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Abstract: Maintaining optimal ecological security is a serious issue in the Chinese Loess Plateau
(CLP). Remote sensing ecological indexes (RSEI) of three main tableland regions of the CLP were
calculated based on spectral information provided by remote sensing imaging satellites between
2000 and 2018. We were able to use RSEI values to systematically evaluate the temporal and spatial
variation in the regional ecological environment and determine the influential factors that mainly
associated with these changes. The results showed that between 2000 and 2018, the ecological
environment improved, remained stable, and deteriorated, respectively, in the Gansu, Shaanxi,
and Shanxi tablelands. Regions with poor or fair RSEIs were concentrated around the main river
basins, while regions with moderate RSEIs were associated with poor ecological conditions and
poor areas. The significant spatiotemporal variation in RSEI indicates that the ecological system
in this region is relatively fragile. We also observed that natural factors such as the temperature,
potential evapotranspiration, and precipitation had the greatest influence on the overall ecological
quality. The rapid increase in the regional population and human activity played an important role in
the variation in the regional RSEI. This research will provide important information on controlling
regional soil erosion and ecological restoration in the CLP.

Keywords: remote sensing ecological index; ecosystem safety; tableland region; controlling factors

1. Introduction

The Chinese Loess Plateau (CLP) is located at the junction of a monsoonal and an arid region, where
the climate is arid and the ecosystem is fragile. It covers an extensive area, accounting for approximately
6.6% of the land in China, and accommodates and sustains 8.5% of the Chinese population [1,2].
However, serious soil erosion means that the ecological system of the CLP is facing pressure from the
sharp decrease in forests, decreased comprehensive land productivity, and desertification, among other
issues, thereby threatening regional ecological security [2,3]. The gully region of the CLP, the most
productive crop and agricultural area in the CLP, is now facing a serious ecological security issue due
to the shrinking of the tableland. This also causes natural disasters and an inevitable restriction on
economic development. Therefore, the timely and rapid monitoring of ecological and environmental
changes in areas subject to soil and water loss has become a focus for researchers and the concerned
government departments.
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Remote sensing methods, particularly aerial photography and satellite imaging, are unique in
their ability to record a variety of spatial and temporal data in a comprehensive manner and over
wide surfaces; they have proved effective for a variety of applications [4]. Remote sensing has been
successfully applied in the last few years as a tool for ecological monitoring, particularly for the
evaluation of ecosystems including forests [5], grasslands [6], urban areas [7], and rivers [8], allowing
the remote evaluation of the environment through generalized quality indices. Many countries have
conducted large-scale ecological monitoring by applying remote sensing technology. The Chinese
government is among them; it conducted a nationwide remote-sensing-based ecological assessment
from 2000 to 2010 [9]. Similar studies have also been carried out in Europe, the United States, and other
regions [10–13]. A number of single remote sensing indices have been created to quantify ecological
status. The normalized different vegetation index (NDVI) is the most widely utilized single indicator
and was adopted in ecological monitoring studies of grasslands, forests, and farmland [1,10,14].
Ivits et al. [10] used SPOT NDVI data to analyze the seasonal characteristics of vegetation cover and
monitored the suitability of farmland bird habitats. Similar single remote-sensing-based ecological
vegetation indexes include the enhanced vegetation index (EVI), permanent vegetation fraction (PVF),
and hyperspectral flower index (HFI). Land surface temperature (LST) retrieved from remote sensing
thermal imagery can evaluate the expansion of urban areas and ground temperature measurements,
allowing for the estimation of changes in the terrestrial thermal environment [15–17].

This single-index method can well reflect the variation of natural environmental factors, such
as the land surface temperature (using LST) and the land surface phenology (NDVI); it is difficult to
comprehensively reflect the combined effects of multiple natural environmental factors [9]. Ecological
environment is a complex system, whose variation is controlled by the natural environmental
factors (such as temperature, moisture condition, vegetation cover, etc.) and the human factors
(architecture, human activities, etc.) [9]. The single index is limited because it only considers one of
the numerous influencing factors that interact in the evolution of an ecological system; in natural
environments, a visible change often conceals complex dynamics of influences and effects. Aggregated
remote-sensing-based multi-indexes have more advantages than single ones. A multi-index can
monitor ecological status using several metrics such that many features related to ecological conditions
can be identified [9]. Therefore, it is necessary to develop a multi-index monitoring strategy that can
comprehensively evaluate variations in ecosystems that can allow the implementation of effective
strategies for controlling different natural events. For instance, Tiner [18] developed a multi-index
(by integrating habitat disturbance and habitat extent indices) and applied it well to evaluate the
environmental variation of the natural habitat of a watershed. The MODIS global disturbance index
(MGDI), which combines both the MODIS enhanced vegetation index (EVI) and LST products, is an
efficient method to map regular large-scale wildfires [19]. The frequently used forest disturbance index
(DI), which combines three components of tasseled cap transformation of remote sensing data, is an
efficient multi-index that is widely used to evaluate the characteristics of forest ecosystems [20]. Rhee et
al. [21] used three indicators—LST, NDVI, and precipitation data from the Tropical Rainfall Measuring
Mission satellite—to develop the scaled drought condition index (SDCI), and applied it to regional
drought assessment. The remote sensing ecological index (RSEI), an efficient and useful ecological
evaluation index [22], accounts for the variation in multiple environmental parameters, thereby making
it a potential candidate with which to quantitatively analyze and evaluate local ecological recovery in
China, particularly in areas subject to soil and water loss. Researchers have assessed the validity of the
RSEI in different regions of the country, employing it to evaluate changes in a red-soil area in south
China [23], a black-soil area in northeast China [24], and pastoral farming crops [25]. However, there
are relatively few studies that report the evaluation of ecological conditions in the tableland regions of
the CLP, which are subject to soil and water loss. A few select studies on the ecological assessment of
the CLP are based on a single indicator or were only conducted by modeling [26–28].

