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Abstract: The evaluation of friction is a key factor in monitoring and controlling runway surface
characteristics. For this reason, specific airport management and maintenance are required to
continuously monitor the performance characteristics needed to guarantee an adequate level of safety
and functionality. In this regard, the authors conducted years of experimental surveys at airports
including Lamezia Terme International Airport. The surveys aimed to monitor air traffic, features of
geometric infrastructure, the typological and physical/mechanical characteristics of pavement layers,
and runway maintenance planning. The main objective of this study was to calibrate specific models
to examine the evolution of friction decay on runways in relation to traffic loads. The reliability of
the models was demonstrated in the light of the significance of the friction measurement patterns
by learning algorithms and considering the traffic data by varying the geometric and performance
characteristics of the aircraft. The calibrated models can be implemented into pavement management
systems to predict runway friction degradation, based on aircraft loads during the lifetime of the
surface layers of the pavement. It is thus possible to schedule the maintenance activities necessary to
ensure the safety of landing and takeoff maneuvers.

Keywords: airport pavement management system (APMS); landing and takeoff safety; learning
algorithms; runway friction decay modeling; maintenance scheduling

1. Introduction

As a result of the fast growth of the civil aviation industry over the last decades, there have been
numerous accidents involving aircraft overruns or deviations from wet or contaminated runways
during takeoff and landing. Aircraft operational performance at landing or takeoff is highly dependent
on runway surface conditions. For obvious safety reasons, methods and means must be implemented
to characterize runway surface conditions and give pilots the relevant information on how well the
surface will perform. A plane may find itself off the runway because it has landed at too high a speed
or has touched down too late. It is also possible to lose wheel alignment during takeoff and landing.
Planes can also lose control as they brake when landing. Runway conditions are a dominant factor in
overrun accidents/incidents as the plane comes into land or when taking off.

Runway length has a particular impact on performance during takeoff and landing. Given the
shortage of unused space in numerous airports, many are unable to extend their runways, which means
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that a runway’s friction coefficient and airport clearance are fundamental hardware requirements for
airports [1].

Many factors affect friction, including aircraft velocity, wheel load during ground-roll upon
landing, the thickness of the water film on the surface, and the pavement surface features. Each plane
needs a specific amount of tire–pavement friction for retardation and directional control while taxiing,
taking off, and landing. The level of friction required largely depends on the kind of vehicle, its gross
weight, the length of the runway, if there is any crosswind, reversed engine thrust usage, and the ability
of the pilot [2].

The Netherlands Transport Safety Institute (NLR) carried out research to study the main factors
underlying runway excursion accidents in Europe and across the globe [3]. They found that wet
or contaminated runways were the leading factor in accidents, making up approximately 40% of
European overrun accidents and 75% at the global level. Aircraft braking distance is the prime factor
in determining the overall landing distance.

The level of friction available at the aircraft’s tire–pavement interface is particularly important.
Substantially reduced pavement skid resistance can be observed in wet weather conditions [4,5].

Furthermore, all the following have been shown to affect wet-pavement skid resistance:
tire structure, the characteristics of the pavement surface, the speed of the vehicle, wheel load,
tire pressure, and the thickness of the surface water film on the pavement [6,7].

Pasindu et al. [8] developed an analytical simulation model to evaluate the wet-pavement skid
resistance available to an aircraft under a given operating condition. The operating condition is defined
by aircraft speed, tire structural properties, pavement surface properties, wheel load, tire inflation
pressure, and pavement surface water film thickness. The results are used in a numerical example to
demonstrate the application of the procedure to evaluate skid resistance variation on a runway during
a commercial jet aircraft landing.

Numerous studies have been carried out on tire–pavement friction modeling, adopting approaches
that range from semi-empirical methods with experimental curve-fitting to extremely intricate contact
models to denote physical occurrences. The frictional features of the interface between the tire and the
road are contingent on all the characteristics of the tire (the “rubber texture”, tire geometry, inflation
pressure, tread depth, and characteristics of the rubber), operating conditions (slip rate and load),
and pavement surface conditions (such as wet, dry, ice, snow, and rubber deposits).

To contribute to tire–pavement friction modeling, Kane and Cerezo [9] proposed an approach
based on simplified viscoelastic–rough contact to model the hysteric component of the friction produced
by pieces of rubber coming together while transiting on a coarse surface. The rubber’s viscoelastic
behavior is modeled using Kelvin–Voigt elements, and the friction force is determined on the basis
of the dissymmetry of the contact pressure against asperities on the pavement. A set of friction
and texture data was measured on a selection of actual road surfaces in order to confirm the model.
Rubber friction has long been an object of study, in particular from the perspective of tire–road
interaction. So far, many experimental papers have examined the role of small-scale roughness on
rubber friction. However, the possible influences of macro-level texture on rubber friction have often
been overlooked. When performing rubber friction experiments on asphalt roads, even if sliding
friction experiments are carried out on surfaces with different macro-level textures, it is difficult to
attribute the observed friction difference to their macro-texture, because the roughness at other length
scales usually differs too.

Kanafin et al. [10] measured friction in relation to two rubber compounds as they slide on rough
surfaces randomly produced using 3D-printing technology. The viscoelastic modulus master curves of
the rubber compounds and their large strain effective modulus were calculated by means of dynamic
mechanical analysis. Numerous prediction models for the skid resistance of asphalt pavements
have been developed based on three standard regulation polishing methods: Polished Stone Value,
Micro-Deval, and the Wehner/Schulze machine. However, these tests can only be performed under
certain conditions, such as constant temperature. This does not wholly represent true road surface
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conditions because the performance of the asphalt depends very much on temperature on account of
the viscosity of the bitumen [11,12].

Xie et al. [13] created prediction skid resistance models and determined the parameters of the
models using regression analysis. The authors studied the impact of temperature during polishing on
the long-term development of skid resistance. When asphalt surfaces are new, a film of bitumen binder
masks the microtexture of the aggregates, which tends to reduce skid resistance in the early life of
the pavement. The traffic gradually polishes the microtexture and tends to cause a decrease in skid
resistance, which means that pavements will become slippery again with the passage of time.

Kane and Edmondson [14] investigated the possibility of predicting the whole-life-cycle skid
resistance of asphalt surfacing. A “weight factor” was added to the dynamic friction model to
account for the masking of the aggregate microtexture by a film of bitumen during the early life of an
asphalt pavement.

