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Abstract: With the increase in local energy generation from Renewable Energy Sources (RESs),
the concept of decentralized peer-to-peer Local Energy Market (LEM) is becoming popular. In this
paper, a blockchain-based LEM is investigated, where consumers and prosumers in a small
community trade energy without the need for a third party. In the proposed model, a Home
Energy Management (HEM) system and demurrage mechanism are introduced, which allow both the
prosumers and consumers to optimize their energy consumption and to minimize electricity costs.
This method also allows end-users to shift their load to off-peak hours and to use cheap energy from
the LEM. The proposed solution shows how energy consumption and electricity cost are optimized
using HEM and demurrage mechanism. It also provides economic benefits at both the community
and end-user levels and provides sufficient energy to the LEM. The simulation results show that
electricity cost is reduced up to 44.73% and 28.55% when the scheduling algorithm is applied using
the Critical Peak Price (CPP) and Real-Time Price (RTP) schemes, respectively. Similarly, 65.15% and
35.09% of costs are reduced when CPP and RTP are applied with demurrage mechanism. Moreover,
51.80% and 44.37% electricity costs reduction is observed when CPP and RTP are used with both
demurrage and scheduling algorithm. We also carried out security vulnerability analysis to ensure
that our energy trading smart contract is secure and bug-free against the common vulnerabilities
and attacks.

Keywords: blockchain; HEM; optimization; local energy market; decentralization; peer to peer

1. Introduction

Currently, energy is primarily produced by large, centralized energy-plant rendering through
Nonrenewable Energy Sources (NRESs). The use of centralized energy plants run by NRESs causes
energy losses during power transmission and environmental degradation. The high penetration of
Renewable Energy Sources (RESs) into the power system reduces the environmental crisis and the
energy losses as energy is generated close to where it is consumed. Another solution to centralized
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energy generation is the introduction of Distributed Energy Resources (DERs). DER increases the
overall cost savings for the customer, allows consumers to control their power, and reduces gas
emissions by shifting from NRES to RES.

As a result of the rapid increase in DERs’ connections, conventional consumers of energy are
transforming into prosumers, i.e., someone who simultaneously generates and consumes energy.
DER simply mean electricity resources, which are connected directly to Low Voltage (LV) or Medium
Voltage (MV) distributed system [1]. DERs include both energy storage technology and generation
units such as flywheels, batteries, Superconducting Magnetic Energy Storage (SMES), Photovoltaics
(PVs), micro-turbines, and Electric Vehicles (EV) as illustrated in Figure 1, and Nomenclature shows
the list of abbreviations and symbols in this research work. The figure depicts the technologies that
support the DER system. For more information about technologies mentioned in the figure, please refer
to Reference [1]. It is challenging to forecast the intermittent energy generation of DER. Due to this
issue, prosumers curtail their surplus electricity, store it in a device, transport it to the main grid,
or trade it with neighbors (other consumers) [2]. Customer in this paper refers to both consumer
and prosumer, especially in a situation where both perform the same function. The direct buying
or selling of energy among prosumers and consumers is known as Peer-to-Peer (P2P) trading of
energy. Trading of energy among prosumers and consumers is one of the rapidly growing concepts
in distributed networks. The sharing economy model is the foundation of P2P energy exchange in
a distributed local electricity network [3]. A node in a network of energy trading is referred to as
local energy prosumer or consumer. A node is also known as a peer who directly sells or purchases
energy with other peers without the involvement of an intermediary controller. The current energy
markets lack the ability to react in real-time or near real-time to the intermittent and volatile nature
of RES generation [4]. In addition, market prices are usually set at the national level, which does not
show the availability of local surplus energy or energy supply shortages [5]. However, modern market
techniques must also reflect the locality of their services in order to promote DER’s inclusion into the
power system. Microgrids are a geographically small community of numerous connected DER and
loads [6] and can also improve energy supply stability since they provide the opportunity to supply
power in the case of superordinate grid energy failures [7].

The advancement in information and communication technology allows P2P energy trading to
take place. In conventional energy trading, the flow of transactions is unidirectional, whereby energy
is transmitted from a single source of energy generation to customers from a very long distance while
the flow of cash goes the other way round. However, P2P energy trading needs multidirectional
trading within a local area and allows advanced communication. The challenges identified in P2P
energy trading are information security, information leakages, privacy, loss of data, etc. Most of these
problems can be addressed using blockchain technology.

The evolving technology, blockchain [8], brings new potential for decentralized network designs
and provides transparent and user-friendly frameworks [9]. It creates opportunities for energy users
to be involved in making choices about who supplies their energy and the technologies used to
generate it.

In recent years, industries, academics, and research domains are involved in utilizing blockchain
technology with its potentials to decentralize the complex energy market’s networks and P2P energy
trading. The authors in Reference [10] propose a small machine-to-machine energy market based
on blockchain with a customer and two suppliers in a chemical industry. The proposed system uses
proof-of-concept algorithm for consensus. The proposed work shows that blockchain can create a
small-scale energy market. In another work [11], the authors examine neighborhood energy growth
into local self-sufficient utility production. The authors further explore the opportunities of microgrid
energy markets based on blockchain for the development of distributed RES platforms and the
associated problems for Australia’s conventional power grid. It is explicitly stated that the usage of
modern distributed ledger (blockchain) in transactions of energy makes microgrids more robust by
establishing confidence among the agents involved, particularly with regard to energy delivery and
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financial payments processes. The authors in Reference [12] utilize blockchain-based technology to
establish a continuous auction platform. The auction mechanism in the model allows supply and
demand to keep adding and matching without discrete clearing steps. The authors in Reference [13]
present a P2P negotiation model in Local Energy Market (LEM) that has randomized sellers and buyers
matching without a central authority. The trading takes place between directly affected parties on a
bilateral basis. LEM is a regionally limited market system with special sale price mechanisms among
interdependent customers (generators, prosumers, and consumers). The customers can either have an
energy generation or demand at any given time slot.