The ecological environment of the tableland of the CLP is facing great challenges due to the
influence of urban expansion, population increase, climate change, and serious soil erosion [2]. Several
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studies have indicated that climate change caused an increase in the average annual temperatures of
the CLP, which resulted in an alarming increase in water evaporation and, in turn, in the frequency of
droughts [1,29,30]. Moreover, the larger regional precipitation fluctuation and the increasing rainfall
erosivity resulted in the risk of soil and water loss in this aggravated region. Since 1980, the CLP region
has been suffering from severe soil erosion caused by adverse environmental conditions (high-intensity
storms, in particular) and intensified human activity (e.g., unorganized coal mining and overgrazing).
The average annual soil erosion rate is more than 3000 t km−2 year−1 and inevitably results in a rapid
shrinking of the Loess tableland [1,21–32]. This serious land degradation and desertification caused
by soil and water loss has caused increasingly severe environmental and socioeconomic problems
for the CLP region [26]. To prevent the negative effects of an excessively degraded environment, the
Chinese government implemented large-scale conservation plans—including the Shelterbelt program,
slope stability improvement programs, the joint governance of gullies and slopes, comprehensive
management of small watersheds, and the Great Green Program (GGP)—beginning in 2000 [33].
However, the impact of these large-scale conservation programs on the regional ecosystem is still
unclear [2], and no precise information will be available until a quantitative evaluation is made of the
environmental quality before and after their implementation.

With this perspective, we selected the CLP regions that are mainly monitored for their soil and
water loss by the Chinese national soil and water conservation division as our study areas; we then built
a remote sensing ecological index (RSEI) to evaluate the development of the ecosystem in the areas,
totally based on remote sensing information, and integrated multiple indicators (NDVI, land surface
moisture (LSM), normalized difference built-up and bare soil index (NDBSI), and LST). Our goals were
the following: (1) To monitor the long-term dynamics of the RSEI in the Loess tableland from 2000 to
2018; (2) to identify the vulnerable regions of the CLP; (3) to determine the environmental controlling
factors that mainly impact the RSEI.

The results of this study will not only provide valuable information on the Loess plateau, but also
inform the development of strategies for controlling soil and water losses and improving ecological
conditions in similar ecosystem areas, including the Loess plateau itself.

2. Study Area and Methods

2.1. Study Area

The tableland region of the CLP (a key area protected by the Chinese water conservation project)
was selected as the study area, which mainly includes the Gansu tableland region, the Shaanxi tableland
region, and the Shanxi tableland region (Figure 1). The study area is located in the south-central part
of the CLP (106.7◦ E–111.7◦ E, 34.5◦ N–36.9◦ N), covering 34 farm- and woodlands of eight cities in the
three provinces of Gansu, Shaanxi, and Shanxi, with a total area of around 55,800 km2. Topographically,
the analyzed portion of the Loess tableland is comprised of different elements, such as sloped plateaus,
open and flat plateaus, hills, tableland alternated with gullies, and ravines and gullies that crisscross.
It consists of mainly dark Loessal soil and cultivated Loessal soil. The Loess tableland is located in
a semi-humid-monsoonal climate zone, which presents a temperate continental climate with four
distinct seasons. In this region, the annual temperature oscillated between 8 and 15.6 ◦C, and the
annual rainfall was approximately 450–709 mm, whose temporal distribution was uneven, as 60% of
the total precipitations occurred, on average, from July to September. We observed an annual sunshine
duration of 2099 to 2900 h, and a leaf abscission period of 156 to 223 days [2,30,34].
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analyzed (Table 1). The images were produced by the Landsat Product Generation System (LPGS) 
and professionally processed to support georegistration prior to analysis. The required 
preprocessing was conducted before the RSEI was calculated. First, geometric registration was 
accomplished using the image-to-image registration method in ENVI 5.3 that is the flagship product 
of Exelis Visual Information Solutions (Boulder, CO, USA); two sets of images were co-registered 
and approximately 40 ground control points were resampled according to a polynomial algorithm 
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Figure 1. Location of the study area of the Chinese Loess Plateau (CLP).

The ecological fragility of this tableland is determined by its unique natural conditions, which
result in a constant and alarming soil loss, making this area the most impaired in the whole CLP. In
2017, the fifteen-year national soil and water conservation plan of China approved by the State Council
designated the gullies of the CLP as critical elements that require special protection. In order to analyze
the ecological condition changes in the Loess tableland more systematically, the study area was divided
into the Gansu tableland, the Shaanxi tableland, and the Shanxi tableland.

2.2. Data Sources and Pre-Processing

In our study, the partition and monitoring of the areas of interest were based on provincial
boundaries (shapefile) and images obtained from the United States Geological Survey (https://glovis.
usgs.gov/) with images Landsat 5 TM (Thematic Mapper) and Landsat 8 OLI (Operational Land Imager).
Images acquired in October 2000, 2010, and 2018 were collected and analyzed (Table 1). The images
were produced by the Landsat Product Generation System (LPGS) and professionally processed to
support georegistration prior to analysis. The required preprocessing was conducted before the RSEI
was calculated. First, geometric registration was accomplished using the image-to-image registration
method in ENVI 5.3 that is the flagship product of Exelis Visual Information Solutions (Boulder,
CO, USA); two sets of images were co-registered and approximately 40 ground control points were

https://glovis.usgs.gov/
https://glovis.usgs.gov/
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resampled according to a polynomial algorithm so that the root mean square errors were less than
0.5 per pixel. One image cannot cover the entire study region well; therefore, mosaic reconstruction
was conducted on the images and a seamless mosaic was adopted, using the histogram matching
method, to correct regional color in the overlap area. The results were obtained after fuzzing the
seamlines. Subset data from region of interesting (ROIs) was selected to clip the result after the mosaic
was obtained to produce an image of the study area. During the preprocessing of the datasets, the
digit number (DN) values of the multispectral bands were further converted into planetary surface
reflectance values [35,36]. The radiometric calibration method was chosen for atmospheric correction
to allow conversion of the digit number (DN) values. To reduce the impact of weather and cloud cover,
FLAASH atmospheric correction was used to process the data, and sensor parameters were derived
from image metadata and NASA (http://atmcorr.gsfc.nasa.gov).

Table 1. Data information for the remote images of the Chinese Loess Plateau (CLP).

Tableland Regions Path/Row Data Times Sensor Types

Gansu tableland

127/035
2000.10.01

TM2010.10.20
2018.10.16 OLI

127/036
2000.10.01

TM2010.10.20
2018.10.10 OLI

128/035
2000.10.08

TM2010.10.20
2018.10.12 OLI

128/036
2000.10.08

TM2010.10.20
2018.10.12 OLI

Shanxi tableland

125/035
2000.10.03

TM2010.10.22
2018.10.26 OLI

126/034
2000.10.26

TM2010.10.26
2018.10.04 OLI

126/035
2000.10.26

TM2010.10.29
2018.10.04 OLI

Shaanxi tableland

126/035
2000.10.26

TM2010.10.29
2018.10.04 OLI

126/036
2000.10.26

TM2010.10.13
2018.10.30 OLI

127/035
2000.10.01

TM2010.10.20
2018.10.16 OLI

127/036
2000.10.01

TM2010.10.20
2018.10.26 OLI

128/036
2000.10.08

TM2010.10.20
2018.10.12 OLI

TM—Thematic Mapper; OLI—Operational Land Imager.