During wintertime, contamination of runway surfaces with snow, ice, or slush causes potential
economic and safety threats for the aviation industry. The presence of these materials reduces the
available tire–pavement friction necessary for retardation and directional control [15].

The role of airport authorities in guaranteeing that the performance of airport pavements reach
the standards required for safe aircraft operations is fundamental [16].

The International Civil Aviation Organization (ICAO) [17] established that the friction value
should be obtained by averaging the results of measurements made using the test device. If the friction
characteristics differ significantly along major portions of the runway, the friction value should be
obtained for each portion. A portion of runway approximately 100 m long may be considered sufficient
to establish the friction value. This broad decisional margin in the measurement-processing step is
reflected in the identification of the significant value to use in a specific moment of the pavement’s
lifetime. Consequently, further knowledge of preliminary data processing methods is required. Airport
pavements must ensure regular and safe operations for aircraft. Airport management companies,
therefore, have to adopt a method to monitor these surfaces and carry out expensive maintenance and
rehabilitation works.

An airport pavement management system (APMS) is an approach to monitoring the condition of
pavements and determine the priorities for intervention, as well as planning and allocating resources.
An APMS requires multiple tests to evaluate various indices and different skills to conduct appropriate
analyses [18].

Airports have dedicated operators and budgets to manage and maintain their airside assets;
however, these resources may be lacking in small airports. For managers to prevent the rapid
deterioration of the pavement network, it is necessary to implement proactive pavement conservation,
applying inexpensive and regular interventions, in contrast with traditional conservation which
requires more demanding operations to render pavements useable again [19].

Zou and Madanat [20] examined the way in which an APMS has to consider the scheduling
over time of maintenance and rehabilitation actions, and the long-term trade-off between the costs of
delayed maintenance and the benefits for air traffic borne by the airport.

De Souza and de Almeida Filho [21] also show the importance of the time factor, suggesting the
concept of time delay in maintenance (DTM) as a way of reducing maintenance costs. Their study of a
Brazilian airport may be adopted in other contexts after parameterization on the data for failures and
runway consumption.

Beyond a certain level, the surface characteristics of a runway can not only affect the costs for upkeep
of the pavement, but also that of aircraft landing gear caused by fatigue due to dynamic loads. It is,
therefore, essential to find methods able to determine the extent of irregularities (Loprencipe et al. [22]).

For road pavements in general, Pantuso et al. [23] propose modeling a decay index that considers
the uncertainties that arise from the acquisition of data and the evaluation of conditions. Decay index
curves combine the linear empirical Bayes approach with the measured conditions.
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Piryonesi and El-Diraby [24] use causal models to predict pavement condition index (PCI) decay
at 2-6 years by using automatic data learning algorithms, two basic decision trees, and their boosted
gradient models. With different combinations of 15 attributes concerning the long-term performance
of the pavement (LTPP), the gradient boosted models obtained degrees of accuracy greater than 80%.

As for airport infrastructures, Barua et al. [25] use the gradient boosting machine (GBM) learning
method in a case study featuring Chicago O’Hare International Airport. They develop two GBM
models to study the influence of some attributes on the PCI decay of runway and taxiway pavements:
age, type of material, history of maintenance and rehabilitation history, weathering, and air traffic
loads. The two models outperformed other methods, both in classical statistics such as linear and
nonlinear regressions, and in learning methods such as neural networks and random forests.

Ansarilari and Golroo [26] also use pavement age, maintenance actions, weathering, and traffic
load. In their APMS, they use the Markov chain method to model pavement decay. The pavement
condition provided by the decay model is then used as an objective function, together with financial
resources, to plan maintenance through supervised multi-objective genetic algorithms.

Machine learning algorithms show versatility in many engineering areas that need to extract
complex dynamic patterns from time series data. The applications proved to be reliable both regarding
issues of predicting the deterioration of individual technological components such as railway track
turnouts [27]. They are also reliable in risk-based inspection screening assessment for production and
processing units [28] and infrastructure risk assessment in relation to large-scale natural disasters,
characterized by data overabundance [29].

Muselli [30] compared two machine learning algorithms, decision trees (DTs) and Hamming
clustering (HC), to produce the best reliability expression (RE) estimate.

Hu et al. [31] developed an ensemble of data-driven prognostic algorithms for solid prediction
of the useful life remaining, which combine multiple-member algorithms with three weighting-sum
schemes: accuracy-based weighting, diversity-based weighting, and optimization-based weighting.
Machine learning techniques are also used in non-engineering systems, such as companies assessing
corporate governance.

Hernandez-Perdomo et al. [32] sampled 1109 companies listed on the United States of America
stock exchange from 2002 up to 2014, setting up the components of the companies and the company
characteristics as input and the economic performance as output. A structure function was, therefore,
defined to model the performance of the activities.

The authors have been conducting years of experimentation surveys at airports [33–35].
The surveys aimed to monitor air traffic, features of geometric infrastructure, the typological and
physical/mechanical characteristics of pavement layers, and runway maintenance planning.

The aim of this study was to carry out a theoretical–experimental analysis of the evolution of
friction decay on runways, focusing on developing procedures for the preliminary analysis of the raw
data collected and on the construction of models to reliably represent the evolution of the surface friction
characteristics on the basis of traffic loads. The reliability of the friction models was demonstrated in
the light of the significance of the friction measurement patterns by learning algorithms: a first part
of the analysis looked at the raw friction data for which different pattern recognition methods were
selected and tested to locate the consumption zones with their spread and intensity. The reliability of
the traffic data was tested by varying the geometric and performance characteristics of the aircraft:
this part of the analysis looked at the aircraft traffic mix in terms of configurations, flight plans, and
engine performance to calculate actual transferred loads to the pavement. The calibrated models may
be implemented into pavement management systems to predict runway friction degradation based on
aircraft loads during the lifetime of the surface layers of the pavement. It is thus possible to schedule
the maintenance activities necessary to ensure the safety of landing and takeoff maneuvers.
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2. Methods and Analysis

2.1. Data Processing Methods

Airport pavement management systems (APMSs) can only benefit from data if the findings are
studied in such a way that they provide a reliable image of how decay develops. The principal tools
to map decay are the grip number (GN) and time decay curves, these need a fixed value for every
relevant date. From the analysis of the available ICAO standards [17,36–38], it can be assumed there
are no specific indications on the exact section lengths of the runway for the assessment of friction or
on the methods of choosing the measurement to which the level of degradation can be referred.