In Reference [14], the authors present a combinatorial double auction technique for pricing and
distribution of energy resources, taking into account the needs of energy consumers and prosumers
in particular. In this research work, we propose a secure, decentralized, anonymous, transparent,
immutable, and verifiable energy trading mechanism. The objective of the proposed work is to
maximize energy supplies and economic benefits at all levels for both the community and end-users.

The remaining part of this paper is organized as follows: related work and problem statement are
discussed in Sections 2 and 3. Section 4 presents the proposed system model and its description.
Section 5 elaborates price model and cost model of consumers and prosumers and discusses
self-sufficiency and self-consumption, while security analysis and simulation results are presented in
Sections 6 and 7. Finally, the conclusion and future work are presented in Section 8.
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Conventional 
Generators
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Generators
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Reciprocating 
Engine

Gas Turbine

Renewable 
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Figure 1. Technologies in Distributed Energy Resource (DER): Superconducting Magnetic Energy
Storage (SMES), Photovoltaics (PV), and Battery Energy Storage (BES).

2. Related Work

The authors in Reference [8] proposed an NRGcoin model, also called a novel decentralized
digital currency. The model allows locally generated renewable energy from prosumers to be sold
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using the digital currency organized by the market paradigm of buyers and sellers of green energy in a
smart grid. The authors in Reference [12] presented an adaptive aggressive strategy in a microgrid
using blockchain-based Continuous Double Auction (CDA), putting forward a new perspective on an
energy market. However, various bid combinations may have distinct initial conditions, and there is
an inadequate flexibility to change the bid quantity during the CDA bid process.

Similarly, in Reference [15], the authors presented a secure credit-based system of payment by
reducing wait times for transaction confirmation of the energy chain in permissioned blockchain-based
Industrial Internet of Things (IIoTs). Reducing the wait time makes electricity trading faster and
responses more frequent. The authors also used an optimal pricing mechanism by exploring the idea
of stackelberg game theory to optimize bank utility credit-based loans.

The authors in Reference [16] proposed a P2P Electricity Trading system with COnsortium
blockchaiN (PETCON) model to conduct secure private P2P trading of energy between plugin hybrid
electric vehicles. The study focused on establishing trust and used the anonymous property of
blockchains to defend the user’s privacy. In Reference [17–19], an approach based on the power quality
perceived by a specific economical category is proposed. However, the proposed model does not
consider security issues, privacy leakages, and single point of failure.

The authors in Reference [20] attempted to provide a decentralize and secure transaction using
blockchain technology in the smart grid. In the research, participants anonymously negotiate the
trading price and perform secure transactions using anonymous, encrypted messaging streams and
multi-signatures. The proposed work is different from this research work by willingly allowing or
encouraging all prosumers to become sellers and self-sufficient consumers in peak hours of energy
generation. Similarly, in Reference [21], the authors proposed a system of distributed energy trading
to encourage P2P sharing of electricity between prosumers. There are two layers in the proposed
model. In the first layer, the agent coalition mechanism is proposed to allow prosumers to establish a
coalition and to negotiate energy trading. A blockchain-based settlement of transactions is proposed
in the second layer. A distributed approach to control Demand Response (DR) systems in a smart
grid context is proposed in Reference [22]. The elements of the grid are integrated with the smart
contract’s blockchain framework to ensure the verification of DR agreements, the programmatic
definition of expected energy flexibility levels, the balance within production and demand of energy,
and the validation of DR agreements. In Reference [23], Thakur et al. presented a distributed,
scalable, and secure blockchain-based network for coalition structure creation and microgrid energy
trading. However, the determination of the trading price between the parties is difficult to reach via
negotiation. Similarly, the research work in Reference [24] aimed to provide an energy trading model
that will facilitate a sustainable transaction of energy ecosystems among smart homes’ consumers and
prosumers. However, energy and profit optimizations are not considered.

The work proposed in Reference [25] not only decreases the peak to average ratio, benefiting
the grid, but also smoothens the dips of the profile load caused by constraints in supply. Also,
the work proposed an enhanced blockchain approach to implement a distributed microgrid network
that handles the micro-payment along with the exchange of energy and information. Furthermore,
a noncooperative theoretical game approach is proposed for a Demand Side Management (DSM)
model that incorporates storage components. Privacy has been highlighted as a major barrier to
customer engagement in the research. The authors in Reference [26] proposed an Internet of Things
(IoT) system to account for power flows as well as a blockchain platform to resolve the need for a
centralized entity. It allows LEM to manage the decentralized transfers of energy without the need for
central control. On the other hand, a new approach for smart city network architecture is proposed [27].
The architecture combined the benefits of blockchain technology and emerging Software-Defined
Network (SDN). The rapid growth in volume and number for the connected IoT devices came with
challenges: for instance, bandwidth bottleneck, scalability, privacy, and high latency in the current
architecture of smart city networks. The current limitations are drastically reduced by introducing
blockchain and by dividing the architecture into the core and edge networks. However, there are still
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some issues that are left unresolved, such as memory scalability, high latency, and efficient deployment
of edge nodes. An interesting lab-scale implementation is proposed in Reference [28]. For the sake of
sharing solar energy, this framework depends on a hyperledger fabric blockchain platform.