Furthermore, meteorological data including temperature (T), potential evapotranspiration (ET0),
rainfall erosion (R), and precipitation (P) were provided by the China Meteorological Administration

http://atmcorr.gsfc.nasa.gov
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(http://data.cma.cn/site/index.html). Gross domestic product (GDP), construction areas (Area), and
population (Pop) were obtained from statistical yearbooks of Gansu, Shaaxi, and Shanxi provinces.

2.3. Calculation of Remote Sensing Ecological Index

Many studies have proven that the ecological environment of the CLP is mainly influenced by
variations in soil moisture and vegetation [2,26–28]. Human activities, especially the expansion of
built-up areas, also play a key role, because this can rapidly aggravate land conditions by reducing
vegetation coverage and increasing erosion [2,8,29]. Therefore, an official evaluation of the conditions
of this ecosystem will require a comprehensive model that will encompass the variation in regional
air temperature, relative humidity, vegetation coverage, and the land use/land change (LULCC). We
built an index that encompassed the greenness, wetness, dryness, and heat of the ecosystem, as those
indicators are often used to evaluate ecological quality [15]. They are well represented by the NDVI
given in Equation (1), the LSM given in Equations (2) and (3), the NDBSI given in Equation (4), and
the LST given in Equation (7). Accordingly, our RSEI integrated them using principal component
analysis (PCA), creating a quick and easy indicator with which to monitor and evaluate the ecological
environment of the study area. Before the PCA calculation, the four indicators were packed into
a four-band image using the layer stacking method in ENVI 5.3; the Forward PCA Rotation New
Statistics Rotate was then used to conduct the PCA. As in previous studies [37,38], we classified RSEI
values in five categories (excellent, good, moderate, fair, and poor), each comprising values in equal
intervals. This allowed us to divide the RSEI scale into five quality levels—excellent, good, moderate,
fair, and poor—at intervals of 0.2.

2.3.1. Normalized Differential Vegetation Index (NDVI)

As a widely used vegetation index, the NDVI can effectively reveal the growth status of
vegetation [14]. In fact, plants absorb and re-emit solar radiation in two distinct spectral regions,
specifically in the infrared and red regions, which makes it easy for earth observation instruments to
monitor plant reflectance. Thus, we chose the NDVI as our greenness indicator; its formula is expressed
in Equation (1).

NDVI =
Rnir −Rred
Rnir + Rred

(1)

In this equation, Rred is the reflectance of the near-infrared and Rnir is the red bands, respectively.

2.3.2. Land Surface Moisture (LSM)

The LSM is the index that represents the wetness component (reflecting the moisture of soil, water
body, and plant), elaborated by Kauth–Thomas Transformation (K-T Transformation) [38]. The wetness
components of TM [39] and OLI [40] correspond to different calculation parameters, and can be
computed with the following formulas:

LSMTM = 0.0315Rblue + 0.2021Rgreen + 0.3102Rred + 0.1594Rnir − 0.6706Rmir1 − 0.6109Rmir2 (2)

LSMOLI = 0.1511Rblue + 0.1973Rgreen + 0.3283Rred + 0.3407Rnir − 0.7117Rmir1 − 0.4559Rmir2 (3)

where Rblue, Rgreen, Rred, Rnir, Rmir1, and Rmir2 are the reflectance of the blue, green, red, near-infrared,
short-wave range 1, and short-wave range 2 bands, respectively.

2.3.3. Normalized Difference Built-Up and Bare-Soil Index (NDBSI)

The NDBSI combined a soil index (SI) [41] and an anthropic index, the index-based built-up index
(IBI) [42], and was used to account for the dryness of the area, with its formula expressed as follows:

NDBSI =
SI + IBI

2
(4)

http://data.cma.cn/site/index.html
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SI = [(Rmir1 + Rred) − (Rnir + Rblue)]/[(Rmir1 + Rred) + (Rnir + Rblue)] (5)

IBI =
2Rmir1/(Rmir1 + Rnir) −

[
Rnir/(Rnir + Rred) + Rgreen/

(
Rgreen + Rmir1

)]
2Rmir1/(Rmir1 + Rnir) +

[
Rnir/(Rnir + Rred) + Rgreen/

(
Rgreen + Rmir1

)] (6)

where Rred, Rblue, Rgreen, Rnir, and Rmir1 are the reflectances of the red band, blue band, green band,
near-infrared band, and short-wave infrared band 1, respectively.

2.3.4. Land Surface Temperature (LST)

The land surface temperature was retrieved from the thermal bands of the Landsat images (Band
6 in Landsat TM, and Band 10 in Landsat OLI) and processed using the Radiative Transfer Equation
(RTE) algorithm [43,44] to represent the heat indicator. The formula we used to express the RTE
algorithm is the following:

Lλ =
[
εB(Ts) + (1− ε)L↓

]
τ+ L↑ (7)

where Lλ is the radiance at the sensor, or Top of Atmosphere (TOA) radiance, ε is the land surface
emissivity, B(Ts) is the blackbody radiance given by Planck’s law for a temperature Ts (Ts = LST),
L↓ and L↑ are the downwelling and upwelling atmospheric radiances, respectively, and τ is the total
atmospheric transmissivity between the land’s surface and the sensor. B(Ts) was expressed as:

B(Ts) =
[
Lλ − L↑ − τ(1− ε)L↓

]
/τε (8)

and Ts was obtained based on Planck’s law:

Ts = K2/ln(K1/B(Ts) + 1) (9)

where K1 = 607.76 W m−2 µm−1 sr−1 and K2 = 1260.56 K if obtained from the TM, and K1= 774.89 W
m−2 µm−1 sr−1 and K2 = 1321.08 K for the Thermal Infrared Sensor (TIRS) Band 10. The atmospheric
parameters L↑, L↓, and τ were acquired from NASA’s website (http://atmcorr.gsfc.nasa.gov/).

2.3.5. Combination of the Indicators

The RSEI was calculated as:

RSEI = PC1[ f (NDVI, LSM, NDBSI, LST)] (10)

The formula for reverse processing is:

RSEI = 1− PC1[ f (NDVI, LSM, NDBSI, LST)] (11)

Since the units and data ranges of the four indicator values were different, normalization had
to be performed before generating the RSEI, which resulted in all of the values being in the range
0 to 1. We also needed to normalize the value of the RSEI so that it would range from 0 to 1; from
the resulting scale, the closer the value was to 1, the better the ecological quality, and vice versa [38].
The normalized value of the RSEI was calculated as follows:

NIi =
Ii − Imin

Imax − Imin
(12)

where NIi is the normalized value of a pixel, Ii is the value of a pixel, and Imax and Imin are the max and
min values of a pixel, respectively.