To evaluate the best method to establish this measurement value, the authors selected four
data mining methods, namely computational processes for pattern recognition in large data sets.
Two supervised learning algorithms were applied: classification and regression trees (CARTs) [39] and
general chi-squared automatic interaction detector (GCHAID) [40]; and two unsupervised learning
algorithms: k-means [41–44] and Chiu’s subtractive clustering [45,46]. The results of the numerical
processing were compared with what could be obtained by applying the methods commonly used
in technical practice for the same purpose as the one-third segment (ENAC APT-10A) [47] and the
Minimum 100 Meters Rolling Averages (CAA M100MRA) [48] methods.

Then, air traffic data were processed in order to obtain a friction decay model based on actual
weights (instead of nameplate weights): landing and takeoff weights were estimated on flights over
12 years, and the historical series of these cumulated weights were analyzed.

Based on actual landing weights and on geometric configuration and performance characteristic
of the aircraft spectrum, a model for cumulated load for each pavement alignment was calibrated.
Then, an empiric-mechanistic friction-load model was optimized and validated, using friction data
sample excluded from the calibration phase, through residuals analysis.

The last part of the process was an application of the models for airport pavement maintenance
purposes: assessment of the maximum cumulated load alignment, calculation of the cumulative load
on that alignment, and scheduling the maintenance operations.

The methodological process is shown in Figure 1.
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2.2. Case Study General Overview

The case study was Lamezia Terme International Airport, a medium-sized airport with a passenger
count of 2,756,211 recorded for 19,102 flights in 2018 [49]. The runway, named 10/28, based on the
magnetic orientation criterion, is classed as a 4D on the ICAO scale, with a field length of over 1800 m,
accommodating wingspans ranging from 36 to 52 m and a main landing gear span between 9 and
14 m. Air traffic may follow both instrument flight rules (IFR) and visual flight rules (VFR).

The runway has a total paved area of 60 m × 2414 m = 144,840 m2; the part bounded by the
runway thresholds, which are the markings across the runway that denote the beginning and end of
the designated space for landing and takeoff under non-emergency conditions, is 45 m wide by 2200 m
in length.

The pavement classification number, which is a number expressing the bearing strength of a
pavement for unrestricted operations, is PCN 95/F/B/W/T.

The pavement surface layers were rebuilt in 2004 during general refurbishment work on most
of the airside infrastructure. After the pavement was treated, a 12 cm scarification was made, with a
12 cm refill using a bituminous conglomerate as binder and a 5 cm weak layer containing modified
bitumen on a 25-meter band straddling the runway’s axis line. A 5 cm scarification was made on the
adjacent 10-meter strips, with a 5 cm refill using a bituminous conglomerate as binder and a 5 cm weak
layer with modified bitumen.

The measurements of the grip number (GN) were made along the alignments at ±3 m and ±6 m
from the centerline, which are the most used alignments reflecting the main landing gears of the aircraft
traffic mix, and for the whole length of the runway. Data were collected using a Grip Tester Trailer
device with a 10 m spacing output [17]. The final database consisted of 92 alignments of raw data,
which refer to 23 surveys made from 2004 to 2015 (see Supplementary Materials, S1).

In July 2007 and November 2011, derubberizing maintenance operations were carried out using a
high-pressure water TrackJet machine.

Constant GN values were assigned for 10 and 28 runway thresholds.
In order to eliminate the effects of the transient speed of the Grip Tester at start (before one

threshold) and at stop (after the other threshold), those GNs were set at the first value on the respective
threshold. For this reason, only the values of the runway area bounded by the horizontal marking of
the two thresholds were processed.

2.3. Friction Data Analysis

The main objective in this phase was to segment the runway longitudinally into parts reflecting
the diverse zones of decay on each survey date in order to identify the one with the highest level
of degradation.

Ninety-two data series based on 23 surveys for the alignments at ±3 m and ±6 m were collected,
of which 76 were used in the calibration phase and the remaining 16 in the validation phase.

In the processing steps, the friction values for each of the two symmetrical alignments, +3 and −3,
+6 and −6, were averaged out and will hereafter be referred to as ±3 and ±6.

Table 1 shows an overview of the GN minimum values obtained by varying the algorithms used
for each survey and alignment (±3 m; ± 6 m). The empty fields, marked “-”, refer to the 7 data series
used in the validation phase, namely the measurements collected for the ±3 m alignments from 2004 to
2006 and the ±3 m/±6 m alignments during the last survey in 2015.
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Table 1. Overview of the GN minimum values.

