increasing concern. Among the areas of
focus, one of the most controversial is the hydrological processes in Eucalyptus plantations, which
impact the distribution of regional water resources [5,6]. Specifically, soil is an important storage place
of water resources, and plays an important role in the process of forest hydrology.

Soil evaporation means that the water in soil escapes through the soil pores into the atmosphere
in the form of water vapor, a process that is also called the invalid loss of soil water [7,8]. Evaporation
is an important part of the hydrological cycle and energy transmission, as well as the link between soil,
vegetation, and the atmosphere, and is also the main form of water dissipation from the earth. As an
important element of the water cycle, soil evaporation is important for the efficient utilization of water
resources, assessments of the ecological environment and maintenance of the water balance. Statistical
data show that water entering the atmosphere through evaporation accounts for approximately 60%
of the annual average precipitation [9]. Therefore, soil evaporation plays an indispensable role in
the biosphere, hydrosphere, and atmosphere, and its changes have important impacts on agriculture
and ecological hydrology. The influencing factors of soil evaporation are very complex and mainly
include soil moisture, soil structure, soil surface characteristics, and topography [10]. Climate change
will also affect the strength of soil evaporation. Previous studies have shown that soil evaporation
increases logarithmically with increasing rainfall intensity [11,12]. However, surface cover also affects
soil evaporation, and the most studied surface covers types include sand and stone cover, mulching,
and litter cover [13]. In addition, it has been found that the removal of shrub grass can significantly
increase the evaporation of soil water in forests [14]. At present, there are few reports about soil
evaporation in forests, especially plantations, which is due to the influence of the vegetation type,
surface coverage, soil moisture content, and management. In different vegetation types, the types and
thicknesses of undergrowth and litter greatly influence soil evaporation. The effective methods for
determining soil evaporation include the water balance method, lysimeter method, soil respiration
observation instrument, and small evaporator [15,16]. Small evaporator [17], which is easy to carry
and use in the field, has a high temporal resolution and can be applied over a large area, and the results
from this device are the closest to the actual situation, making it especially suitable for forest research.
However, this method is rarely reported in soil evaporation studies in forests, especially in plantations.

As fast-growing, short-cycle forests, Eucalyptus plantations require more frequent management
than other plantations and more strongly interfere with forestland, thus causing water problems [18–20].
Weeding, as an important measure in Eucalyptus plantations, is an important factor that impacts the
survival rate of young forests and the effectiveness of forest management [21]. In the field of agricultural
production, weeding has become necessary and has been used for a long time. Weeding technology
has gradually developed from manual weeding to practices such as mechanical weeding, chemical
weeding, and biological weeding. However, in the field of forestry, topography and operating costs
restrict the development of weeding technology. At present, conventional methods mainly include
mountain refining, mechanical weeding, and chemical weeding [18,22,23]. Eucalyptus plantations are
short-cycle plantations, and weeding is a common management method that lasts a long time and
causes high-frequency disturbance to undergrowth vegetation. This condition is a significant difference
between Eucalyptus plantations and Chinese fir, Masson pine, and other long-term plantations in terms
of production and management [24]. The common plant communities of Eucalyptus plantations mainly
include herbs, lianas, and ferns. Weeding can improve the light conditions under the forest, increase
the resistance of young Eucalyptus forests, and eliminate the competition of weeds with Eucalyptus
for nutrients [25]. Considering the protection measures of forest canopies, the weeding methods
commonly used in Eucalyptus forests include mechanical weeding and chemical weeding, which are
quite different in terms of operation and principle. Mechanical weeding is a physical weeding method
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that mainly refers to the use of weeding machines to remove the aboveground part of vegetation to
inhibit plant growth, while the survival mode and amount of root system remaining underground vary
by plant species [26,27]. Chemical weeding mainly refers to herbicide weeding, which can completely
kill weeds or plants [28]. We all know that weeding can eliminate competition with weeds for soil
nutrients, enhance the resistance of growing trees, and promote tree growth [29,30]. Previous studies
have shown that weeding with herbicides can reduce the relative coverage of undergrowth grass and
woody plants, which will lead to different soil evaporation intensity. [31]. In addition, Chen, Luo,
Zhang, et al. found that the plant height of Hibiscus cannabinus increased after weeding treatment, and
this increase was higher under chemical weeding than under mechanical weeding [32]. Lei found that
different weeding methods had different effects on the growth and development of cotton. Compared
with non-weeding, weeding treatments effectively increase the length, surface area, and volume of
cotton roots and promoted the growth of roots, which is conducive to the high yield of cotton [33].
Tan and He studied the growth of young Chinese fir forests under different weeding methods and
found that the volume of a single tree was the highest under spading and chemical weeding [34].
Furthermore, Benayas, Navarro, Espigares, et al. reported that mowing could reduce the evaporation
of soil water in Quercus Linn plantations and had a significant positive synergistic effect on seedling
growth [35]. However, there are few reports on soil evaporation and tree growth after frequent weeding
management in Eucalyptus plantations.

In this study, mechanical weeding and herbicide weeding were used in typical Eucalyptus
plantations, and non-weeding was used as a control. The objectives of this study were (i) to investigate
the effect of different weeding methods on the biomass of Eucalyptus under forest; (ii) to explore
the effect of different weeding methods on the soil evaporation of Eucalyptus plantations; and
(iii) to evaluate the effect of different weeding methods on Eucalyptus growth. Our research aims
to provide a theoretical basis for the construction of water evapotranspiration and a hydrological
model of Eucalyptus plantations and provide scientific guidance for the management and sustainable
development of Eucalyptus plantations.

2. Materials and Methods

2.1. Site Description

The study area is located on the Yangcun forest farm, Guangxi Zhuang Autonomous Region,
China (110◦16′48”–110◦20′40” E, 23◦09′23”–23◦16′12” N), which has a southern subtropical monsoon
climate. The annual average temperature is 21.4 ◦C; the annual average sunshine is 1700 h; the annual
average rainfall is 1726.7 mm, most of which is concentrated from April to September; and the average
relative humidity is 80%. The terrain of the study area is low-mountain and hilly areas, with an altitude
of 130–410 m and a slope of 15◦–31◦. The soil type is mainly lateritic soil, and the soil-forming parent
material is sand shale. Most of the soil layers are 55–135 cm thick and acidic, with pH values of 4.6–4.8.