According to previous studies [37,38], we classified RSEI values in five categories (excellent, good,
moderate, fair, and poor), each comprised of an equal interval of values. This procedure allowed us to

http://atmcorr.gsfc.nasa.gov/
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divide the RSEI scale into five quality levels in 0.2 intervals, namely excellent, good, moderate, fair,
and poor quality.

2.3.6. Change Vector Analysis

In this paper, the change vector analysis (CVA) method is used to detect the temporal and spatial
dynamic changes of the ecological environment in the research area, which can detect the specific
changes of RSEI in different years [45–47]. CVA is mainly used to calculate the vector change CV of
two images; taking the pixels of two images as the basic unit, the basic difference calculation is carried
out on the images of two phases to obtain the change vector. The formula is as follows:

R =


r1

r2
...
ri

, T =


t1

t2
...
ti

 (13)

∆E = R− T =


r1 − t1

r2 − r2
...

ri − ti

 (14)

‖∆E‖ =
√
(r1 − t1)

2 + (r2 − t2)
2 + · · ·+ (ri − ti)

2 (15)

where R and T are two RSEI images, i is the number of bands independent of each other that participate
in the calculation, ∆E is the change vector of two images, and ‖∆E‖ is the change magnitude that
denotes the total changes between R and T. The greater the ‖∆E‖ is, the greater the difference of the
two images is. Then, the threshold value is set, and the change region of ‖∆E‖ is divided according to
the threshold value. If ‖∆E‖ is greater than the threshold value, it is the change region; if E is less than
the threshold value, it is the unchanged region. The determination method of the threshold value is
as follows.

In this study, the Maximum Inter-Class Variance Method or Otsu Method as an adaptive threshold
determination method was conducted to determine the change threshold. It divides the image into
two categories, namely C0 and C1. When the variance between the categories reaches the maximum,
the gray level is the best threshold. The mathematical description is as follows: Let the number of
image pixels be N, the gray scale range is (0, L), and the number of pixels corresponding to the gray
level i is ni; the probability of its occurrence is:

pi =
ni
N

, i = 0, 1, 2 · · · , L,
L∑

i=0

pi = 1 (16)

The pixels in the image are divided into two types, A and B, according to the gray level threshold
t. A is composed of pixels between gray levels (0, t), and B is composed of pixels between gray levels (t
+ 1, L). The probabilities of A and B are:

ωA =
t∑

i=0

Pi, ωB =
L∑

i=i+1

Pi = 1−ωA (17)

The average gray values of A and B are:

µA =
t∑

i=0

iPi
ωA

, µB =
L∑

i=t+1

iPi
ωB

(18)
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The average gray value of the whole image is:

µ = ωAµA +ωBµB (19)

Define the variance between classes as:

σ2 = ωA(µA − µ)
2 +ωB(µB − µ)

2 (20)

Parameter t belongs to the range (0, L), and increases in steps of 1 in sequence. When σ2 is
maximum, the corresponding t is the optimal threshold.

3. Results and Discussion

3.1. Ecological Status of the Study Area

We combined the NDVI, LSM, NDBSI, and LST using the PCA method provided in ENVI. The signs
of the first principal component (PC1) loadings of LST and NDBSI were the inverse of those of LSM
and NDVI (Table 2), suggesting that the two groups of indicators had opposite effects on the ecology of
the study area. We concluded, based on previous studies [9,36], that the LST and NDBSI have negative
effects, while LSM and NDVI indicate constructive factors. In general, a larger value of PC1 indicated
better ecological quality; however, in some cases, that showed opposite signs compared to the other
cases—for example, PC1 loading for the Gansu tableland in 2000; PC1 needed to be processed to make
a large negative PC1 value represent good ecological quality (Table 2).

Table 2. The variation of the four indicators and the remote sensing ecological index (RSEI) during the
study period.

Periods Regions Types NDBSI LST NDVI LSM RSEI

2000

Gansu
tableland

Average value 0.62 0.51 0.38 0.48 0.43
PC1 loading 0.49 0.48 −0.49 −0.54

Shaanxi
tableland

Average value 0.56 0.27 0.31 0.30 0.45
PC1 loading −0.52 −0.39 0.55 0.53

Shanxi
tableland

Average value 0.60 0.45 0.60 0.60 0.54
PC1 loading 0.56 0.42 −0.54 −0.47

2010

Gansu
tableland

Average value 0.57 0.75 0.51 0.44 0.46
PC1 loading 0.57 0.37 −0.58 −0.46

Shaanxi
tableland

Average value 0.63 0.55 0.51 0.47 0.43
PC1 loading −0.56 −0.40 0.47 0.56

Shanxi
tableland

Average value 0.72 0.59 0.74 0.64 0.44
PC1 loading −0.54 −0.43 0.26 0.67

2018

Gansu
tableland

Average value 0.60 0.52 0.49 0.50 0.47
PC1 loading 0.57 0.38 −0.43 −0.59

Shaanxi
tableland

Average value 0.53 0.69 0.53 0.51 0.45
PC1 loading 0.58 0.08 −0.53 −0.61

Shanxi
tableland

Average value 0.74 0.54 0.56 0.80 0.46
PC1 loading 0.67 0.58 −0.25 −0.38

Note: PC1 (first principal component) loading represents the contribution of each indicator to the remote sensing
ecological index (RSEI).

Figure 2 shows the average RSEI values of each tableland from 2000 to 2018. From their comparison,
we can see how there was a steady increase in the average RSEI value from 0.43 in 2000 to 0.47 in 2018
in the Gansu tableland. A slightly complex trend, with an initial decrease from 0.45 (2000) to 0.43
(2010), and then an increase back to 0.45 (2018), was observed in the Shaanxi tableland. Finally, a slow
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and constant decrease from 0.54 (2000) to 0.44 (2010), and then a slight increase to 0.46 (2018), occurred
in the Shanxi tableland. This signifies that the ecological environment had improved over time in the
Gansu tableland, remained stable in the Shaanxi tableland, and deteriorated in the Shanxi tableland.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 17 
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the study period.