Day
CART GCHAID K-means Subtractive

Clustering APT-10A M100MRA

±3 m ±6 m ±3 m ±6 m ±3 m ±6 m ±3 m ±6 m ±3 m ±6 m ±3 m ±6 m

03/08/2004 - 0.90 - 0.91 - 0.90 - 0.90 - 0.17 - 0.89
08/31/2004 - 0.88 - 0.94 - 0.87 - 0.93 - 0.67 - 0.87
06/16/2005 - 0.86 - 0.89 - 0.81 - 0.90 - 1.46 - 0.84
12/21/2005 - 0.85 - 0.91 - 0.85 - 0.90 - 2.00 - 0.81
05/31/2006 - 0.81 - 0.83 - 0.79 - 0.85 - 2.42 - 0.78
07/03/2007 - 0.72 - 0.74 - 0.71 - 0.68 - 3.50 - 0.69
10/24/2008 0.82 0.85 0.93 0.99 0.81 0.86 0.84 0.87 0.94 4.83 0.78 0.82
07/22/2009 0.75 0.81 0.85 0.94 0.75 0.80 0.69 0.82 0.86 5.58 0.68 0.77
10/14/2009 0.69 0.77 0.80 0.90 0.69 0.76 0.66 0.77 0.81 5.83 0.63 0.72
10/28/2010 0.57 0.72 0.74 0.87 0.56 0.72 0.63 0.74 0.75 6.83 0.57 0.69
04/29/2011 0.50 0.69 0.62 0.84 0.47 0.68 0.51 0.71 0.64 7.33 0.44 0.66
05/27/2011 0.43 0.64 0.58 0.77 0.45 0.61 0.46 0.65 0.58 7.41 0.38 0.60
10/11/2011 0.38 0.60 0.47 0.74 0.38 0.60 0.35 0.60 0.47 7.83 0.36 0.57
11/15/2011 0.33 0.56 0.40 0.62 0.34 0.57 0.29 0.54 0.41 7.91 0.29 0.52
02/15/2012 0.73 0.81 0.71 0.83 0.73 0.82 0.77 0.85 0.76 8.16 0.71 0.80
05/17/2012 0.72 0.80 0.73 0.84 0.75 0.84 0.74 0.87 0.74 8.41 0.70 0.79
10/24/2012 0.69 0.79 0.70 0.82 0.70 0.78 0.73 0.83 0.73 8.83 0.68 0.78
12/21/2012 0.68 0.78 0.72 0.80 0.69 0.77 0.70 0.83 0.72 9.00 0.67 0.77
04/18/2013 0.67 0.77 0.72 0.80 0.71 0.77 0.72 0.79 0.71 9.33 0.66 0.76
05/16/2013 0.64 0.74 0.68 0.79 0.61 0.74 0.71 0.72 0.69 9.41 0.61 0.71
12/16/2013 0.59 0.68 0.71 0.78 0.57 0.69 0.60 0.69 0.68 10.00 0.56 0.68
05/28/2014 0.51 0.63 0.61 0.72 0.51 0.64 0.64 0.64 0.62 10.42 0.48 0.59
02/11/2015 - - - - - - - - - - - -

The GN values, obtained by applying the 6 methods listed in the methods section, were used to
construct time–GN decay curves for alignment ±3 m (see Figure 2a) and alignment ±6 m (see Figure 2b).
The second-degree polynomial function proved to be the most suitable for all the diagrams, generating
higher R2 determination coefficients than other linear or nonlinear functions.

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 21 

11/15/2011 0.33 0.56 0.40 0.62 0.34 0.57 0.29 0.54 0.41 7.91 0.29 0.52 
02/15/2012 0.73 0.81 0.71 0.83 0.73 0.82 0.77 0.85 0.76 8.16 0.71 0.80 
05/17/2012 0.72 0.80 0.73 0.84 0.75 0.84 0.74 0.87 0.74 8.41 0.70 0.79 
10/24/2012 0.69 0.79 0.70 0.82 0.70 0.78 0.73 0.83 0.73 8.83 0.68 0.78 
12/21/2012 0.68 0.78 0.72 0.80 0.69 0.77 0.70 0.83 0.72 9.00 0.67 0.77 
04/18/2013 0.67 0.77 0.72 0.80 0.71 0.77 0.72 0.79 0.71 9.33 0.66 0.76 
05/16/2013 0.64 0.74 0.68 0.79 0.61 0.74 0.71 0.72 0.69 9.41 0.61 0.71 
12/16/2013 0.59 0.68 0.71 0.78 0.57 0.69 0.60 0.69 0.68 10.00 0.56 0.68 
05/28/2014 0.51 0.63 0.61 0.72 0.51 0.64 0.64 0.64 0.62 10.42 0.48 0.59 
02/11/2015 - - - - - - - - - - - - 

The GN values, obtained by applying the 6 methods listed in the methods section, were used to 
construct time–GN decay curves for alignment ±3 m (see Figure 2a) and alignment ±6 m (see Figure 
2b). The second-degree polynomial function proved to be the most suitable for all the diagrams, 
generating higher R2 determination coefficients than other linear or nonlinear functions.  

A general shape shown by all curves is due to maintenance operations carried out in July 2007 
and November 2011: after the derubberizing maintenance operations, there was a sharp increase in 
GN, dividing each curve into separate branches (2 branches for the ±3 m alignment and 3 branches 
for the ±6 m alignment).  

 
(a) 

Figure 2. Cont.



Sustainability 2020, 12, 3516 8 of 21Sustainability 2020, 12, x FOR PEER REVIEW 8 of 21 

 
(b) 

Figure 2. Time–GN decay curves: (a) ±3 m; (b) ±6 m. Abbreviation: GN—grip number. 

By comparing the time–GN decay curves obtained using the different methods, it was possible 
to make the following observations: 

• CART decay curves show regular and comparable slope patterns in both ± 3 m and ± 6 m 
branches. The GN values are always conservative (i.e., low) and progressive. 

• GCHAID decay curves show fewer regular patterns. The 2008–2011 ±6 m branch starts higher 
than the two adjacent ones (2004–2007 and 2012–2014). The 2012–2014 ±3 m and ±6 m branches 
have significantly lower slopes than previous branches. The GN values are less conservative 
and, in some cases, stationary and recoiling. 

• K-means decay curves have similar slope patterns to CART decay curves and conservative GN 
values, and in some cases, they are stationary and recoiling. 

• The subtractive clustering decay curves appear to be less regular than the CART and K-means 
decay curves. The 2012–2014 ±3 m branch has a nearly constant slope (a linear trend), and the 
2012-2014 ±6 m branch appears to be more upwards moving than the previous ones. The GN 
values are in some cases stationary or recoiling. 

• APT-10A decay curves show irregularities like the GCHAID and K-means decay curves. The 
GN values are always progressive, but they are the least conservative (i.e., the highest), being 
the result of averages on very large parts of the runway. 

• M100MRA decay curves appear regular, though less than CART and K-means decay curves, 
especially at alignment ±6 m. They have progressive values. 

Four criteria were established in order to carry out a quantitative comparison of the previous 
observations, where scores or marks were assigned on a scale from 0 to 10, and weights were assigned 
on the basis of interviews with researchers and professional technicians operating in the field of 
airport infrastructures. They evaluated the different criteria in terms of their relative importance. 

In particular: 

• The conservative nature of terminal values: a decay curve is as reliable as the GN values 
identified by its lower algorithm and is, in this way, closer to the scheduled minimum 
maintenance levels set by the standards for the specific means of measurement. The maximum 

Figure 2. Time–GN decay curves: (a) ±3 m; (b) ±6 m. Abbreviation: GN—grip number.