2.2. Field Investigation and Experimental Plot Design

In the study area, two adjacent Eucalyptus plantations with afforestation times of March 2014
(EU1) and February 2015 (EU2) were selected as experimental forests. The altitudes of EU1 and EU2
were between 152 and 233 m, the slope direction was to the east, and the slope gradient was 24◦.
Before Eucalyptus plantations were planted, Pinus massoniana plantations were planted in both EU1
and EU2, and these were cut in December 2013 and October 2014, respectively.

After the two sample plots were cleared by fire, the hole cultivation and land preparation methods
were adopted for Eucalyptus planting. The size of the planting hole was 50 cm × 40 cm × 50 cm.
The ‘Guanglin No. 9’ Eucalyptus varieties were planted using clonal tissue culture seedlings with a
height of 15–20 cm. The afforestation specification of the sample plot was 2 m × 3 m, the afforestation
density was 1650 plants/hm2, and 400 g (N: P: K of 12: 8: 10) of organic compound fertilizer was applied
to the hole before afforestation. EU1 was top-dressed in May 2014 and October 2014. The fertilizers
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used were urea and Eucalyptus special fertilizer (N: P: K of 18: 8: 18), and the amount applied to each
plant in EU1 and EU2 was 50 g and 150 g, respectively. In EU1 and EU2 forests, we set up one large
sample with a projection area of 30 m × 50 m and 40 m × 50 m, respectively, and then divided the large
sample into 15 and 20 small samples, respectively, with projection area of 10 m × 10 m (Figure 1).
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Figure 1. Schematic diagram of each processing sample plot.

As shown in Figure 1, samples 1–5 were used for the non-weeding (CK) treatment, samples 6–10
were used for the herbicide weeding (HW) treatment, samples 11–15 were used for the mechanical
weeding (MW) treatment, and samples 16–20 in EU2 were used for herbicide weeding and soil
evaporation observations and research on different soil moisture contents. The soil physical and
chemical properties (0–20 cm) of EU1 and EU2 are shown in Table 1.

Table 1. Soil physical and chemical properties of the test plot.

Sample
Plot pH BD

(g/cm3)
CP
(%)

NCP
(%)

Sand
(%)

Silt
(%)

Clay
(%)

OC
(g/kg)

TN
(g/kg)

TP
(g/kg)

AN
(mg/kg)

AP
(mg/kg)

EU1 4.8 1.18 33.5 21.3 16.1 74.2 9.7 19.3 1.52 0.39 124.3 4.20
EU2 4.7 1.20 32.7 22.6 18.3 73.2 8.5 17.5 1.50 0.40 117.7 4.25

Note: BD: Bulk density; CP: Capillary porosity; NCP: Non capillary porosity; OC: Organic carbon; TN: Total
nitrogen; TP: Total phosphorus; AN: Available nitrogen; AP: Available phosphorus.

We weeded the experimental plots of the Eucalyptus plantations on 12 June 2015. The herbicide
used in the HW treatment was potassium salt of glyphosate (effective ingredient 43%, produced by
Syngenta) at a dosage of 2129 g/hm2, and water was applied at 750 kg/hm2. In the experiment, we used
a knapsack sprayer to spray the surface of the grass under the forest. Meanwhile, a truck-mounted
gasoline weeder was used for weeding and irrigation in the MW treatment. In addition, we used
no weeding as a control (CK). On 13 June 2015, we applied fertilizer to all of the Eucalyptus in the
HW, MW, and CK plots. The fertilizer used was compound fertilizer (N: P: K of 18: 8: 18), and the
amount was 150 g per plant. The specific fertilization steps were as follows: On a 50 cm slope around a
Eucalyptus stump, an arc ditch was dug with a depth and width of 20 cm and 10 cm, respectively, and
a length of 100 cm; the fertilizer was spread evenly; and then the soil was covered.

2.3. Measurement Indexes and Methods

2.3.1. Investigation of Shrub Species, Coverage, and Litter

On 11 June 2015, the species of herbs and shrubs as well as their coverage and Eucalyptus canopy
density in samples 1, 2, 7, 8, 14, and 15 were investigated. At the diagonal intersection of the above
sample plots, a 2 m × 2 m survey quadrat was set, and the projection coverage of herbs, shrubs,
and shrub communities was estimated visually. The canopy density of Eucalyptus was measured
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by an LAI-2200C canopy analyzer (produced by LI-COR of the United States) and calculated by
FV-2200 software. Table 2 shows the results of the plant coverage and litter standing quantity of the
experimental plot.

Table 2. Plant coverage and litter stock of experimental forest.

Sample Plot CH (%) CS (%) CC (%) CE TL (kg/hm2)

EU1 15.6 7.5 17.4 0.40 1890
EU2 20.3 9.1 23.1 0.21 105

Note: CH: Total coverage of herbs; CS: Total coverage of shrub; CC: Total coverage of community; CE: Canopy
density of Eucalyptus; TL: Total litter.

2.3.2. Evaluation of the Weeding Effect

On the 10th, 30th, 60th, and 100th days after weeding, a 2 m × 2 m shrub and grass investigation
quadrat was randomly set on the diagonal of each quadrat to investigate the single species coverage
and total community coverage of fresh plants. Then, the fresh plants were harvested, classified, and
weighed, and 200 g of samples (if less than 200 g, all of them were taken) were taken back to the
laboratory. The moisture content was determined by drying at 80 ◦C to a constant weight. The control
effect is expressed by the rate of plant decline, and the specific calculation is as follows:

E =


∑n

..
i=1

Wcki −
∑m

..
i=1

Whi/mi∑n
..
i=1

Wcki

× 100 (1)

where E is the rate of plant decline (%); n and m are the number of plant species under control and
weeding, respectively; Wcki is the ith plant biomass (g) without weeding; and Whi/mi is the ith plant
biomass (g) under herbicide weeding or mechanical weeding.