Figure 3 shows the spatial distributions of the different quality grades of RSEI on a map, and
compares the RSEI levels in 2000, 2010, and 2018, respectively. For the Gansu tableland, the amount of
poor and fair values decreased by 6.73% and 0.87%, respectively, between 2000 and 2010. The regions
with “poor” and “fair” RSEI were mainly located in the basins of the Heihe, Daxi, Honghe, and Puhe
rivers. During the same period, moderate (3.94%), good (3.43%), and excellent (0.42%) environments
all increased to some extent.
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For the Gansu tableland, the ratio of fair (−4.11%) and moderate (−2.22%) quality RSEI values
decreased between 2010 and 2018, and the ratio of poor (2.11%), good (1.8%), and excellent (2.41%)
quality values increased. Overall, the ecological environment improved in most regions of the Gansu
tableland during the period of 2000–2018. This ecological environment variation may be related to some
ecology protection measures taken by the Chinese government in the area, such as the construction of
silt dams, started in 2000, and the comprehensive management of soil erosion in sloping farmlands,
which was effectively achieved during the first few years (2000–2010) of our study.

For the Shaanxi tableland, the number of areas with poor, good, and excellent quality levels
decreased to some extent, while the ratio of fair and moderate quality regions increased during
2000–2010 (Figure 3). In the next eight years, however, poor and fair quality areas decreased, while
moderate, good, and excellent quality areas increased. The interplay of these two trends resulted
in the ecological environment being qualitatively unchanged during the period from 2000 to 2018.
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However, if considering individual areas, the ecological conditions of the Beiluo river’s basin effectively
improved, and those of the Weihe river’s basin in the southwestern part of the reclamation region and
the eastern part of the reclamation region obviously deteriorated. We observed that the regions with
moderate ecological conditions were always next to those with poor ecological conditions, which, in
turn, are the poorer areas. It is not uncommon that poor areas are more subject to deterioration.

For the Shanxi tableland, the percentage of fair, moderate, and excellent quality areas decreased,
and that of poor and good quality areas increased in the first ten years. In a similar trend, from 2010
to 2018, poor, good, and excellent quality area levels subsided at the advantage of fair and moderate
quality areas, resulting in an overall deterioration of the conditions throughout the study. Poor and fair
ecological condition areas were mainly concentrated in the northern Sichuan river’s bed, and around
the E river’s basin. From 2010, the ecological environment in the northern part of the reclamation area
deteriorated markedly, with “poor” and “fair” areas increasing in number, although the deterioration
slowed down over time up until 2018. The areas with moderate ecological conditions were basically
well spread throughout the study area, while “good” and “excellent” areas were mainly distributed
north of the Sichuan river and south of the E river.

3.2. Spatiotemporal Changes in RSEI Based on the Change Vector Analysis (CVA) Method

The CVA method was used to analyze the spatiotemporal changes in RSEI in the study area.
Complete CVA magnitude maps of the study area are presented in Figure 4. The high values of ‖∆E‖,
shown in red, appear in the western parts of the Gansu and Shaanxi tablelands from 2000–2010, and in
the eastern part of Gansu tableland and southern part of Shaanxi tableland from 2010–2018. The Shanxi
tableland has low ‖∆E‖ values throughout the study period.
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The suitable segmentation threshold for the change magnitude map was calculated using the Otsu
method (Figure 4c). Changes from 2000–2010, 2010–2018, and both periods are represented by blue,
green, and red pixels, respectively. In the Gansu tableland, blue pixels are mainly distributed in the
southwest, and green pixels are mainly distributed in the south. The red pixels are mainly distributed
in the northeast of this region, which indicated that the ecological environment there is relatively
fragile. In the Shaanxi tableland, blue pixels are mainly distributed in the west and green pixels are
mainly distributed in the central and southern parts of this region. Only a few red pixels are observed
in the eastern part of this region. In the Shanxi tableland, there are relatively few areas with blue pixels,
while there are green and red pixels over the entire area. In addition, the ecological environments of
the northeastern Gansu tableland, southern Shaanxi tableland, and the entirety of the Shanxi tableland
are fragile, with the RSEI of these regions presenting significant variation during the study period.

3.3. Spatial Distribution of the Different Grade of RSEI Variation

To investigate the variation in the RSEI between 2000 and 2018, we designated five labels to
classify different regions of our study area: Significantly degraded, degraded, stable, improved, and
significantly improved regions. The overall RSEI scale went from −1 to 2, determined by the differences
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in RSEI between 2010 and 2000 and between 2018 and 2010; each label corresponded to a certain
interval in the scale (Table 3). Figure 5 shows the spatial distribution of different grades in RSEI
variations from 2000–2010 and 2010–2018. It can be seen that in the Gansu tableland, the overall area of
significantly degraded and degraded regions decreased by 1.39% from 2000–2018. In addition, stable
regions decreased by 1.63% while the overall area of significantly improved and improved regions
increased by 3.02%, resulting in a global improvement in ecological quality. For the Shaanxi tableland,
overall degraded regions decreased by 2.42%, stable regions decreased by 4.92%, and overall improved
regions increased by 7.33% during the period 2000–2018. There were relatively larger variations in the
Shanxi tableland: The area of degraded regions decreased by 30.49%, the area of stable regions was
increased by 3.83%, and the area of overall improved regions increased by 26.67%.

Table 3. Spatial variation statistics table of RSEI in the study area.

Level Interval
Gansu Tableland/% Shaanxi Tableland/% Shanxi Tableland/%

2010–2000 2018–2010 2018–2000 2010–2000 2010–2000 2010–2000

Significant degraded region −1–−0.2 17.65 20.75 21.02 21.85 26.69 11.92
Degraded region −0.2–−0.05 20.95 16.46 21.78 18.53 37,44 21.72

Stable region −0.05–0.05 19.02 17.39 21.77 16.85 20.77 24.6
Improved region 0.05–0.2 18.13 18.12 18.74 18.16 11.23 25.46

Significant improved region 0.2–1 24.25 27.28 16.70 24.61 3.86 16.3
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The ecologically degraded areas of the Gansu tableland were mainly distributed in the southern
parts of the Guchengchuan, Jiulonghe, Puhe, and Daxi rivers’ basins in the first ten years of the study.
Ecologically stable areas were well spread throughout the tableland, while the ecological improvement
areas were mainly distributed around the Weihe river. From 2010 to 2018, a large number of ecologically
degraded areas appeared near the Puhe and Honghe rivers’ basins, while large ecological improvement
areas appeared near the Daxi and the Guchengchuan rivers’ basins (Figure 5). Spatially, ecologically
stable areas were often distributed around ecologically degraded regions.