In another work [29], the authors propose a survey on distributed energy trading principles in
a smart grid. The authors discussed topics like the advantages of distributed energy trading and
reasons behind its implementation, the technology needed to develop these framework, and a review
of past literature work. Mengelkamp et al. [30] identified seven microgrid electricity market principles
and assessed the Brooklyn Microgrid in compliance with those principles. The authors developed
and modeled a local power market with a more realistic emphasis on a private Ethereum blockchain
that allows users to exchange locally generated energy supply on a distributed and decentralized
exchange system without the involvement of control authority. However, efficient allocation and
pricing mechanisms are not developed. Furthermore, Table 1 gives a summary of the related work.

Table 1. Summary of the Related Work.

Types of
Blockchain/Techniques Objectives Research Achievements Limitations

Public blockchain [8]

Improve local energy
generation and
increase interaction
between prosumers
and power plant

Proposed an NRGcoin model
that allows locally generated
renewable energy to be sold
using digital currency in the
smart grid

Electricity cost
minimization is not
considered

Public blockchain and
CDA [12]

Improve energy market
design

Proposed an adaptive aggressive
strategy in a microgrid using
blockchain-based CDA, putting
forward a new perspective on an
energy market

There is an
inadequate flexibility
to change the bid
quantity during the
CDA bid process

Stackelberg game
and permissioned
blockchain [15]

Maximize the bank
utility credit-based
loans

Proposed a secure credit-based
payment scheme by reducing
wait time on transaction
confirmation of the energy
chain for permissioned
blockchain-based IIoTs

Profit and energy
optimization is not
considered

Consortium
blockchain
and iterative double
auction [16]

Improve privacy
and security of the
transaction and
maximize
social welfare

The authors proposed a PETCON
model to conduct secure private
P2P trading of energy between
plugin hybrid electric vehicles

Electricity cost is not
considered

Public blockchain
and encryption
algorithms [20]

Improve privacy
and security of the
transaction

Provide a decentralized secure
transaction in smart grid by using
blockchain technology

Profit maximization is
out of the scope of this
research

Public blockchain and
multi-agent coalition [21]

Maximize usage of
renewable energy

Proposed a system of distributed
energy trading to encourage
P2P sharing of electricity among
prosumers

Electricity cost is not
considered

Public blockchain and
smart contract [22]

Address energy
demand and supply
problem

A distributed approach to control
DR systems in smart grid context
is proposed

Speed of the
transaction is not
considered

Public blockchain [23] Improve energy trading

Proposed a decentralized,
scalable, and secure
blockchain-based network
for coalition structure creation
and microgrid energy trading

Fixing price for the
trading is almost
impossible

Smart contract and public
blockchain [24] Improve energy trading

Provide an energy trading model
that will facilitate a sustainable
transaction of energy ecosystems
among smart homes’ consumers
and prosumers

Energy and profit
optimizations are not
considered
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Table 1. Cont.

Types of
Blockchain/Techniques Objectives Research Achievements Limitations

Public blockchain and
noncooperative game
theoretic approach [25]

Decrease the peak
to average ratio
and smoothen the
fluctuation in profile
of the energy load
consumption

Proposed an enhanced
blockchain approach for
implementing a distributed
microgrid network that handled
the micro-payment required
along with the exchange of
energy and information

Privacy has been
highlighted as a
major barrier to
customer engagement
in this research

Public blockchain [26] Improve energy trading

Proposed an Internet of Things
(IoT) system to account for power
flows as well as a blockchain
platform to resolve the need for a
centralized entity

Deployment
efficiency is not
discussed

Public blockchain and
smart contract [27]

Improve privacy and
security

A new approach for smart city
network architecture is proposed.
The architecture combines the
benefits of blockchain technology
and emerging Software-Defined
Network (SDN)

There are still some
issues that are left
unresolved, such as
memory scalability,
high latency, and
efficient deployment
of edge nodes

Private blockchain [30] Minimize electricity
cost in the local market

Proposed a decentralized market
mechanism using a private
blockchain

Selling surplus energy
through auction or
bidding is logically
impossible

Scheduling
algorithms [31]

Electricity cost
minimization

Proposed an LEM by integrating
DR

Privacy leakage,
security concern, and
single point of failure

SDR method with
compensation price [32]

Electricity cost
minimization

Proposed P2P sharing of energy
in a neighborhood with several
PV storage systems

Privacy leakage,
security concern, and
single point of failure

3. Problem Statement

The authors in Reference [30] proposed a decentralized market mechanism using a private
blockchain and an auction method to determine the price. However, trading of surplus energy through
auction or bidding is logically impossible for all users [33]. The reason is that some consumers or
prosumers cannot participate in the trading due to limited time, lack of expertise, and above all, lack
of technology. Similarly, another problem arose in References [31,32], and there is a possibility for
the occurrence of single point of failure since the proposed models allowed a third party to serve
as a controller to manage or control prosumers’ batteries and all transaction information. Moreover,
the system is prone to privacy threats, i.e., information disclosure and security concern. Additionally,
including a third party requires a central processing center to process and collect the information of
all participants, which is challenging in DER. Two problems naturally arise when relying on a third
party. Firstly, intensive communication infrastructures are needed in the case of a central controller.
Secondly, it is difficult to encourage a large number of participants in energy trading. The exponential
development of energy trading shows the importance of related research.