2.3.3. Evaluation of Tree Growth

On 10 and 11 June 2015, the growth of Eucalyptus in each sample plot was measured. The height
of Eucalyptus was measured by a height measuring pole, and the diameter at breast height was
measured by a DBH ruler. According to the average height and DBH of each plot, a standard tree was
selected as a fixed sample tree for the growth survey. Every 30 days after the start of the weeding
experiment, the height and DBH of the fixed sample trees were measured. There were five trees in
each treatment. The volume of a single Eucalyptus tree was calculated by the improved formula of the
binary growth model [36]:

V = c0 ×D[c1−c2(D+H)
×H[c3+c4(D+H)] (2)

where V is the volume of Eucalyptus (m3), D is the DBH (cm), H is the height (m); c0 = 1.09154 × 10−4;
c1 = 1.87892; c2 = 5.69186 × 10−3; c3 = 0.652598; and c4 = 7.84754 × 10−3.

2.3.4. Soil Evaporation Observation Method

We used the observation method of Figuerola, Rousseaux, and Searles to determine soil
evaporation [37].

From 13 June 2015 to 31 December 2015, soil evaporation observations were carried out by using a
small evaporator on rainy days in each month, with a total of 69 days, and the number of observation
days in each month was 8–11. The evaporator consisted of a stainless steel tube with an inner diameter
of 111 mm, a height of 160 mm, and a thickness of 1 mm; a heat-resistant rubber grommet; and a
stainless steel base plate with a thickness of 1 mm (Figure 2). In each plot, we first randomly selected a
place far away from the harvested shrub grass used to investigate the biomass, manually removed the
litter on the soil surface, and then slowly pressed the stainless steel pipe into the soil to a depth of
14 cm. Second, we used a small shovel to carefully excavate the surrounding soil to the bottom of the
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steel pipe, cut the soil column with a small steel knife, and removed the stainless steel pipe and the
soil column. After the soil column was removed, the lower section of the soil column was flattened to
the lower section of the steel pipe with a knife, and the bottom plate was installed. Finally, a white
plastic bag covered the tube, and the weight and time were recorded with an electronic balance with
an accuracy of 0.1 g. In addition, we placed the stainless steel pipe soil column and plastic bag into
another cylindrical soil hole with the same size and depth as the stainless steel pipe that was dug
in advance and then spread litter on the soil column, and the amount and distribution of the litter
cover was as consistent with the original situation as possible. One or two days later, we removed
the stainless steel pipe and soil column and removed the litter, weighed it with an electronic balance,
and recorded the weight and time. According to the speed of water evaporation, the soil column
was weighed every 1 or 2 days and replaced every 2 to 4 days. Weighing and soil replacement were
conducted at 17:00–17:50.
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2.3.5. Experimental Design of Soil Evaporation under Different Moisture Contents

From June to December 2015, we selected 1–2 sunny days in each month and randomly selected
one point from sample plots 16–20 in EU2. According to the method in Section 2.3.4, we collected five
soil columns from each small evaporator and sprayed 0 mL, 47.5 mL, 95.0 mL, 142.5 mL, and 190 mL of
water on the soil columns in the evaporator, and the other operation methods were the same as those
in Section 2.3.4. The weighing times were 7:30–8:00, 18:00–18:30, and 7:30–8:00 on the following day.
Meanwhile, we used a 200 cm3 ring knife to sample soil at 0–16 cm in various fields to determine the
soil water content. Finally, the soil water content in each treatment was calculated according to the
original soil water content and the added water content.

2.3.6. Statistical Analysis

Statistical analyses were performed using analysis of variance (ANOVA) and Pearson’s correlation
analysis. All statistical analyses were performed in SAS version 6.12 (SAS Institute Inc., Cary, NC,
USA) at p < 0.05.

3. Results

3.1. Control Effect of Herbicide and Mechanical Weeding on Undergrowth Plants

Glyphosate, a potassium salt adjuvant and an internal absorption and conduction type of chronic
broad-spectrum inactivation herbicide, was selected as the herbicide [38]. However, glyphosate
herbicide has different effects on different weed species [39]. As shown in Tables 3 and 4, the control
effects of herbicides were the best and fastest on Microstegium vagans (Nees ex Steud.) A. Camus,
Dicranopteris dichotoma (Thunb.) Bernh, and Blechnum orientale. We can conclude that after 30 days
of herbicide application, the three plants mostly withered and lasted for 60 days. However, on the
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100th day, the three plants regenerated to different degrees, and the recovery speed of Microstegium
vagans (Nees ex Steud.) A. Camus was the fastest. The biomasses of EU1 and EU2 recovered to 33.0%
and 39.0% of the CK, respectively, followed by that of Blechnum orientale, which recovered to 28.0%
and 26.0% of the CK, respectively. We found that the biomass of EU1 and EU2 recovered only 5.0%.
We found that the recovery of Dicranopteris dichotoma (Thunb.) Bernh was the slowest, and the
biomass of Dicranopteris dichotoma (Thunb.) Bernh in EU1 and EU2 was only 5.0%. Meanwhile,
herbicides could also inhibit Gramineae such as Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut.
and Indocalamus tessellatus (Munro) Keng f. and shrubs such as Melastoma candidum D. Don and
Rhodomyrtus tomentosa, but the effect was not as significant as that of herbaceous plants. We can
conclude from Tables 3 and 4 that on the 10th day after herbicide application, the decline rates of
Gramineae and shrub vegetation were less than 60%, and the leaves of Melastoma candidum D. Don
had not yet withered. However, after 30 days of herbicide application, the decline rate of Miscanthus
floridulus (Lab.) Warb. ex Schum. et Laut. and Indocalamus tessellatus (Munro) Keng f. reached 65%.
In addition, after 100 days of herbicide application, all of the vegetation in EU1 and EU2 was restored
to different degrees, of which Microstegium vagans (Nees ex Steud.) A. Camus was the fastest, from 0%
on the 60th day to over 33.0% on the 100th day. Therefore, herbicides could achieve good results, but
not all plants could be treated. For example, glyphosate had no inhibitory effect on Dianella ensifolia,
and the biomass of Dianella ensifolia continued to increase after application, which also showed that
herbicides had poor effects on shrubs. Based on these results, we found that although herbicides could
kill most of the roots of weeds, the deep roots receiving hybrid irrigation did not yet rot. We analyzed
the possibility that the experiment adopted the method of spraying water on the leaf surface, so the
agent was unable to penetrate into the root and stem; in addition, the dose of the agent did not reach
the concentration that could kill the plant, and it was also possible that glyphosate was not suitable for
control under miscellaneous irrigation methods.