A general shape shown by all curves is due to maintenance operations carried out in July 2007
and November 2011: after the derubberizing maintenance operations, there was a sharp increase in
GN, dividing each curve into separate branches (2 branches for the ±3 m alignment and 3 branches for
the ±6 m alignment).

By comparing the time–GN decay curves obtained using the different methods, it was possible to
make the following observations:

• CART decay curves show regular and comparable slope patterns in both ± 3 m and ± 6 m branches.
The GN values are always conservative (i.e., low) and progressive.

• GCHAID decay curves show fewer regular patterns. The 2008–2011 ±6 m branch starts higher
than the two adjacent ones (2004–2007 and 2012–2014). The 2012–2014 ±3 m and ±6 m branches
have significantly lower slopes than previous branches. The GN values are less conservative and,
in some cases, stationary and recoiling.

• K-means decay curves have similar slope patterns to CART decay curves and conservative GN
values, and in some cases, they are stationary and recoiling.

• The subtractive clustering decay curves appear to be less regular than the CART and K-means
decay curves. The 2012–2014 ±3 m branch has a nearly constant slope (a linear trend), and the
2012-2014 ±6 m branch appears to be more upwards moving than the previous ones. The GN
values are in some cases stationary or recoiling.

• APT-10A decay curves show irregularities like the GCHAID and K-means decay curves. The GN
values are always progressive, but they are the least conservative (i.e., the highest), being the
result of averages on very large parts of the runway.

• M100MRA decay curves appear regular, though less than CART and K-means decay curves,
especially at alignment ±6 m. They have progressive values.

Four criteria were established in order to carry out a quantitative comparison of the previous
observations, where scores or marks were assigned on a scale from 0 to 10, and weights were assigned
on the basis of interviews with researchers and professional technicians operating in the field of airport
infrastructures. They evaluated the different criteria in terms of their relative importance.
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In particular:

• The conservative nature of terminal values: a decay curve is as reliable as the GN values identified
by its lower algorithm and is, in this way, closer to the scheduled minimum maintenance levels
set by the standards for the specific means of measurement. The maximum score is 10 and is
attributed to the decay curve with the lower mean terminal value and by correlating the others
according to their mean terminal values. Weight value P is 3.

• The shape of the decay curve: a decay curve is reliable if its branches have a regular layout and
slope. The maximum score, essentially qualitative, is 10, assigned to the CART decay curves and
by deducting one point for each identified irregularity. Weight value P is 1.

• The progression of values: a decay curve is reliable if its values decrease over time, with no
stationary or recoiling values as time goes by. The maximum score is 10 for the decay curves with
all its key values in progression, deducting one point for each stationary value and/or instance of
recoiling. Weight value P is to 2.

• Standard deviation distribution: a decay curve is reliable if the single point values from which
it is derived (for non-linear regression) are accurate, that is with a low standard deviation.
The maximum score is 10 for the curve of each alignment with the lowest standard deviation
distribution and taking the others for each alignment according to the respective Standard
deviation distribution, having chosen the average of distribution as a parameter. Weight value P
is 2.

Table 2 shows the results obtained for alignment ±3 m and ±6 m using multicriteria analysis.

Table 2. Summary of the multicriteria analysis.

Criteria The Cautiousness
of Terminal Values

Shape of Decay
Curve

Progression
of Values

Standard Deviation
Distribution

Standardized
Score

CART
±3 m 9.39 10 10 9.20 12.44

±6 m 9.57 10 10 8.92 12.09

GCHAID
±3 m 7.62 9 6 4.58 8.16

±6 m 8.66 7 6 5.02 8.29

K-means
±3 m 9.28 10 8 10.00 12.09

±6 m 9.52 10 7 10.00 11.55

Subtractive
Clustering

±3 m 8.28 9 8 4.67 9.13

±6 m 9.68 7 6 4.74 8.52

APT-10A
±3 m 7.48 9 10 4.35 9.33

±6 m 8.45 8 10 4.54 9.48

M100MRA
±3 m 10.00 10 10 5.78 11.11

±6 m 10.00 9 10 6.16 10.88

For both alignments ±3 m and ±6 m the CART method was more reliable than the other five and
was therefore selected for further analysis.

The main output at the end of the CART implementation is the graph of the optimal tree structure,
with the terminal nodes labeled with the average of the GN values of the elements included in the
node. We set up GN as the dependent variable, the metric progressive of the runway from threshold
10 as the predictor variable, taking a minimum of 22 cases as a stopping rule, together with a 10-fold
cross-validation, and the 1-SE pruning rule [39]. Figure 3 shows the optimal tree relating to the series
of the 4/29/2011 survey on ±6 m alignments.
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The variance of the elements of the node and the number of elements are also within each node.
Above each node is the split value of the progressive metric, i.e., the decision rule that partitions the
elements of the node based on the value of the distance from threshold 10. This output information is
meaningful with respect to the decay phenomenon: it locates the various friction consumption areas
along the runway and indicates their extension.

Figure 4 shows the friction consumption zones for the series of the 4/29/2011, 5/27/2011,
and 10/11/2011 surveys on ±6 m alignments from the CART algorithm: those with maximum
consumption (i.e., with the lowest GN) are labeled with their GN, spread, and localization.
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2.4. Traffic Data Analysis

2.4.1. Estimating Actual Weights

Traffic data for the period 2004–2015, provided by airport management company S.A.CAL. S.p.A.,
were processed in order to obtain a reliable estimate for the actual weights of the aircraft for each
landing and takeoff.

These data are not directly available, unlike nameplate data (i.e., maximum landing weight—
MLW): nameplate weights are fixed limit weights used in airport design and operation due to their
immediate availability. In order to obtain a mechanistic load model, it was decided to introduce an
estimate of the actual weights.

The most flexible parameter for calculating these weights is the amount of fuel in the tanks.
This parameter was estimated on the basis of flight plans, in terms of fuel consumption, and according
to the standard recommendations on the amount of fuel to be insured, taking two observed conditions
into account [50]: the average traffic level, and, therefore, the engagement of the runways, is 3 flights
per hour, 16 hours a day, which implies almost no “holding” at the specified 1500 ft quota. This is
reflected in the lack of consumption of the final reserve fuel and additional fuel of the landing aircraft.