Generally, according to the literature discussed in References [30–32], most of the research do not
emphasize how to resolve the privacy and security challenges and a single point of failure problem.
Moreover, none of the literature explicitly considers resolving the issues of energy hoarders in peak
generation hours. Also, the research work does not consider combining the conventional LEM
mechanism, HEM system, and blockchain technology concurrently. Combining these mechanisms
will centrally merge their benefits in a single pool. We propose an LEM using private blockchain
by considering the HEM system and demurrage mechanism in a community with residential PV
energy generations. The proposed model allows prosumers and consumers to manage their resources
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and information in a decentralized, secure, trustful, transparent, anonymous, and verifiable manner.
The comparison of existing work with proposed model is given in Table 2. The main research
contributions of the proposed work are as follows:

• an LEM using private blockchain is proposed, which considers both HEM system and demurrage
mechanism simultaneously,

• a dynamic pricing mechanism is proposed for energy trading to take place. This mechanism
ensures that all members participating in local energy trading gain better economic benefits.
This pricing model is modified from the Supply and Demand Ratio (SDR) mechanism [32] to
include demurrage value, and

• a thorough assessment is conducted in the research to evaluate the economic benefits of the buyers
and sellers of locally generated energy in a residential community. Also, based on the proposed
system, the potential security risks of the energy trading system are analyzed. Conclusively,
a complete security protection technique is provided against these security vulnerabilities in
the system.

Table 2. Comparison with existing work. X: considered; X: not considered.

References Blockchain Demurrage Mechanism SDR Scheduling

Base Paper 1 [30] X X X X
Base Paper 2 [31] X X X X
Base Paper 3 [32] X X X X
Proposed Model X X X X

4. Proposed System Model

In this section, the proposed system model is first presented; thereafter, the blockchain technology
in LEM is elaborated. Lastly, the optimization problem formulation is discussed.

4.1. Description of the System Model

The proposed model comprises three participants: prosumers, consumers, and the main grid as
depicted in Figure 2, which is inspired by References [30–32]. Prosumers and consumers participate
in the local energy trading when PV energy generation is at its peak. The prosumers are equipped
with PV solar panels, which generate electricity, and equipped with smart meters that record, monitor,
and transmit energy information (both generation and consumption) to the blockchain through
smart contract, while the consumers are equipped only with smart meters through which energy
consumption information is generated and sent to the blockchain using smart contracts for future
purposes. The main grid supplies energy to the local community when the local energy generated
is insufficient to satisfy the user’s demand. According to the proposed model, both prosumers and
consumers optimize their electricity consumption through shifting demand from on-peak hours to
off-peak hours, as discussed in the next subsection. The pricing model and demand shifting are
executed at the individual local level, i.e., the consumers and prosumers level. The pricing model
is developed using SDR by including the demurrage mechanism. Details on the pricing model
are discussed in Section 5. Transactions information, payment processes, and market platforms
are executed on the private blockchain through the smart contract to get rid of the third party.
The blockchain technology provides a secure, decentralized, transparent, anonymous, and verified
information platform. Demurrage is a mechanism used to disincentivize energy hoarding and to foster
price signals to customers. This mechanism allows customers to shift their electricity consumption to a
period where local energy generation is overflowing. With the demurrage mechanism, the redemptive
value of the energy-backed price declines with time.
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4.2. Blockchain Technology and Smart Contract in LEM

This section discusses blockchain technology and smart contract in LEM.

4.2.1. Blockchain Technology in LEM

We modeled a blockchain-based architecture to decentralize an LEM within a small community
with many residential PV systems, as represented in Figure 3. The framework comprises nodes
in the network, which are prosumer, consumer, and the main grid. These nodes can coordinate
through blockchain’s infrastructure to support the decentralization of energy generation and demand.
Moreover, a copy of the blockchain ledger is created at an individual level (node). The challenges in
P2P energy trading are identified as lack of data security and privacy. However, the problems can
be addressed using decentralized and distributed blockchain ledger features. The issues of storing
and maintaining energy transactions in a centralized approach are still open research challenges. In a
decentralized manner, energy transactions can be maintained locally and stored in the blockchain.
The process is done with the help of customers’ unique identifier that shares and replicates the copy
of the transaction to all the peers in the network for validation. The benefits of using blockchain
technology in the proposed system are information immutability, self-enforced smart contract, security,
etc. Information immutability in blockchain technology ensures that all information stored in Ethereum
blockchain remains unchanged after validation. To achieve consensus among the energy trading
participants, we adopt a Proof of Work (PoW) consensus mechanism [10].

...

Figure 2. Proposed system model.
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4.2.2. Smart Contract in LEM

The author in Reference [34] defined smart contracts as a collection of instructions or rules that
execute the terms of contracts. It is also suggested to convert contractual clauses, e.g., bonding,
collateral, etc., into code and to incorporate them into hardware and software that could self-impose
them so as to reduce or remove the need for trusted third parties. A smart contract is a set of
blockchain’s residing code or script. There is a unique address for each entity stored in a blockchain.
According to the rules set, smart contracts are performed independently and automatically on each
node in the network. It means that each node operates a virtual machine in the smart contract-enabled
blockchain and that the blockchain serves as a distributed virtual machine [35].

In the proposed model, smart contracts are the collection of guidelines that regulate energy trading
mechanisms (energy selling and buying) as well as monitor and record all the energy transactions
information. Besides that, the smart contract is responsible for executing all payment processes
between the prosumers, consumers, and the main grid. Due to the limited availability of mathematical
functions in blockchain to calculate demurrage and their expensive gas consumption, we perform the
arithmetic calculation off-chain and passed the results to the smart contracts. Algorithm 1 shows the
excerpt of the smart contract.