In the Shaanxi tableland, only the areas around the Weihe and the Baishui rivers’ basins encountered
some improvement, while most of the other areas experienced different levels of degradation from
2000 to 2010. Stable conditions were only observed for the areas in between the Sanshui river and the
northern part of the Shajiachuan river’s basin. However, in the following eight years, except for some
ecological degradation in contiguous regions around the Weihe, Sanshui, and the Ju rivers’ basins and
on the eastern side of the Shaanxi tableland, most of the remaining areas in the Shaanxi tableland
experienced some ecological improvement. This can be attributed to the execution of the positive
measures discussed above, as well as to the efforts put into the restoration of vegetation.

As for the Shanxi tableland, almost the whole area went through ecological degradation from
2000 to 2010, with the exception of ecologically stable areas scattered around the Qinshui river’s basin,
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and some rare improvements only distributed in the northeast corner of the tableland. During the
period from 2010 to 2018, ecological quality increased significantly in the whole tableland, but the
areas around the Zhouchuan and the E rivers’ basins experienced further degradation, while the areas
around the Qinshui river’s basin remained unchanged.

3.4. Contributing Factors for the Regional RSEI

For a long time, the pattern of severe droughts, soil erosion, sparse vegetation, population
increases, low-efficiency economic models, and farmer poverty have been recognized as significant
for the ecological security of the entire CLP [2]. Regional ecosystems consist of many factors, such
as population, the economy, and the natural environment. There is also information uncertainty
and incompleteness in these areas. A regional ecosystem is a gray system; in this, a model with a
small data sample can be used to find a law for the system using sequence generation. Gray relation
analysis can judge whether a connection is tight according to the similarity degree of sequence-curve
geometry [48,49]. To determine which contributing factors had the main impact on the regional RSEI,
the GRA analysis was carried out on some control factors that we considered of major importance: T,
ET0, R, P, GDP, AREA, and Pop.

Figure 6, which is based on the GRA results, shows the gray relational coefficient between different
parameters and the RSEI. In the Gansu tableland, the ranking of the gray relational coefficients for
the RSEI from 2000 to 2018 is T (0.96) > ET0 (0.94) > POP (0.92) > P (0.86) > AREA (0.80) > GDP
(0.55) > R (0.54). Natural parameters, including T, ET0, and P, have a strong influence on the RSEI
variations. The parameters POP (0.92) and Area (0.80) have a higher gray relational coefficient for the
RSEI than other economic parameters, indicating that the rapidly increasing population and urban
expansion contributed to the deterioration of the ecological environment of the study area. In the
Shaanxi tableland, the ranking of the gray relational coefficient for the RSEI from 2000 to 2018 is T
(0.99) > ET0 (0.92) > P (0.81) > POP (0.70) > R (0.68) > AREA (0.63) > GDP (0.50). The RSEI variation of
the Gansu tableland during the three periods showed strong association with the natural parameters
apart from rainfall erosion. However, economic factors have not had a significant influence on the
variation in the regional ecological environment in the Shaanxi tableland. As for the Shanxi tableland,
the ranking of the gray relational coefficient between different parameters and the RSEI is T (0.90) >

ET0 (0.89) > P (0.88) > R (0.84)> POP (0.65) > AREA (0.57) > GDP (0.46). As with the Shaaxi tableland,
the variation of RSEI is mainly controlled by natural factors, while the economic parameters have no
obvious association with the variation in RSEI. In addition, the variation in rainfall erosion should be
given more attention, as it has a significant influence on the variation of regional RSEI.
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From a timewise perspective, the high gray relational coefficients for the RSEI in 2000 were ET0 (gray
relational coefficient of 0.90), T (0.8), and P (0.80). In this period, the regional ecological environment
was mainly controlled by natural factors, such as temperature, evaporation, and precipitation; the
interference of human activity had little influence on the regional ecological environment. In 2010,
the ranking of the gray relational coefficient for the RSEI among the three tableland regions was ET0
(0.95) > POP (0.93)> T (0.91) > P (0.79) > AREA (0.78) > R (0.54) > GDP (0.52). Population appeared to
play an important role in the variation in RSEI during this period. Higher gray relational coefficients
between population and RSEI indicated that the widespread human activity caused by the increasing
regional population threatened the regional ecological environment in 2010. In 2018, the ranking of the
gray relational coefficient for the RSEI among the three tableland regions is T (0.84) > ET0 (0.80) > P
(0.74) > POP (0.68) > R (0.48) > AREA (0.48) > GDP (0.53). The variation in the regional RSEI was only
sensitive to variations in T and ET0, which are both natural factors. The ecological environment of
the tableland region of the CLP was particularly sensitive to variations in natural controlling factors,
particularly temperature, potential evapotranspiration, and precipitation. The rapid increase in the
regional population and human activity played an important role in varying the regional RSEI.

4. Conclusions

By analyzing and comparing the RSEI values, we can conclude that the eco-environmental quality
improved in the Gansu tableland, remained stable in the Shaanxi tableland, and deteriorated in the
Shanxi tableland between 2000 and 2018. We arrived at this conclusion because, from the beginning to
the end of the study, there was a steady increase in the average RSEI value for Gansu, from 0.43 to 0.47;
in the Shaanxi tableland, the average RSEI initially decreased from 0.45 (2000) to 0.43 (2010), and then
increased to 0.45 (2018); while for Shanxi, the RSEI showed an initial decrease from 0.54 (2000) to 0.44
(2010), and then settled at 0.46 (2018).

The regions with poor or fair quality eco-environments were mainly concentrated in the Heihe,
Daxi, Honghe, Puhe, Weihe, northern Sichuan, and E river basins. While human activity had a strongly
negative impact on the ecological environment, the regions with moderate ecological conditions were
always near those with poor conditions, which, in turn, are the poorer areas. It was not uncommon
for poor areas to be subject to greater deterioration. The ecological conditions were good or excellent
in the southern part of the E river. The ecological environments of the northeastern region of the
Gansu tableland, the southern region of the Shaaxi tableland, and the entirety of the Shanxi tableland
are fragile; the RSEI of these regions presented significant variation during the study period. More
attention should be paid to the ecological security of the tableland region of the CLP. Natural factors,
such as temperature, potential evapotranspiration, and precipitation, had the greatest influence on the
overall ecological quality. The rapid increase in regional population and human activity played an
important role in variation of the regional RSEI.

Author Contributions: Data curation, C.S.; funding acquisition, C.S. and X.L. (Xingong Li); methodology, W.Z.;
resources, C.S.; software, X.L. (Xiaoming Li) and W.Z.; validation, X.L. (Xiaoming Li); writing—original draft, C.S.;
writing—review a d editing, X.L. (Xiaoming Li), W.Z., and X.L. (Xingong Li). All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by [the Foundation for Applied Basic Research program, Shanxi Province,
China] grant number [201901D211388] and [the Natural Science Foundation of China] grant number [41901022
and 4160317].