The geographical location had favorable meteorological conditions prevailing during the year,
which implied a very low percentage of redirects (which may occur in the nearby airports of Reggio
Calabria and Naples). This is reflected in flight plans without the need for an alternative aerodrome.

The landing weights (LWs) were calculated as:

LW = Operational Empty Weight (OEW) + Pay Load (PL) + Landing Fuel (LF) (1)

where OEW is the weight of the aircraft under operating conditions ready to fly with fluids and
crew included, excluding fuel and payload; PL is passengers with luggage estimated for aircraft with
30 or more seats, since Lamezia Terme Airport is passenger-only traffic. The passenger mass value
is equal to 76 kg, and for aircraft with 20 or more seats the standard flight baggage for European
regions equals 13 kg; LF is reserve fuel, sum of the contingency fuel + final reserve fuel + additional
fuel, in practical terms equal to 5% trip fuel + 45 min/30 min fuel + 15 min fuel. Trip fuel is fuel
consumption (kg/h) × flight time between the airport of origin and Lamezia Terme Airport (h) at
cruising speed. The 45 min/30 min fuel is the fuel for an additional 45 min/30 min flight time for
piston/turbine-powered aircraft.

TOW = Operational Empty Weight (OEW) + Pay Load (PL) + TakeOff Fuel (TOF) (2)

In the case of TOF, it is not possible to assume the same hypothesis as for LF since destination
airports may present one (or even two) alternative airports, depending on their traffic characteristics
and weather conditions. The simplifying hypothesis TOF = trip fuel + reserve fuel = additional fuel
= trip fuel + 5% trip fuel + 45 min/30 min fuel + 15 min fuel will be used, but as will be seen later,
this simplification will not affect the mechanistic load model.

The estimates of real weights for 72,572 landings and takeoffs were calculated for the
period 2004–2015.

S2 in Supplementary Materials includes the nameplate data, configurations, and performance
data for the spectrum of the 72 aircraft at Lamezia Terme Airport from 2004 to 2015, while S3 in
Supplementary Materials, an excerpt of the traffic data calculated using the estimates of the above
weights in [kg], refers to the period between the surveys of 7/22/2009 and 10/14/2009.

2.4.2. Historical Series of Cumulated Loads and Identification of the Regressive Variable

Cumulative landing weight (CLW) and cumulative takeoff weight (CTOW) were then calculated for
the period 2004–2015. The Pearson coefficient calculated using Equation (3) (where: xi = i—cumulative
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landing weight; yi = i—cumulative takeoff weight) confirmed a very significant correlation between
CLW and CTOW (ρxy = 0.999).

− 1 ≤ ρxy =
σxy

σxσy
=

n∑
i=1

(xi − µx)(yi − µy)√
n∑

i=1
(xi − µx)

2

√
n∑

i=1
(yi − µy)

2

≤ 1 (3)

The independent variable between CLW and CTOW in the model was decided based on
mechanics-related considerations. Given the two rolling conditions of the wheels during landing
(braked wheel) and takeoff (towed wheel), in the case of a braked wheel, friction force A expressed at
tire–pavement contact equals to:

A = (Ma + Mf)/r (4)

where, Ma is the frictional moment at the wheel axle pin, Mf is the braking moment, and r is the radius
of the wheel; while in the case of a towed wheel it is always equal to:

A = Ma/r (5)

As Mf is much greater than Ma, the friction forces that contribute significantly to the degradation
of the surface characteristics of the pavement are explained during the landing phase. Based on the
above considerations, CLW was considered an independent variable of the mechanistic load model to
be calibrated. Twelve different aircraft models made up 93.3% of the flights in the study period as
follows: Boeing B737-700 (B737), McDonnel Douglas MD82 (M82), McDonnel Douglas MD80 (M80),
Airbus 320 (A320), Boeing B737-800 (B738), Airbus 319 (A319), Fokker 100 (F100), Airbus 321 (A321),
Boeing B737-400 (B734), Bombardier CRJ900 (CRJ), Dornier 328 (D328), Tupolev 154 B2 (TU154). For
each of these, a comparison was carried out between LW and MLW, returning LW values lower than
MLW in every case, with very pronounced seasonal trends.

Table 3 shows a summary of the main characteristics of the 12 aircraft types. In particular, it was
observed that the average difference between the MLW and the mean value of the LW (LWm) is 20.8%,
and the absolute differences between MLW and LWm increase with landing capacity depending on the
MLW. This confirms the reliability of using LW in the modeling phase.

Table 3. Summary of the main characteristics of the 12 aircraft types.

No. Flights LWm s C.V. MLW MLW-LWm (MLW-LWm)/LWm

B737 16,652 48,127 3970 0.082 58,060 9933 0.206
M82 12,637 47,386 3692 0.078 58,970 11,584 0.244
M80 10,811 45,405 4891 0.108 58,060 12,655 0.279
A320 9655 53,262 3685 0.069 64,500 11,238 0.211
B738 5891 57,334 3416 0.060 65,310 7976 0.139
A319 4460 51,930 2729 0.053 61,000 9070 0.175
F100 3023 33,293 2540 0.076 38,780 5487 0.165
A321 2343 62,341 4366 0.070 75,500 13,159 0.211
B734 1257 45,902 3889 0.085 54,880 8978 0.196
CRJ 651 27,733 1920 0.069 33,339 5606 0.202

D328 272 11,698 934 0.080 14,390 2692 0.230
TU154 63 64,790 6889 0.106 80,000 15,210 0.235

Abbreviations: C.V.—Coefficient of Variation, LW—landing weight, MLW—maximum landing weight, B737—Boeing
B737-700, M82—McDonnel Douglas MD82, M80—McDonnel Douglas MD80, A320—Airbus 320, B738—Boeing
B737-800, A319—Airbus 319, F100—Fokker 100, A321—Airbus 321, B734—Boeing B737-400, CRJ—Bombardier
CRJ900, D328—Dornier 328, TU154—Tupolev 154 B2.
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2.4.3. The Mechanistic Load Model with Actual Weights and Calibration

The mechanistic loads model was derived from the LW using Equation (6). The cumulated
load of j-aircraft on each measurement alignment y takes into account the geometric configuration of
the landing gears, the cross dispersion of the landing trajectories, the distance between the runway
centerline, and the measurement alignments.