Mechanical weeding is physical weeding that mainly refers to the use of a weeding machine to
remove the aboveground part of vegetation to inhibit plant growth [40], while the survival mode and
amount of roots underground vary by plant species, and roots do not necessarily die or rot. Tables 3
and 4 show that mechanical weeding could effectively remove vegetation in the early stage, and the
vegetation biomass of EU1 and EU2 after 10 days was 0. However, after 30 days of mechanical weeding,
most of the plants exhibited different degrees of recovery, but all of them were within 7%. We found
that the recovery speed of herbaceous and pteridophyte plants was the fastest and that of shrubs was
the slowest. Tables 3 and 4 show that after 30 days of mechanical weeding, the biomass of Microstegium
vagans (Nees ex Steud.) A. Camus in EU1 and EU2 recovered to 9.9% and 14.0% of the CK, respectively,
and the biomass of Blechnum orientale in EU2 recovered to 12.0% of the CK. On the 60th day after
weeding, the biomasses of each plant were further increased. The biomass of Microstegium vagans
(Nees ex Steud.) A. Camus, Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut., and Dianella
ensifolia in EU1 recovered to 45.0%, 40.0%, and 34.9% of the CK, while EU2 recovered to 49.0%,
44.0%, and 39.0%, respectively. Meanwhile, Blechnum orientale, Dicranopteris dichotoma (Thunb.)
Bernh and Indocalamus tessellatus (Munro) Keng f. also recovered greatly. On the 100th day after
mechanical weeding, the biomasses of Microstegium vagans (Nees ex Steud.) A. Camus, Miscanthus
floridulus (Lab.) Warb. ex Schum. et Laut. and Dianella ensifolia in EU1 and EU2 exceeded 50% of
the CK. In particular, the biomass of Microstegium vagans (Nees ex Steud.) A. Camus in EU1 and
EU2 recovered to 67.0% and 69.0% of the CK, respectively. In addition, the recovery of the shrubs
Melastoma candidum D. Don and Rhodomyrtus tomentosa was slow, the vegetation coverage was
11% lower than CK on the 60th day, and only 22% and 36–45% of CK on the 100th day.
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Table 3. Biomass (g) change and total plant decline rate of EU1 after herbicide and mechanical weeding.

Vegetation Types 10d 30d 60d 100d

HW MW CK HW MW CK HW MW CK HW MW CK

Microstegium vagans (Nees ex Steud.) A. Camus 0.0 0.0 30.2 0.0 4.6 45.6 0.0 * 31.6 70.2 39.8 * 80.9 120.7
Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut. 15.2 * 0.0 25.3 14.1 * 2.0 40.4 13.9 * 25.3 63.2 21.5 * 46.4 85.9

Dianella ensifolia 22.5 * 0.0 21.4 27.3 * 1.5 25.8 31.4 * 10.5 30.1 38.4 * 18.4 35.4
Dicranopteris dichotoma (Thunb.) Bernh 27.4 * 0.0 39.1 0.0 2.3 46.1 0.6 * 10.6 55.9 3.8 * 30.2 75.5
Indocalamus tessellatus (Munro) Keng f. 22.6 * 0.0 25.1 11.8 * 2.0 33.6 15.6 12.4 45.8 24.1 22.5 53.6

Melastoma candidum D. Don 17.2 * 0.0 15.8 13.7 * 0 17.4 20.0 * 1.5 25 27.2 * 7.3 33.2
Rhodomyrtus tomentosa 20.3 * 0.0 24.1 17.1 * 1.5 25.5 17.7 * 2.6 28.6 23.6 * 12.9 35.7

Blechnum orientale 12.5 * 0.0 21.2 3.2 2.6 28.7 5.4 9.6 35.7 15.5 * 24.9 55.4
Total biomass (g/m2) 137.5 * 0.0 202.2 87.2 * 16.6 263.1 104.5 104.1 354.5 193.9 * 243.5 495.4

Total control efficacy (%) 32.0 * 100.0 66.9 * 93.7 70.5 70.6 - 60.9 * 50.9

Note: The number after * indicates that there is a significant difference between HW and MW (p < 0.05).

Table 4. Biomass (g) change and total plant decline rate of EU2 after herbicide and mechanical weeding.

Vegetation Types 10d 30d 60d 100d

HW MW CK HW MW CK HW MW CK HW MW CK

Microstegium vagans (Nees ex Steud.) A. Camus 0.0 0.0 32.7 0.0 * 6.7 47.9 0.0 * 36.5 74.5 44.6 * 78.9 114.3
Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut. 18.5 * 0.0 35.6 12.6 * 4.2 52.6 15.9 * 34.9 79.4 23.3 * 63.9 101.4

Dianella ensifolia 13.4 * 0.0 15.2 15.1 * 1.1 17.8 17.9 * 8.9 22.8 22.3 * 16.1 28.7
Dicranopteris dichotoma (Thunb.) Bernh 30.5 * 0.0 46.9 0.0 * 4.3 53.2 1.4 * 14.4 68.4 4.5 * 38.1 90.7
Indocalamus tessellatus (Munro) Keng f. 27.5 * 0.0 32.4 13.4 * 3.4 41.9 18.2 16.5 55.1 28.1 28.1 62.5

Melastoma candidum D. Don 14.2 * 0.0 12.8 11.0 * 0.0 14.3 17.9 * 1.4 22.7 25.5 * 7.2 31.1
Rhodomyrtus tomentosa 22.6 * 0.0 19.4 14.8 * 1.3 21.7 16.0* 2.8 25.4 21.2 * 14.9 33.2

Blechnum orientale 24.7 * 0.0 47.5 4.7 7.0 58.3 9.1 * 20.9 65.3 21.7 * 41.0 83.6
Total biomass (g/m2) 151.4 * 0.0 242.5 71.6 * 27.9 307.7 96.4 * 136.3 413.6 191.3 * 288.1 545.5