Acknowledgments: We thank the two anonymous reviewers for their constructive comments and suggestions
that have helped to improve the original manuscript. Thanks also to the editorial staff.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2020, 12, 3489 15 of 17

References

1. Li, S.; Liang, W.; Fu, B.J.; Lv, Y.H.; Fu, S.Y.; Wang, S.; Su, H.M. Vegetation changes in recent large-scale
ecological restoration projects and subsequent impact on water resources in china’s loess plateau. Sci. Total
Environ. 2016, 569–570, 1032–1039. [CrossRef]

2. Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic ecosystem responses to natural
and anthropogenic changes in the loess plateau of china. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243.
[CrossRef]

3. Wang, J.; Zhuo, J. Quantitative evaluation of soil erosion in returning farmland to forest area of loess plateau
in north Shaanxi based on RS and GIS. Bull. Soil Water Conserv. 2015, 35, 220–223.

4. Groom, G.; Mücher, C.A.; Ihse, M.; Wrbka, T. Remote sensing in landscape ecology: Experiences and
perspectives in a European context. Landsc. Ecol. 2006, 21, 391–408. [CrossRef]

5. Ochoa-Gaona, S.; Kampichler, C.; de Jong, B.H.J.; Hernández, S.; Geissen, V.; Huerta, E. A multi-criterion
index for the evaluation of local tropical forest conditions in Mexico. For. Ecol. Manag. 2010, 260, 618–627.
[CrossRef]

6. Sullivan, C.A.; Skeffington, M.S.; Gormally, M.J.; Finn, J.A. The ecological status of grasslands on lowland
farmlands in western Ireland and implications for grassland classification and nature value assessment. Biol.
Conserv. 2010, 143, 1529–1539. [CrossRef]

7. Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban neighborhood green index—A measure of green
spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [CrossRef]

8. Xu, H.Q.; Ding, F.; Wen, X. Urban expansion and heat island dynamics in the quanzhou region, china. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 74–79. [CrossRef]

9. Xu, H.Q.; Wang, Y.F.; Guan, H.D.; Shi, T.T.; Hu, X.S. Detecting Ecological Changes with a Remote Sensing
Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11,
2345. [CrossRef]

10. Ivits, E.; Cherlet, M.; Mehl, W.; Sommer, S. Estimating the ecological status and change of riparian zones in
Andalusia assessed by multi-temporal AVHHR datasets. Ecol. Indic. 2009, 9, 422–431. [CrossRef]

11. Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L. Assessing the sensitivity of MODIS to monitor
drought in high biomass ecosystems. Remote Sens. Environ. 2011, 115, 2626–2639. [CrossRef]

12. Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol.
Conserv. 2015, 182, 233–242. [CrossRef]

13. De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic
review. Ecol. Indic. 2015, 52, 430–443. [CrossRef]

14. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with
ERTS. NASA Spec. Publ. 1973, 351, 309–317.

15. Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote
sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning.
Remote Sens. Environ. 2016, 186, 637–651. [CrossRef]

16. Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city
using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [CrossRef]

17. Malbéteau, Y.; Merlin, O.; Gascoin, S.; Gastellu, J.P.; Mattar, C.; Olivera-Guerra, L.; Khabba, S.; Jarlan, L.
Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A
case study using aster data over a steep-sided valley in morocco. Remote Sens. Environ. 2017, 189, 25–39.
[CrossRef]

18. Tiner, R.W. Remotely-sensed indicators for monitoring the general condition of “natural habitat” in
watersheds: An application for Delaware’s Nanticoke River watershed. Ecol. Indic. 2004, 4, 227–243.
[CrossRef]

19. Mildrexler, D.J.; Zhao, M.S.; Running, S.W. Testing a MODIS global disturbance index across North America.
Remote Sens. Environ. 2009, 113, 2103–2117. [CrossRef]

20. Healey, S.P.; Cohen, W.B.; Yang, Z.Q.; Krankina, O.N. Comparison of tasseled cap-based Landsat data
structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [CrossRef]

21. Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor
remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2016.06.141
http://dx.doi.org/10.1146/annurev-earth-063016-020552
http://dx.doi.org/10.1007/s10980-004-4212-1
http://dx.doi.org/10.1016/j.foreco.2010.05.018
http://dx.doi.org/10.1016/j.biocon.2010.03.035
http://dx.doi.org/10.1016/j.landurbplan.2012.01.003
http://dx.doi.org/10.1109/JSTARS.2009.2023088
http://dx.doi.org/10.3390/rs11202345
http://dx.doi.org/10.1016/j.ecolind.2008.05.013
http://dx.doi.org/10.1016/j.rse.2011.05.018
http://dx.doi.org/10.1016/j.biocon.2014.12.006
http://dx.doi.org/10.1016/j.ecolind.2015.01.007
http://dx.doi.org/10.1016/j.rse.2016.09.007
http://dx.doi.org/10.1016/j.isprsjprs.2017.09.008
http://dx.doi.org/10.1016/j.rse.2016.11.010
http://dx.doi.org/10.1016/j.ecolind.2004.04.002
http://dx.doi.org/10.1016/j.rse.2009.05.016
http://dx.doi.org/10.1016/j.rse.2005.05.009
http://dx.doi.org/10.1016/j.rse.2010.07.005


Sustainability 2020, 12, 3489 16 of 17

22. Xu, H.Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 24, 7853–7862.
23. Zhang, C.; Xu, H.Q.; Zhang, H.; Tang, F.; Lin, Z.L. Fractional vegetation cover change and its ecological effect

assessment in a typical reddish soil region of southeastern china: Changting county, Fujian province. J. Nat.
Resour. 2015, 6, 917–928.

24. Yang, F.H.; Song, J.J.; Zhao, Y.R.; Zhao, J.L.; Niu, C. Dynamic monitoring of ecological environment in black
soil erosion area of northeast China based on remote sensing. Res. Environ. Sci. 2018, 9, 1580–1587.

25. Zhang, X.D.; Liu, X.N.; Zhao, Z.P.; Ma, Y.Y.; Yang, Y. Dynamic monitoring of ecology and environment in the
agro-pastral ecotone based on remote sensing: A case of Yanchi county in Ningxia hui autonomous region.
Arid Land Geogr. 2017, 5, 1070–1078.

26. Fu, B.J.; Liu, Y.; Lv, Y.H.; He, C.S.; Zeng, Y.; Wu, B.F. Assessing the soil erosion control service of ecosystems
change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [CrossRef]

27. Lü, Y.H.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.Y.; Sun, G.; Wu, B.F. A policy-driven largescale
ecological restoration: Quantifying ecosystem services changes in the loess plateau of china. PLoS ONE 2012,
7, e31782.