For the configuration of the main landing gear (MLG) in 72,033 of the 72,572 landings considered,
i.e., with a two-strength leg (right and left form the aircraft axle) and wheels on two alignments for
each strength leg (outer wheels and inner wheels):

CLWy =
∑

j

LWjy =
∑

j

LWj·0.95·0.25·
inner∑

k=outer

y+ d
2∫

y− d
2

pdf
[
µj = ±WakjAaj;σ

]
(6)

where, LWjy is the landing weight of the j-aircraft on the measurement alignment y; LWj is the landing
weight of the j-aircraft; 0.95 is the LWj distribution coefficient on the MLG; 0.25 is the distribution
coefficient on the MLG’s single wheel alignment (right outer, right inner, left inner, or left outer); y is
the distance from the centerline of the measurement alignment (3 m or 6 m); d is the thickness of the
measuring wheel of the Grip Tester Trailer (equal to 4 inch = 0.1016 m); pdf is the Gaussian probability
density function; µ is the Gaussian parameter; WakjAaj is the difference between the aircraft vertical
axle and MLG wheel vertical axle (placing the origin of the crossing distances from the centerline, as
we averaged out the friction values for the symmetrical alignments, +WaouterjAaj and +WainnerjAaj are
for the outer and inner wheels of the right strength leg, -WainnerjAaj and -WaouterjAaj are for the inner
and outer wheels of the left strength); σ is the Gaussian standard deviation of the landing trajectories
across the entire traffic spectrum (for the lateral wander effect).

Equation (7) can also be used:

CLWy =
∑

j

LWjy =
∑

j

LWj·0.95·0.5·

y+ d
2∫

y− d
2

pdf
[
µj = ±SajAaj;σ

]
(7)

where, 0.5 is the distribution coefficient on the MLG’s single-strength leg (right or left); SajAaj is
the difference between the aircraft vertical axle and the MLG axle leg strength (+SajAaj for the right
strength leg, -SajAaj for the left strength leg). The calculations showed imply differences between
LWjy by Equation (6) and LWjy by Equation (7) of −0.003177 = −0.32% on the alignment +3 m and of
0.004946 = 0.49% on the alignment +6 m.

Equation (7) identifies the load for MLG axle leg strength as responsible for friction consumption.
Once the weights and geometric configuration of the aircraft are established, Equation (7) returns CLWy

for the alignments at ±3 m and ±6 m, varying on the basis of σ. The σ parameter was calibrated by
maximizing the index of determination of the regression line of the initial points CLWy(σ)–GN of each
decay curve branch ±3 m and ±6 m (see Figure 5). The starting points of the branches represent the
post-derubberizing initial states. This is due to the physical behavior of the phenomenon, confirmed
by the data: post-derubberizing returns the surface elements to a “renewed” state whose level, that is
the extent of the recovery in GN, depends on the history of the loads and not on the alignment.

The regression for the initial points of the branches is linear, being the most suitable for the 2
initial points of the time–GN ±3 m decay curve and the 3 initial points of the time–GN ±6 m decay
curve. CLWy–GN decay curves can be plotted on the same diagram without distinction of alignment.
The optimal value for σ is 3.411 m.
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2.4.4. The Empirical-Mechanistic Friction Decay Model

A non-linear regression analysis makes it possible to obtain the mathematical function of the
5 branches of the 2 experimental CLWy–GN decay curves referring to±3 m and±6 m. The second-degree
polynomial function proved to be the most suitable for all the branches, generating determination
coefficients R2 higher than other linear or nonlinear functions. The subsequent optimization procedure
obtained the variability laws of the parameters a1, a2, and a3 of the second-degree polynomial functions
on the CLWy–GN plane.

Here is the empirical-mechanistic friction model, Equation (8):

GN = GNnew − (∆GN′ + ∆GN′′ ) = GNrestart − ∆GN′′ (8)

where, GNnew is the GN value for the new pavement; GNrestart = −0.0121CLWy + 0.905 is the GN value
after derubberization; ∆GN’ is the loss of non-recoverable friction calculated as the difference between
GNnew and GNrestart; ∆GN” is the loss of recoverable friction calculated as shown in Equation (9):

∆G N′′ = a1CLW2
y + a2CLWy + a3 (9)

where, a1 = −0.41905GNrestart
2 + 0.6179GNrestart − 0.2299; a2 = −82.445GNrestart

3 + 196.49GNrestart
2

− 155.64GNrestart + 41.03; a3 = −4034GNrestart
4 + 13281GNrestart

3
− 16351GNrestart

2 +

8923.8GNrestart − 1821.35.
The model shows the loss of friction not recoverable through derubberization, attributable to

textural consumption, as well as temporary loss of friction recoverable through derubberization,
attributable to the texture covered by gummy deposits. The functional form of ∆GN” indicates that it
depends not only on the accumulation of load but also on the starting points of the curves, namely the
initial post-derubberizing state. Different GN values can be obtained for the same CLWy value on
the abscissa: this depends on which point of the previous curve the surface element was when the
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maintenance operation was performed, and then the regained position on the GNrestart line. In other
words, it depends on the history of the accumulated loads and maintenance operations performed.

A graduated abacus on the plane CLWy–GN was obtained from the empirical-mechanistic model
shown in Figure 6. It can account for the phenomenon visually and be used for graphic calculation.
The legend to the right shows the restarting points (CLW–GN) of each plotted branch placed on the
restarting line.
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2.5. Validation Phase

Validation of the empirical-mechanistic model was carried out by comparing the results predicted
by Equation (8) with 8 experimental points: 6 deriving from the 2004–2007 surveys on the ±3 m
alignment and 2 from the 11/02/2015 survey on both the ±3 m and ±6 m alignments. CLW on ±3 m
and ±6 m alignments were calculated through Equation (7), see Table 4.

Table 4. Predicted GN versus observed GN.