Total control efficacy (%) 37.6 * 100.0 76.7 * 90.9 76.7 * 67.1 64.9 * 47.2

Note: The number after * indicates that there is a significant difference between HW and MW (p < 0.05).
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In general, the total amount of plant biomass under the Eucalyptus forest under herbicide
weeding began to decline gradually after application and began to increase gradually after 30 days, but
mechanical weeding could achieve 100% control at the beginning. Despite the initial results, the weeds
recovered to varying degrees after increasing times of specific applications for both herbicide weeding
and mechanical weeding. On the 60th day, there was little difference in biomass between herbicide
and mechanical weeding in EU1 and EU2. In the first 60 days, the total control effect of herbicide
weeding was significantly lower than that of mechanical weeding, but after 60 days, it was significantly
higher than that of mechanical weeding. During the 100 days of the experiment, the increases in
the vegetation biomasses (the increment from the minimum value to the maximum value during
the period) of EU1 and EU2 was 106.7 g/m2 and 119.7 g/m2, respectively, while those of mechanical
weeding were 243.5 g/m2 and 288.1 g/m2, respectively. Tables 3 and 4 also show that the increases in
shrub biomass under herbicide weeding were 36.4% and 40.8% of the CK, while that of mechanical
weeding was 80.4% and 95.1%, respectively, which was approximately 2.2 times greater than that
under herbicide weeding. In addition, we found that the weeding effect of EU2 was significantly
better than that of EU1 because of its young age and low canopy density. The average value of four
times the total control effect calculated by EU1 and EU2 was 57.6% and 64.0%, respectively. EU1 was
significantly lower than EU2 (p < 0.05), but the total control effects of mechanical weeding were 78.8%
and 76.3% for EU1 and EU2, respectively, which indicated that the speed of vegetation restoration
under Eucalyptus forest was faster than that under EU1 after mechanical weeding.

3.2. Characteristics of Soil Evaporation under Different Weeding Measures

In this study, the soil evaporation rate of Eucalyptus plantations under different weeding methods
was monitored by a small-scale evaporation instrument. The total number of observation days was 69,
with 8–11 days per month. The soil evaporation experiments required considerable physical work,
but this monitoring method is relatively accurate and reduces many interference factors. As shown
in Figure 3, different weeding methods had different effects on the soil evaporation of Eucalyptus
plantations and showed obvious change trends. After mechanical weeding, the soil evaporation rate of
Eucalyptus plantations immediately and rapidly increased to 1.4 times that of the CK on the second
day, while the soil evaporation rate after herbicide weeding increased significantly on the fifth day
(Figure 3). According to Figure 3, the three stages could be analyzed. In the 54 days after weeding (to
6 August 2015, the first stage), the average daily evaporation rate of soil moisture under mechanical
weeding was 1.35 mm/d, which was 92.9% higher than that under the CK and 33.7% higher than
that under herbicide weeding. During the period from the 61st day (12 August 2015) to the 139th
day (29 October 2015) after weeding (the second stage), the daily average soil evaporation under
mechanical weeding was 1.17 mm/d, 61.6% and 30.1% higher than that under the CK and under
herbicide weeding treatments, respectively. However, from 139 days after weeding (29 October 2015)
to 200 days (29 December 2015, the third stage), the difference in the soil daily evaporation rate among
the CK, herbicide weeding, and mechanical weeding treatments was smaller than in the previous two
stages. In this stage, the average daily evaporation was 0.52, 0.48, and 051 mm/d. We found that the
soil evaporation under herbicide weeding was significantly lower than that under the CK and under
mechanical weeding treatments (p < 0.05), but there was no significant difference between the CK and
mechanical weeding treatments (p > 0.05). In addition, we found that the soil evaporation of EU2
was similar to that of EU1, but the first stage of EU2 was only 38 days, which was shorter than that
of EU1. Meanwhile, the second stage of EU2 was 11 days longer than EU1, and the third stages of
EU1 and EU2 were similar. Figure 4 shows that the evaporation of soil decreases with the increase of
vegetation biomass and increases with the improvement of weeding control effect. Our results show
that vegetation biomass slows down soil evaporation, and the rate of soil evaporation increases due to
the bare surface after weeding.



Sustainability 2020, 12, 3669 10 of 22
Sustainability 2020, 12, x FOR PEER REVIEW 10 of 22 

 
Figure 3. Soil evaporation rate of EU1 and EU2 under different weeding methods. Continuous lines 
of different colors show the change of soil evaporation between different weeding methods. 

In this study, the soil evaporation rate of Eucalyptus plantations under different weeding 
methods was monitored by a small-scale evaporation instrument. The total number of observation 
days was 69, with 8–11 days per month. The soil evaporation experiments required considerable 
physical work, but this monitoring method is relatively accurate and reduces many interference 
factors. As shown in Figure 3, different weeding methods had different effects on the soil evaporation 
of Eucalyptus plantations and showed obvious change trends. After mechanical weeding, the soil 
evaporation rate of Eucalyptus plantations immediately and rapidly increased to 1.4 times that of the 
CK on the second day, while the soil evaporation rate after herbicide weeding increased significantly 
on the fifth day (Figure 3). According to Figure 3, the three stages could be analyzed. In the 54 days 
after weeding (to August 6, 2015, the first stage), the average daily evaporation rate of soil moisture 
under mechanical weeding was 1.35 mm/d, which was 92.9% higher than that under the CK and 
33.7% higher than that under herbicide weeding. During the period from the 61st day (August 12, 
2015) to the 139th day (October 29, 2015) after weeding (the second stage), the daily average soil 
evaporation under mechanical weeding was 1.17 mm/d, 61.6% and 30.1% higher than that under the 
CK and under herbicide weeding treatments, respectively. However, from 139 days after weeding 
(October 29, 2015) to 200 days (December 29, 2015, the third stage), the difference in the soil daily 
evaporation rate among the CK, herbicide weeding, and mechanical weeding treatments was smaller 
than in the previous two stages. In this stage, the average daily evaporation was 0.52, 0.48, and 051 
mm/d. We found that the soil evaporation under herbicide weeding was significantly lower than that 
under the CK and under mechanical weeding treatments (p < 0.05), but there was no significant 
difference between the CK and mechanical weeding treatments (p > 0.05). In addition, we found that 
the soil evaporation of EU2 was similar to that of EU1, but the first stage of EU2 was only 38 days, 

Figure 3. Soil evaporation rate of EU1 and EU2 under different weeding methods. Continuous lines of
different colors show the change of soil evaporation between different weeding methods.