Algorithm 1 Buy and sell with demurrage smart contract functions.
Input addr, Id, quantity, dprice, Time . dprice is demurrage price computed off-chain
Output UpdatedQuantity, FinalCost

1: function BUYWITHDEMURRAGE(addr, Id, quantity, dprice, Time)
2: if <quantity of required energy is not enough> then
3: terminate
4: end if
5: if <Time is within the demurrage agreed time> then
6: update consumer’s and prosumer’s quantity
7: update consumer’s and prosumer’s wallet FinalCost
8: else
9: update consumer’s and prosumer’s quantity

10: update consumer’s and prosumer’s wallet FinalCost with dprice
11: end if
12: return UpdatedQuantity, FinalCost
13: end function

1: function SELLWITHDEMURRAGE(addr, Id, quantity, dprice, Time)
2: if <quantity of energy to sell is not enough> then
3: terminate
4: end if
5: if <Time is within the demurrage agreed time> then
6: update consumer’s and prosumer’s quantity
7: update consumer’s and prosumer’s wallet FinalCost
8: else
9: update consumer’s and prosumer’s quantity

10: update consumer’s and prosumer’s wallet FinalCost with dprice
11: end if
12: return UpdatedQuantity, FinalCost
13: end function
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Figure 3. Blockchain-based architecture for decentralized LEM.

4.3. Optimization Problem

The optimization problem is categorized based on appliance scheduling in each time slot to reduce
the cost of electricity. Power rating and appliance status (ON or OFF) are the attributes associated
with each appliance. The description and specifications of the household appliances are provided
in Table 3. The multi-objectives scheduling problem formulation is explained and presented in the
next subsections.

Table 3. Specification of appliances [36]. LoT: Length of Operational Time.

Appliances Types Name of Appliance Time Starts (hour) Time Ends (hour) Power Rating (kW) LoT (hour)

Shiftable Air conditioner 12 24 1.00 10.00
Shiftable Cloth dryer 06 14 1.50 4.00
Shiftable Dish washer 08 22 1.00 0.50
Shiftable Electric vehicle 16 24 2.50 2.50
Shiftable Hair dryer 06 13 1.00 1.50
Shiftable Iron 06 16 1.00 0.50
Shiftable Pool pump 12 21 2.00 8.00
Shiftable Refrigerator 06 15 0.125 24.00
Shiftable Television 01 16 0.25 6.75
Shiftable Vacuum cleaner 06 15 1.00 0.50
Shiftable Water heater 06 23 1.50 3.00
Shiftable Other 06 24 1.50 2.00
Non-shiftable Electric stove 06 14 1.50 5.00
Non-shiftable Heater 03 15 1.50 3.00
Non-shiftable Light 16 24 0.50 6.25
Non-shiftable Personal computer 08 24 0.25 4.00

4.3.1. Appliance Categorization

Based on the pattern of energy consumption and operational behavior, residential appliances are
classified, i.e., appliances that are shiftable and nonshiftable, which are explained below.

Shiftable appliances: shiftable appliances for household load are categorized into interruptible
and uninterruptible load. Interruptible appliances are the kind of devices that can be shifted and
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interrupted at any time, even when they start their operation, and have a fixed energy consumption
rate. Examples of interruptible appliances are water heater, refrigerator, air conditioner, etc.
The uninterruptible loads are the kind of appliances which can be shifted to any time slot before
they are turned on but, once they start their operation, they cannot be interrupted unless they finish
their LoT. Examples are dishwasher, cloth dryer, washing machine, etc. Let the shiftable appliances
number be Nshi f table for all appliances in the smart home, and Yap(t) represents appliance status at
time interval t ∈ T as demonstrated in Equation (1).

Yap(t) =

{
1, if <appliance = ON>,

0 , <otherwise>.
(1)

Non-shiftable appliances: non-shiftable appliances, sometimes referred to as unchangeable
household devices, are those appliances that are not manageable, for example, fan, light, tv, etc.

4.3.2. Cost of Electricity

The reduction in costs of electricity is described as the lowest possible rates (charges) of energy
loads consumed issued by the utility to energy users. For minimizing the problem of electricity costs,
we consider non-shiftable and shiftable appliances loads. The problem is formulated as given in
Equation (2):

Min
Na

∑
a=1

T

∑
t=1

Yap(t) ∗ ρ ∗ EPrice
a (t). (2)

where EPrice
a (t) represents the price of electric energy consumed at any time interval t. a is the index for

the overall number of appliances in the smart home, and time index is represented as t with maximum
threshold of T hours of a day. Na is the total number of appliances in a smart home.

4.3.3. Energy Consumption

The energy consumption is shifted from on-peak to off-peak hours in a stable manner with the aid
of the HEM system. The shift in energy load over a period of time is based on demand and is inversely
proportional to the market price of the electricity. It is mathematically represented in Equation (3):

Pconsumption =
T

∑
t=1

Nshi f table

∑
Sshi f table=1

Yap(t) ∗ ρ +
T

∑
t=1

Nnonshi f table

∑
Snonshi f table=1

Yap(t) ∗ ρ. (3)

where the energy consumption of shiftable and non-shiftable appliances is given as Pconsumption.
The electricity load is divided based on the consumer’s behavior and household appliances operation.
ρ represents each appliance power rating, and Sshi f table represents the collection of household
appliances that are shiftable. The number of non-shiftable appliances is denoted as Nnonshi f table
for all household appliances. Snonshi f table represents the collection of household appliances that
are non-shiftable.