Day CLW [Kt] GN Predicted GN Observed

±3 m ±6 m ±3 m ±6 m ±3 m ±6 m

03/08/2004 0.210 0.913 0.900
08/31/2004 0.831 0.893 0.870
06/16/2005 1.972 0.827 0.800
12/21/2005 2.905 0.744 0.760
05/31/2006 3.607 0.665 0.630
07/03/2007 5.456 0.388 0.410
02/11/2015 20.789 12.269 0.459 0.599 0.470 0.570
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The validation procedure returned the following results:

• A performance diagram where the observed GN lies on the x-axis and the predicted GN is on the
y-axis; the layout of the points is fairly well aligned to the bisector;

• Assessment of the mean residual GNpredicted–GNobserved at 0.0098 GN and standard deviation
at 0.0226;

• Analysis of the standard deviation (σ) and mean (µ) of the residualizing of the “3σ” method;
all residuals fall within the range [µ − 2σ; µ + 2σ], where µ is the mean value and σ is the standard
deviation of the residuals;

• Assessment of the accuracy indicators MAD (mean absolute deviation), MAPE (mean absolute
percentage error), and MSE (mean squared error) at 0.0219, 3.4816, and 0.0005 respectively,
confirming the statistical significance of the prediction model.

3. Results

A preliminary statistical analysis of the parameter SajAaj was carried out in order to identify the
maximum cumulated load’s alignment. The result showed peaks of absolute frequencies corresponding
to MLG with SajAaj equal to 1.78 m (absolute frequency n = 23,594), 2.30 m (absolute frequency
n = 22,787) and 3.19 m (absolute frequency n = 16,188). The mean, mode, and median values of the
entire distribution were 2.37 m, 1.78 m, and 2.30 m respectively.

CLW ± 1.78, CLW ± 2.30, and CLW ± 2.37 were calculated using Equation (7). The results returned
the maximum cumulated load on the alignment at ±2.37 m from the centerline, i.e., at a distance from
the centerline equal to the mean of the SajAaj of the MLG of the aircraft.

The historical series of cumulative loads transversal to the runway calculated for the following
alignments 0 m, 1.50 m, 2.37 m, 3.00 m, 4.50 m, 6.00 m, 7.50 m, 9.00 m, 12 m, 15 m is shown in Figure 7.
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It is possible to schedule a pavement maintenance operation on the basis of the maximum
cumulation alignment ±2.37 m. Friction levels represented by the decay curve must be compared with
the following friction levels provided in the ENAC (i.e., Italian Civil Aviation Authority) Guide [47]:
Maintenance Planning Level (MPL) at 0.53 and Minimum Friction Level (MFL) at 0.43. By always
scheduling derubberizing maintenance operations when MFL is reached, it is possible to establish the
pair of values CLW±2.37–GN to obtain the GNrestart value, as shown in Figure 8.
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From the historical series of cumulative loads CLW±2.37 shown in Figure 7, plotted against time in
Figure 9, it is possible to infer what should have been the correct derubberizing dates considering the
±2.37 m alignment rather than ±3 m:

• 1st derubberizing: CLW±2.37 = 5.2 kt→ 3.35 years, i.e., April 2007 (instead of July 2007);
• 2nd derubberizing: CLW±2.37 = 11 kt→ 6.5 years, i.e., June 2010 (instead of November 2011);
• 3rd derubberizing: CLW± 2.37 = 18.4 kt→ 9.95 years, i.e., December 2013 (not yet performed by

February 2015).
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In the same way, using the equation shown in Figure 9, it is possible to schedule further
maintenance operations.

4. Discussion and Conclusions

The main objective of this study was to calibrate specific models to examine the friction decay
evolution on runways in relation to traffic loads, focusing on developing procedures for the preliminary
analysis of the raw data collected and on the construction of models to reliably represent the evolution
of the surface friction characteristics.

From the study of the current regulations, it proved necessary to deepen knowledge of the
preliminary procedures for processing the relevant raw data relating to the surface characteristics
of runways.

Measurements obtained from high-performance instruments like continuous friction measurement
equipment supplied a sizeable database whose data can be mined to provide an accurate description
of the physical phenomenon in question.

The method proposed by the authors makes it possible to identify the position and extension of
the maximum friction consumption area and to recognize its “label” value as the minimum reference
friction value for the entire runway based on requirements and criteria such as the possibility of
identifying spatially continuous consumption zones and time-varying localization and extension,
conservative label values, the reliability of decay curve layouts, the progression of values, and precision.
This preliminary step of analyzing the relevant raw data proved necessary to correctly represent the
evolution of the phenomenon at different times in the useful life of the pavement. The analysis showed
that data mining using a CART learning algorithm returned particularly consistent and accurate
findings. The algorithm made the data self-standing, elastic enough to evaluate the various zones of
consumption from the perspective of both spread and intensity.

By analyzing actual loads, it was possible to calculate an empirical-mechanistic model, producing
the σ parameter (transversal dispersion of the trajectories in touchdown on the entire traffic spectrum),
which is also innovative with regard to the actual value of this parameter.

The proposed methodology was based on solid mathematical models, although newly applied in
this field, on standardized and widely used measuring instruments in the airport sector and on the
geometric configuration and performance characteristics of aircraft.

Regardless of ICAO class, the proposed methodology can be applied to other medium-sized
airports with passenger-only traffic and flexible pavement design. The aircraft spectrum, explored
more in-depth in Supplementary Materials, S2, cover a range of 3 to 440 seats; 1035 kg to 330,000 kg
for maximum landing weight; 2 to 4 for rear landing gear; 2.30 m to 11.50 m for track; 2;4 to 4;20 for
wheels (nose; main); and single to tri-twin-tandem for type of wheels.

In conclusion, the engineering contribution of this model to APMSs consists of its use in the
planning of ordinary and extraordinary maintenance activities, necessary to ensure safety. Once the
maximum cumulation alignment has been identified on the basis of traffic data, the friction decay
phenomenon and the correct dates on which maintenance operations can be better forecasted.

Another reliable result is the validation of the cumulative character of the friction decay
phenomenon, making it possible to distinguish between a temporary and recoverable loss of friction
due to the deposit from rubber tire contaminants and a non-recoverable loss of friction caused by the
degradation of the surface texture.

Given the proposed methodology, downstream of this study, future development emerges in
validating the models for other runways. How to derive and validate other estimates of actual landing
weights is also a possible object of new study, for example by properly evaluating fixed plate data such
as maximum landing weights, or by other projections based on similar traffic data from other airports.

Supplementary Materials: The followings are available online at http://www.mdpi.com/2071-1050/12/9/3516/
s1, S1–S3.
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