We analyzed the daily evaporation of soil in each month on average, expressed the evaporation
intensity of that month with this average value, and calculated the percentage of the total evaporation
over the whole observation period (200 days). As shown in Figure 5, in June and July, the soil
evaporation intensity under mechanical weeding was significantly higher than those under the CK
and under herbicide weeding treatments. The evaporation of EU1 and EU2 accounted for 40.0% and
43.5% of the total evaporation in the whole period (seven months), while those in the CK and under
herbicide weeding accounted for 30.2% and 32.2% and 29.2% and 32.0%, respectively. However, in
August, September, and October, the soil evaporation rate of herbicide weeding was significantly
higher than that of the CK and under mechanical weeding. In November and December, except for
EU1 in November, the other plots showed no significant difference. From the analysis of the whole
experimental process, on the 200 observed days, the average values of soil evaporation under herbicide
weeding and mechanical weeding in EU1 and EU2 were 0.93 and 0.94 mm/d and 1.20 and 1.19 mm/d,
respectively. There was no significant difference between herbicide weeding and mechanical weeding,
but the values under these treatments were significantly greater than those in the CK (the values in
EU1 and EU2 were 0.66 mm/d and 0.83 mm/d, respectively). The weeding of EU1 and EU2 was 40.1%
and 43.4% higher, respectively, than that of non-weeding.



Sustainability 2020, 12, 3669 11 of 22

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 22 

which was shorter than that of EU1. Meanwhile, the second stage of EU2 was 11 days longer than 
EU1, and the third stages of EU1 and EU2 were similar. Figure 4 shows that the evaporation of soil 
decreases with the increase of vegetation biomass and increases with the improvement of weeding 
control effect. Our results show that vegetation biomass slows down soil evaporation, and the rate of 
soil evaporation increases due to the bare surface after weeding. 

 
Figure 4. The relationship between total biomass (a), total control efficacy (b) and soil evaporation. 

We analyzed the daily evaporation of soil in each month on average, expressed the evaporation 
intensity of that month with this average value, and calculated the percentage of the total evaporation 
over the whole observation period (200 days). As shown in Figure 5, in June and July, the soil 
evaporation intensity under mechanical weeding was significantly higher than those under the CK 
and under herbicide weeding treatments. The evaporation of EU1 and EU2 accounted for 40.0% and 
43.5% of the total evaporation in the whole period (seven months), while those in the CK and under 
herbicide weeding accounted for 30.2% and 32.2% and 29.2% and 32.0%, respectively. However, in 
August, September, and October, the soil evaporation rate of herbicide weeding was significantly 
higher than that of the CK and under mechanical weeding. In November and December, except for 
EU1 in November, the other plots showed no significant difference. From the analysis of the whole 
experimental process, on the 200 observed days, the average values of soil evaporation under 
herbicide weeding and mechanical weeding in EU1 and EU2 were 0.93 and 0.94 mm/d and 1.20 and 
1.19 mm/d, respectively. There was no significant difference between herbicide weeding and 
mechanical weeding, but the values under these treatments were significantly greater than those in 

Figure 4. The relationship between total biomass (a), total control efficacy (b) and soil evaporation.

As shown in Figure 6, the average coefficient of variation of the soil daily evaporation rate in
EU1 and EU2 was 29.6% and 22.6%, respectively, within 36 days after weeding (to 18 July 2015),
which was significantly higher than that of the CK and under herbicide weeding. After July 18, the
spatial variation in the soil daily evaporation rate under mechanical weeding gradually decreased and
the difference between the CK and herbicide weeding gradually decreased. This result is due to the
gradual restoration of vegetation, the increase in surface biomass, the weakening of the root system on
soil pores, and the gradual stabilization of soil evaporation [41].
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Figure 5. Daily mean value of soil evaporation of EU1 and EU2 under different weeding measures.
Note: The figures in the figure show the average evaporation intensity (mm/d) of all observation
days in each month, and the ordinate shows the percentage of evaporation in each month in the
total evaporation in the whole observation period (200 d). Different capital letters after the numbers
indicate that there is a significant difference in the daily mean value of soil evaporation among different
treatments in the same month, while small letters indicate that there is a significant difference in the
daily mean value of soil evaporation among different treatments in the same month (p < 0.05).
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3.3. Effect of Different Water Contents on the Soil Evaporation of Eucalyptus Plantations