4.3.4. Load Balancing

The stability of the power grid is essential to ensure the reliability and sustainability of grid
operations and management. A decrease in the Peak-to-Average Ratio (PAR) helps to maintain
the reliability of the utility, thereby reducing the cost of electricity. It is mathematically shown in
Equation (4):

PAR =
Maximum(Pconsumption)2

Average(Pconsumption)2 , (4)

where Pconsumption is calculated using Equation (3).
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4.3.5. Objective Function

The aggregated objective function is represented as a function of multi-objective optimization
techniques to reduce energy cost and energy consumption in residential homes of prosumers and
consumers while maximizing energy consumption from LEM. The optimization techniques are adopted
from References [36,37] to achieve the overall objectives. The load scheduling is carried out using
earliglow-based optimization algorithm. The earliglow algorithm is a hybrid algorithm, which is a
combination of jaya and strawberry algorithms. To evaluate the HEM consumption and electricity
cost, we consider Real-Time Price (RTP) scheme and Critical Peak Price (CPP) scheme to show the
effectiveness of the optimization technique. The objective function is computed using Equations (2)
and (3).

5. Price and Cost Models

This section discusses the price model, cost model of the consumer and prosumer,
and self-consumption and self-sufficiency.

5.1. Price Model

The PV generation at the ith prosumer premises in a given interval of time t is defined as follows:

Pi(t) = {P1(t), P2(t), . . . , PNB(24)}, i = {1, 2, . . . , NB}. (5)

where NB represents the prosumers’ number (N ≥ NB) in the network. The consumption of
prosumers or consumers at time t is defined as follows:

TPi(t) = {TP1(t), TP2(t), . . . , TPN(24)}, i = {1, 2, . . . , N}. (6)

where the consumers number in the network is represented as N. For any prosumer i, the net power
in a given time t is represented as follows:

NPi(t) = TPi(t)− Pi(t), t = {1, 2, . . . , 24}. (7)

As all customers have different electricity consumption patterns. The customers can serve as either
sellers or buyers depending on the net power at a certain time slot. Therefore, the Total Selling Power
(TSP) and the Total Buying Power (TBP) are defined as follows:

TSP(t) = −
24

∑
t=1

NPi(t), NPi(t) < 0, (8)

TBP(t) =
24

∑
t=1

NPi(t), NPi(t) ≥ 0. (9)

According to economics theory [38], price and SDR relationships are inversely proportional. Similarly,
as the price model in Reference [32] is formulated based on SDR. In this research, we apply the same
price model, which is modified by introducing a demurrage mechanism. The TBP is the prosumer’s or
consumer’s energy consumptions, and the TSP is the PV power generations. Therefore, the SDR at
time slot t is represented as follows:

SDR(t) =
TSP(t)
TBP(t)

. (10)

The selling and buying prices change over the period of time of the day. Therefore, the prices are
assumed to be

Prbuy(t) = {Prbuy(1), Prbuy(2), . . . , Prbuy(t)} and Prsell(t) = {Prsell(1), Prsell(2), . . . , Prsell(t)},
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Pr = {Prbuy(t); Prsell(t)}.

where selling and buying prices at time slot t at the prosumer’s side are represented as Prsell(t) and
Prbuy(t), respectively. The purchasing and selling powers to utility grid are represented as αbuy(t) and
αsell(t) at time slot t, respectively.

In order to motivate both consumers and prosumers to fully participate in energy trading,
especially, at peak PV generation, the prosumer or consumer buying prices (Prbuy(t)) should not be
greater than the price (αbuy(t)) of energy bought from the main grid. Additionally, the selling price
(Prsell(t)) of the prosumer(s) must not be less than the selling price (αsell(t)) of the utility grid.
Thus, the buying price Prbuy(t) and selling price Prsell(t) are represented as a function of SDR(t):

Prsell(t) = f (SDR(t)) =


(αsell(t)+α).αbuy(t)

(αbuy(t)−αsell(t)−α).SDR(t)+αsell(t)+α
, 0 ≤ SDR(t) ≤ 1,

αsell(t) + α
SDR(t) , SDR(t) > 1

(11)

Prbuy(t) = f (SDR(t)) =

{
Prsell(t).SDR(t) + αbuy(t).(1− SDR(t)), 0 ≤ SDR(t) ≤ 1.

αsell(t) + α, SDR(t) > 1
(12)

In our scenario, the demurrage mechanism will be triggered whenever the prosumer or consumer
hoards energy or delays to buy energy within peak power generation periods. In this case, the condition
of the given SDR(t) will be slightly different, i.e., the buying price will be slightly higher and the
selling price will be slightly lower than the utility grid’s buying and selling price. This is to encourage
participants to patronize local energy generated at on-peak hours, while at peak power generation,
the prices obey the SDR pricing model. When SDR(t) = 1, both the buying and selling power in the
neighborhood are the same (TBP(t) = TSP(t)) and no power is needed to import from or export to
the utility grid. Also, both selling price and buying price are equal to the utility grid selling price,
along with the compensation price (Prsell(t) = Prbuy(t) = αsell(t) + α). When SDR(t) = 0, this means
that there is no selling power in the neighborhood. All customers must buy energy from the main
grid with a grid price of αbuy(t). Therefore, the buying and selling prices are equal to the main grid’s
buying price (Prsell(t) = Prbuy(t) = αbuy(t)). The compensation price α is introduced to compensate
the prosumer to ensure that all prosumers are better remunerated when participating in local energy
trading. It also ensures that the selling and buying prices are not the same when SDR(t) > 1, and
it provides more economic benefits to the prosumers than the consumers. The buying and selling
prices will variably change based on Equations (11) and (12), when 0 < SDR(t) < 1. Figure 4 shows
the relationship between SDR(t) and the proposed buying or selling prices. The figure shows that
SDR(t) is reduced when power consumption increases. An increase in SDR(t) decreases both the
selling and buying prices and vice versa. To increase the selling price, the participants must increase
their energy consumption and the buyer would also need to decrease their energy consumption for a
lower buying price.
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Figure 4. Relationship between the supply and demand ratio and the price with compensation.
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In order to discourage energy hoarders and to encourage consumers to purchase energy at peak
power generation hours, we introduce a demurrage mechanism in prosumer buying and selling
prices [39]. Let β be the demurrage value as represented in Equations (13) and (14). The new buying
and selling prices are Prbuyβ(t) and Prsellβ(t), which are derived from the demurrage mechanism and
are represented in Equations (15) and (16), while Equation (17) represents the combination of buying
and selling price with demurrage:

β = Pr(t) = Pr(t)− Prt(
t
K
), (13)

t = [Min, Max], (14)

Prsellβ(t) =

{
Prsell(t), 0 ≤ t ≤ Max,

Prsell(t)− β, otherwise
(15)

Prbuyβ(t) =

{
Prbuyβ(t), 0 ≤ t ≤ Max,

Prbuyβ(t) + β, otherwise
(16)

Pri(t) =

{
Prsellβ(t).

Prbuyβ(t)
(17)

5.2. Cost Model of Consumers and Prosumers

Prosumers and consumers involved in energy trading DR are expected to have some portion of
shiftable loads. Participants change their energy profile consumption because of the price incentives.
This makes the initial energy consumption TPi(t) change from the actual values. The energy
consumption adjusted is given in Equation (18):

yi = {y1, y2, . . . , yt}. (18)

The adjusted net consumption for both prosumer and consumer at time slot t is updated as in
Equation (19):

NPi(t) = yi − Pi(t), t = {1, 2, . . . , 24}. (19)

The cost function for PV prosumers i at time slot t is defined in Equation (20):

Cost(yi(t)) = Pri(t) ∗ NPi(t). (20)

The total cost for PV prosumers i for a day is defined in Equation (21):

Cost(i) =
24

∑
t=1

Cost(yi(t)). (21)

Pri(t) is the customer price at time slot t, which can be either the buying or selling price. The status of
the price is determined by the net power to be either the buying or selling price Pri(t) and is given in
Equation (22).

Pri(t) =


Prsellβ(t), NPi(t) > 0

0, NPi(t) = 0.

Prbuyβ(t), NPi(t) < 0

(22)

In the energy scheduling process, we have two constraints:

24

∑
t=1

yi(t) =
24

∑
t=1

TPi(t), (23)
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min(TPi) ≤ yi(t) ≤ max(TPi). (24)

Equation (23) means that the total energy before and after shifting the load is assumed to be unchanged,
while Equation (24) means that the shifted electricity load must lie between the minimum and
maximum electricity loads of the original customer profile.

5.3. Self-Consumption and Self-Sufficiency

Self-consumption and self-sufficiency ideas are adopted from Reference [40], which are
mathematically expressed in the next subsections.

5.3.1. Self-consumption

Self-consumption can be determined as the total power consumption of a prosumer TPi(t) and
the total power generated from on-site PV system by the prosumer Pi(t). The energy generated on-site
is limited by taking the smallest load between the generation or load profile of the customer, which is
shown in Equation (25). Self-consumption is represented in Equation (26).

Mi(t) = min{TPi(t), Pi(t)} (25)

Self-Consumption =

∫ t=24
t=1 Mi(t)dt∫ t=24
t=1 Pi(t)dt

. (26)

5.3.2. Self-Sufficiency

Self-sufficiency is calculated using Equation (27). A prosumer’s self-sufficiency defines the share
of the total load supplied by the PV system.

Self-Sufficiency =

∫ t=24
t=1 Mi(t)dt∫ t=24
t=1 TPi(t)dt

. (27)

The relationship between self-sufficiency and self-consumption is expressed as follows:

Self-Consumption
Self-Sufficiency

=

∫ t=24
t=1 TPi(t)dt∫ t=24
t=1 Pi(t)dt

. (28)

6. Security Analysis

In this section, a security analysis is discussed, which ranges from vulnerability analysis of the
smart contract and the tool used to perform the analysis to the overall security analysis of the system.

6.1. Vulnerability Analysis of Smart Contract

Ethereum smart contracts are still advancing; therefore, the code in the contracts can contain some
bugs and may result in a serious security vulnerability. It is necessary to develop bug-free and secure
smart contracts code. In 2016, the insecure smart contract allowed the loss of more than 3 million ether
as a result of re-entrancy vulnerability [41]. Thus, careful inspection of the code and the need for secure
smart contracts using automated tools are necessary and very important. The common attacks and
security vulnerabilities identified against smart contracts are summarized as follows [42,43].

• Re-entrancy vulnerability: This type of attack happens when the same function is being called
continuously over and over so that executing another function will be impossible.

• Timestamp dependence: The miners can manipulate the transaction timestamp, so it is essential
to handle all use cases, which include both indirect and direct timestamps. The miners can change
the block timestamp to their advantage, which manipulates the execution of the output.
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• Call stack depth vulnerability: External function calls may fail at any moment whenever
the calls surpass 1024’s maximum call stack. Solidity throws an exception in such scenarios.
Before communicating with the contract, mischievous attackers can force a high value of the
call stack.

• Transaction ordering attack: This security vulnerability can change the price during processing
of transactions, as a transaction has been executed by somebody else (another user, miner,
or the contract owner) that can modify the price prior to the completion of the transaction.
Such an incident happens whenever the blockchain’s expected state is not the transaction’s
actual state. The sequence where transactions are validated may have negative impacts on other
transaction executions, as the validators can decide the transactions patterns, whereby more
than one transactions can take place at a given period. These kind of bugs are identified in
approximately 16% of all blockchain contracts.

• Integer underflow and overflow: Underflow and overflow happens when the value given to a
variable is more than the permitted limit for that data type. It is very common for the integer data
type in solidity, and all data should be carefully verified at the time of variable assignment.