28. Su, C.H.; Fu, B.J. Evolution of ecosystem services in the Chinese loess plateau under climatic and land use
changes. Glob. Planet. Chang. 2013, 101, 119–128. [CrossRef]

29. Fu, B.J.; Zhang, L.W.; Xu, Z.H.; Zhao, Y.; Wei, Y.P.; Skinner, D. Ecosystem services in changing land use. J.
Soils Sediments 2015, 15, 833–843. [CrossRef]

30. Sun, C.J.; Chen, W.; Chen, Y.; Cai, Z. Stable isotopes of atmospheric precipitation and its environmental
drivers in the Eastern Chinese Loess Plateau, China. J. Hydrol. 2019, 581, 124404. [CrossRef]

31. Lü, Y.H.; Zhang, L.W.; Feng, X.M.; Zeng, Y.; Fu, B.J.; Yao, X.L.; Wu, B.F. Recent ecological transitions in china:
Greening, browning, and influential factors. Sci. Rep. 2015, 5, 8732. [CrossRef] [PubMed]

32. Liang, W.; Bai, D.; Wang, F.Y.; Fu, B.J.; Yan, J.P.; Wang, S.; Yang, Y.T.; Long, D.; Feng, M.Q. Quantifying the
impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological
model in china’s loess plateau. Water Resour. Res. 2015, 51, 6500–6519. [CrossRef]

33. Cao, Z.; Li, Y.R.; Liu, Y.H.; Chen, Y.F.; Wang, Y.S. When and where did the Loess Plateau turn “green”?
Analysis of the tendency and breakpoints of the normalized difference vegetation index. Land Degrad. Dev.
2017, 29, 162–175. [CrossRef]

34. Sun, C.J.; Zheng, Z.J.; Chen, W.; Wang, Y.Y. Spatial and Temporal Variations of Potential Evapotranspiration
in the Loess Plateau of China during 1960–2017. Sustainability 2020, 12, 354. [CrossRef]

35. Kilic, A.; Allen, R.; Trezza, R.; Ratcliffe, I.; Kamble, B.; Robison, C.; Ozturk, D. Sensitivity of evapotranspiration
retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal
data and to calibration bias in Landsat 7 and 8 surface temperature. Remote Sens. Environ. 2016, 185, 198–209.
[CrossRef]

36. Xu, H.Q.; Huang, S.L.; Zhang, T.J. Built-up land mapping capabilities of the ASTER and Landsat ETM+

sensors in coastal areas of southeastern China. Adv. Space Res. 2013, 52, 1437–1449. [CrossRef]
37. Hu, X.S.; Xu, H.Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological

quality: A case from Fuzhou city, china. Ecol. Indic. 2018, 89, 11–21. [CrossRef]
38. Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-Environmental Quality Assessment in China’s 35 Major Cities Based on

Remote Sensing Ecological Index. IEEE Access 2019, 7, 51295–51311. [CrossRef]
39. Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ.

1985, 17, 301–306. [CrossRef]
40. Baig, M.H.A.; Zhang, L.F.; Shuai, T.; Tong, Q.X. Derivation of a tasseled cap transformation based on Landsat

8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [CrossRef]
41. Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47.
42. Xu, H.Q. A new index-based built-up index (IBI) and its eco-environmental significance. Remote Sens. Technol.

Appl. 2017, 3, 301–308.
43. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat

MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]
44. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5.

Remote Sens. Environ. 2004, 90, 434–440. [CrossRef]
45. Li, P. Research on Information Extraction Method of Vegetation Coverage Change Based on CVA; Capital Normal

University: Beijing, China, 2011.

http://dx.doi.org/10.1016/j.ecocom.2011.07.003
http://dx.doi.org/10.1016/j.gloplacha.2012.12.014
http://dx.doi.org/10.1007/s11368-015-1082-x
http://dx.doi.org/10.1016/j.jhydrol.2019.124404
http://dx.doi.org/10.1038/srep08732
http://www.ncbi.nlm.nih.gov/pubmed/25736296
http://dx.doi.org/10.1002/2014WR016589
http://dx.doi.org/10.1002/ldr.2852
http://dx.doi.org/10.3390/su12010354
http://dx.doi.org/10.1016/j.rse.2016.07.011
http://dx.doi.org/10.1016/j.asr.2013.07.026
http://dx.doi.org/10.1016/j.ecolind.2018.02.006
http://dx.doi.org/10.1109/ACCESS.2019.2911627
http://dx.doi.org/10.1016/0034-4257(85)90102-6
http://dx.doi.org/10.1080/2150704X.2014.915434
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2004.02.003


Sustainability 2020, 12, 3489 17 of 17

46. Dewi, R.S.; Bijker, W.; Stein, A. Change vector analysis to monitor the changes in fuzzy shorelines. Remote
Sens. 2017, 9, 147. [CrossRef]

47. Xu, H.Q.; Wang, M.Y.; Shi, T.T.; Guan, H.D.; Fang, C.Y.; Lin, Z.L. Prediction of ecological effects of potential
population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol.
Indic. 2018, 93, 730–740. [CrossRef]

48. Huang, J.T.; Liao, Y.S. Optimization of machining parameters of Wire-EDM based on Grey relational and
statistical analyses. Int. J. Prod. Res. 2003, 41, 1707–1720. [CrossRef]

49. Huang, Z.B.; Xu, M.; Chen, W.; Lin, X.J.; Cao, C.X.; Ramesh, P.S. Postseismic restoration of the ecological
environment in the Wenchuan region using satellite data. Sustainability 2018, 10, 3990. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs9020147
http://dx.doi.org/10.1016/j.ecolind.2018.05.055
http://dx.doi.org/10.1080/1352816031000074973
http://dx.doi.org/10.3390/su10113990
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Methods 
	Study Area 
	Data Sources and Pre-Processing 
	Calculation of Remote Sensing Ecological Index 
	Normalized Differential Vegetation Index (NDVI) 
	Land Surface Moisture (LSM) 
	Normalized Difference Built-Up and Bare-Soil Index (NDBSI) 
	Land Surface Temperature (LST) 
	Combination of the Indicators 
	Change Vector Analysis 


	Results and Discussion 
	Ecological Status of the Study Area 
	Spatiotemporal Changes in RSEI Based on the Change Vector Analysis (CVA) Method 
	Spatial Distribution of the Different Grade of RSEI Variation 
	Contributing Factors for the Regional RSEI 

	Conclusions 
	References