Weeding directly affects vegetation biomass and coverage, which will inevitably affect the rate of
rainfall into the soil and water content. To study the effect of different moisture contents on the soil
evaporation of Eucalyptus plantations, 0.0, 47.5, 95.0, 142.5, or 190 mL of water was injected into the
soil column of the evaporator for 1–2 days. As shown in Figure 7, we selected one or two days of
observation every month from June (twice in November), a total of eight times, and compared the
soil evaporation in the daytime with that in the evening. We found that the change trends during
the daytime and at night were similar. With the increase in the initial soil moisture content, the soil
evaporation rate showed an overall increasing trend. However, we also found that when the water
content was 28%, an inflection point appeared in the soil evaporation rate. During the daytime, when
the initial moisture content was less than 28%, the evaporation rate increased with increasing initial
moisture content. When the initial moisture content was greater than 28%, the evaporation rates of
D1, D2, D3, and D4 showed different trends with increasing initial moisture content and remained
basically stable. D5 and D6 gradually showed downward trends when the initial moisture content
was greater than 33%, while D7 and D8 continued to increase after the initial moisture content was
greater than 33%. The change trends of soil evaporation and initial moisture content at night were
similar to those during the day. The difference was that after the initial moisture content of D7 and
D8 was greater than 33%, the soil evaporation rate increased with increasing initial moisture content.
The reason for the above changes is that D1–D4 occurred in the summer, when the temperature is
higher during the daytime than at night, and the relative humidity of air is consistently high, so the
evaporation remains mostly stable. However, D7 and D8 occurred in winter, when the air is relatively
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dry, the air flow is high, and the wind speed is faster, so the evaporation rate of soil increases with the
increase in the initial soil moisture content.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 22 
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In addition, as shown in Figure 8, the evaporation rate of soil increased with the increase in the
initial moisture content during both the day and night and showed a significant correlation. To further
understand the relationship between them, we also analyzed the ratio of soil evaporation at night to the
evaporation throughout the day and the initial moisture content and found that the ratio also increased
with the increase in the initial moisture content (Figure 8). The reason for these phenomena is that
the surface area of the initial water content contacting the air increases, and the evaporation capacity
will also accelerate. From this point of view, weeding has a great impact on the soil evaporation of
Eucalyptus plantations, and the vegetation coverage of weeding is reduced, especially in the early
stage of mechanical weeding, which causes rainfall to directly reach the ground, so the evaporation
rate differs for soil with different initial water contents. However, after chemical weeding, although
temporarily covered by vegetation, the vegetation coverage changes greatly in this process, generally
showing a trend of decreasing first and then increasing, which results in different soil evaporation,
which has different effects on the water loss of Eucalyptus plantations. Previous studies have shown
that Eucalyptus has strong photosynthetic capacity and less water consumption than other plantations.
The results of Food and Agriculture Organization of the United nNations (FAO) showed that the water
consumption per 1 kg of Eucalyptus was 510 L, Leucaena was 580 L, and conifer was 1000 L. Similar
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results have also been found that the water consumption per 1kg of Eucalyptus is 758 L, which is far
lower than 1538 L of pine and 1323 L of Acacia. [42]. Therefore, the belief that “Eucalyptus is a pump”
is considered to not be scientific, but practical measures should be taken to solve the problem of water
consumption in production practice. In view of the research results in this field, we also suspect that
soil evaporation is one of the reasons for the decrease of runoff Eucalyptus plantations [18–20]
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3.4. Effect of Different Weeding Measures on Eucalyptus Growth

However, the weeding of Eucalyptus plantations is necessary and effective. Figures 9–11 show
that weeding could significantly promote the height, DBH, and volume of Eucalyptus. We found that
the tree height, DBH, and volume under herbicide or mechanical weeding were significantly higher
than those under non-weeding after one month (July). With increasing duration, the differences in the
height, DBH, and volume between herbicide weeding, mechanical weeding, and the CK gradually
expanded. Our results showed that after 200 days of weeding (December 2015), the Eucalyptus heights
in EU1 and EU2 were 1.11 and 1.21 times that in the CK, the DBH was 1.15 and 1.25 times greater, and
the volume was 1.42 and 1.69 times greater than those in EU1 and EU2, respectively. Although the
height of Eucalyptus trees weeded by EU2 in August 2015 was significantly lower than that weeded by
mechanical weeding, the effects of herbicide weeding and mechanical weeding on the height, DBH,
and volume of Eucalyptus trees were not significant. In addition, Eucalyptus was also found to grow
fastest from July to October under different weeding treatments, while it grew slowest from October to
December. This result is because the overall water condition in summer is the best, the temperature is
most suitable for Eucalyptus growth, and the role of weeding will also be reflected in the early stage.
However, for the treatment without weeding, the growth was significantly lower than that in the
two weeding treatments beginning in July, especially in the tree volumes of EU1 and EU2 (Figure 11).
Although the growth patterns were similar, the growth speed of trees under the CK was lower than
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that under the weeding treatments. The reason why the growth of Eucalyptus plantations was not
significantly different is that both treatments reduced the competition of Eucalyptus for nutrients [43].
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Figure 9. Height growth change of Eucalyptus under different weeding methods.
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4. Discussion

Throughout the weeding cycle, the average daily evaporation of each month varied under the
different weeding treatments, which may be related to the climate of each season and the weeding
mechanisms [10,44]. In June and July, the soil evaporation under the herbicide treatment was less
than that under the mechanical weeding treatment, which may be because some weeds sensitive to
herbicide were just beginning to wilt after herbicide spraying. With the gradual effect of herbicides,
weeds began to wither and fall over a large area in August. Under the herbicide weeding treatment, the
water potential difference between the soil surface and the air increased due to the bare soil surface, and
the soil evaporation increased rapidly, which was significantly higher than that under the mechanical
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weeding and non-weeding treatments [45]. However, after mechanical weeding, the root system of
vegetation remained in the soil, and it began to grow again in August. The weeds spread on the surface
weakened the intensity of the exchange between the air and the atmosphere, which reduced water loss
and achieved water conservation [46]. On cloudy and rainy days in August, September, October, and
November, the average daily evaporation and water consumption of the soil treated with herbicide
were higher than those under the mechanical weeding and non-weeding treatments. Rainfall results in
an increase in soil moisture content, which fills the soil pores and moves to the surface mainly through
capillary action [47]. The effect of meteorology on water transport at the soil surface increases with
the increase in bare surface area, and the temperature difference and wind speed between the soil
and the sky play a leading role in evaporation [48]. Therefore, the evaporation from the herbicide
weeding sample plot was stronger than that from the mechanical weeding plot, while the evaporation
from the non-weeding sample plot was the smallest. Another reason for this difference is that during
rainfall, the hay cover over the herbicide weeding sample land played a role in intercepting rainwater,
which blocked the pore channels or soil water infiltration and reduced the infiltration rate of gravity
water in the upper soil, resulting in water being mostly distributed in the surface soil and hay and
being highly affected by temperature and wind speed [49]. In addition, capillary water continuously
moves during the process of rainfall. After the surface soil water evaporates, the water in the lower
layers quickly makes up for the water deficits in the upper layers [50]. Litter cover adds a physical
barrier layer that prevents evaporation from the soil surface. Therefore, the daily average evaporation
from the herbicide sample plots slowly increased after rainfall. After continuous sunshine, the litter
and soil surface quickly lost water, and the evaporation exceeded that of the other two treatments.
In November, the order of the average daily evaporation from the three groups was herbicide treatment
< mechanical weeding < non-weeding. Meteorological data from the study area show that September
is generally the month with sharp rainfall reductions. Over 50 years (1961–2010), there were 47–52 days
without precipitation from September to October, while little precipitation occurred from October
to November, accounting for 18.5% of the precipitation from June to August. The daily average
temperature decreased by 7 ◦C and the daily average sunshine decreased by 1.2 h. Considering the
water consumption from soil evaporation in June and July, there was no continuous precipitation to
supplement soil water, the ability of solar radiation and air temperature to drive soil evaporation was
reduced, and the power of upward transportation of deep water was insufficient. The surface of the
mechanical weeding sample plot was exposed over a large area, while the herbicide sample plot was
covered with dead grass, which weakened the effect of wind on soil evaporation [51,52]. In addition,
the soil water inventory was similar for all kinds of weeding land. After the weeding treatment,
the total soil water consumption of the land under the weeding treatment was largest during the
rainy season, and the residual soil water was less than that under the non-weeding treatment, which
is also why the average daily evaporation of the non-weeding treatment sample land was greater
than that of the weeding sample land in the late observation periods. Weeding increased the output
of soil water. On sunny days with low soil water content or reduced precipitation, the soil water
consumption of the mechanical weeding and herbicide weeding sample plots was higher than that of
the non-weeding plots, and the relatively bare mechanical weeding sample plots and the herbicide
sample plots with litter cover exhibited certain water holding capacity [53]. On rainy days, withered
grass retained additional water. After rainfall, the mulch of the withered grass slowed soil evaporation.
After continuous sunny days, the withered grass lost much water, and the evaporation of forestland
rapidly increased. In autumn, the effect of meteorological factors on soil evaporation is weakened,
the evapotranspiration of forestland mainly depended on the transpiration of vegetation, and the
soil water inventory of the sample plot without weeding was the largest, resulting in the maximum
daily evaporation and total water consumption of the sample plot without weeding. In addition,
both herbicide weeding and mechanical weeding promoted the formation of soil macropores [54–56]
and had important impacts on soil evaporation and tree growth, which will be further discussed in
the future.
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Runoff is the most important type of water resource that the forests provide for residents’ lives
and social production [57]. The change in the soil water storage function of forestland directly affects
runoff and the spatial and temporal distribution of rainfall. At present, the interference of Eucalyptus
plantation management measures on soil and vegetation is more intense and frequent than before and
in other plantations [25], and the change in the soil water storage function may be extremely significant.
In addition, because the changes in the leaf area index and shrub grass coverage between years and
seasons in Eucalyptus plantations are faster than those in other forests, and the soil of forestland is
strongly disturbed, soil evaporation is likely to be the key water process that will result in Eucalyptus
plantations having different impacts on water resources than other forests [10,58,59]. Although the
proportion of Eucalyptus plantations in the total forest area in China is not high (approximately 12.7%
in the Guangxi region and 6.0% in Guangdong Province), the influence of Eucalyptus plantations
on the total water resources in these regions may be small, but Eucalyptus plantations are regional.
In some areas, Eucalyptus forests cover more than 50% of the total forest area, so the threat to regional
water security posed by the planting of Eucalyptus trees cannot be eliminated [60]. It should be
emphasized that the effect of vegetation change on runoff yield is closely related to weather conditions,
even though Eucalyptus trees have little effect on the total annual runoff. Under special or extreme
weather conditions, the effects of soil evaporation on ecohydrological processes may be amplified,
resulting in significant impacts to water use in Eucalyptus forests and downstream areas at that time.

There is no doubt that both mechanical weeding and chemical weeding can achieve the goal of
reducing weeds on the surface, especially because chemical weeding can inhibit the growth of roots to a
certain extent, which reduces the total amount of soil nutrients absorbed by weeds and is conducive to
the growth of Eucalyptus. Although some roots can survive after mechanical weeding, the reduction in
surface biomass also greatly reduces the absorption of soil nutrients. In addition, the root system plays
an important role in soil evaporation and water transport, which is due to the influence of changes in
the shape and distribution of plant roots on the physical properties of soil [56]. Previous studies have
shown that roots mainly increase the number of soil macropores and promote the connectivity between
soil pores, which leads to changes in soil structure, soil macropores, soil water holding capacity, and
water conductivity [55]; in particular, the dead roots formed by weeding promote the formation of soil
macropores. Herbicide weeding or mechanical weeding will cause root death, especially herbicide
weeding, which is an inactivated weeding method. In this case, macropores not only promote soil
evaporation, but also provide more transport channels for water to enter the soil. Under the condition
of sufficient water, Eucalyptus has many channels for water acquisition, which is also the reason for
the increase in Eucalyptus growth. In addition, Eucalyptus forest management also adopts the method
of mountain refining, which actually has the same effect as weeding, reducing the consumption of
nutrients by weeds, and returning more nutrients to the soil, which is conducive to the growth of
trees [61,62]. However, during mountain refining the surface humus layer is destroyed many times,
and the organic culture branch decreases substantially. Therefore, weeding may be more appropriate.
It is beneficial not only to increase the nutrients of forestland and promote the early growth of forest
trees, but also to protect vegetation and improve the productivity of forestland.

5. Conclusions

In this study, we selected different methods for weeding Eucalyptus plantations to study the
changes in vegetation biomass, soil evaporation rate, and Eucalyptus growth after weeding. We reached
an interesting conclusion that both weeding methods can effectively remove weeds. Mechanical
weeding has an obvious effect in the early stage, but the time of vegetation restoration after mechanical
weeding is faster than that after herbicide weeding. Meanwhile, herbicide weeding is more effective for
herbs but less effective for shrubs. Compared with non-weeding, mechanical weeding and herbicide
weeding can significantly increase the soil evaporation rate of Eucalyptus plantations, but the effect
is different. The soil evaporation rate increases immediately after mechanical weeding, but after
herbicide weeding, the soil evaporation rate is higher than that after mechanical weeding after a period



Sustainability 2020, 12, 3669 19 of 22

of time, and the ultimate difference decreases gradually. The rate of soil evaporation is also closely
related to the initial water content of the soil. The higher the initial water content is, the higher the
soil evaporation is, and the same change trend appears during the daytime and at night. In addition,
weeding can significantly improve the growth of Eucalyptus. In the future, the relationship between
weeding, soil infiltration and Eucalyptus growth will be further studied to enrich the hydrological
processes in Eucalyptus plantations.
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