• Assertion failure: If the “uint” is of higher value for a number used in traditional JavaScript,
an assertion failure happens when it is not defined in quotations so that the input can indeed be
read as a string and manipulated as a large number.

Oyente Tool

Oyente tool is an automated tool used to check possible violations or security vulnerabilities in
smart contracts’ code and is developed by Loi et al. [42,44] as an open-source tool.

Our energy trading smart contract is evaluated with oyente tool against the commonly known
attacks and vulnerabilities of security. As shown in Table 4, all reported results were “False”, which
means that the smart contract of energy trading is bug-free and that it is secure enough from the
abovementioned vulnerabilities. Each function in the contract is evaluated with the tool, in which the
results show better functionalities for ensuring smooth trading among the participants. The oyente
tool analyses the smart contract on the basis of symbolic execution mechanism. Every path of symbolic
execution has a path condition, i.e., a formula, which is developed based on the inputs obeying
particular secure rules identifying potential vulnerabilities to security. The inputs selected must be in
line with the rules given in order to follow the path. A path is feasible if and only if its condition is
satisfiable; otherwise, the path is infeasible [42]. The main objectives of symbolic execution are given as
follows [42]:

1. to investigate all execution paths using symbolic values for all variables,
2. to cross-check whether any of the properties are violated,
3. to store the behavior of the smart contract in every path, and
4. to summarize the conditions on the input for each path.

Table 4. Report of the security vulnerability analysis using oyente tool for energy trading smart contract.
Ethereum Virtual Machine (EVM)

Parameters Energy Transaction Contract

EVM Code Coverage 42.4%
Integer Underflow False
Integer Overflow False
Parity Multisig Bug 2 False
Callstack Depth Attack Vulnerability False
Transaction-Ordering Dependence (TOD) False
Timestamp Dependency False
Re-Entrancy Vulnerability False
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6.2. Security Analysis of the Overall System

Potential attacks and threats are described in this section for the overall system as are how security
goals can be achieved. The potential attacks in this research is similar to that of [42], therefore, we
adopted same style of discussion. Our system’s main security features are inherited from the blockchain
technology. These features are integrity, trust, decentralization, availability, and non-repudiation.
The system also manages access control and authentication through blockchain’s smart contract feature
by applying restrict modifiers, which restrict some functions’ execution by certain actors. In addition,
the system is protected against replay and Man-In-The-Middle (MITM) attacks as all messages are
timestamped and signed cryptographically. Integrity is an important element that helps to ensure
that vital information cannot be modified. The solution proposed offers the opportunity to trace
historical events via logs. The immutability of blockchain ensures the integrity of messages shared
between the two parties and logs as well as the events executed. To ensure availability, it should
be remembered that the proposed smart contracts, which are built on blockchain, would always be
available to the entities involved in the energy trading to perform their functions. It ensures easy access
to services. The model is secured from Denial of Service (DoS) attacks, since the energy transactions
are recorded in a distributed and decentralized private Ethereum ledger and are not subject to failure,
compromise, or hacking. The Ethereum blockchain is Distributed DoS (DDoS) resistant and highly
robust as it is globally distributed and protected by many mining nodes that host duplicate data with
extreme integrity and consistency. Generally, in blockchain, confidentiality can be achieved using
permissioned or private blockchain, such as that of hyperledger, multichain, or private Ethereum
blockchain networks. In our scenario, the proposed system allows only authorized users. Thus, we
use private Ethereum blockchain to perform energy trading transactions and to store the generated
results for future purposes.

7. Results and Simulations

This section gives the simulation results and their discussions.

7.1. Assessment Metrics

In this paper, we consider electricity cost, self-sufficiency, and self-consumption as assessment
metrics to evaluate the performance of a community and individual customers. Besides that,
the simulation setup of the proposed system is presented in this subsection.

Simulation Setup

We perform the simulations by considering 100 households (N), which include both residents
with a PV system (NB) and without PV systems. In the simulations, we assume that all residents with
PV systems have the same PV generation capacity and that all households have the same pattern of
electricity consumption profile. One day (24 hr) with one-hour resolution is simulated for energy load
and generation of customers’ profile. The proposed market mechanism is implemented in a private
Ethereum blockchain network through a smart contract. Solidity scripting language and JavaScript
programs are used to develop smart contracts and Application User Interface (API). These programs
allow communication between smart contracts and API. All these programs are executed on the
Node.js runtime environment. We use a basic concept of blockchain technology with no transaction
cost and compensation for miners.

The computational experiments are conducted on a desktop computer with the following
specifications. The configuration of the experimental environment is AMD E1-6015 APU with radeon
(TM) R2 graphics 1.4 GHz processor and 4.00 GB RAM, and the operating system is Microsoft Windows
10. The simulation results of the proposed model are generated using MATLAB2018a. We took the
appliances’ load consumption datasets for the simulations from Reference [36], and the parameters
used in the simulations are given in Table 5.
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Table 5. Parameters of the model.

Parameters Value

SDR 0.5
[min max] [10 16]
T 24
N 100
Na 16

7.2. Results of Internal Prices

The main grid’s buying and selling prices for the CPP and RTP pricing schemes are collected from
the Scandinavian electricity market Nordpoolspot, which is an European based utility company [45].
From the grid prices schemes, it is observed that the price signal is at its peak between 10:00 to
approximately 18:00. These peak hour price signals happen to occur during peak hours of energy
generation as shown in Figure 5. In this paper, customers are encouraged to participate in local
energy trading during peak hours of PV generation in such a way that the energy generated at peak
hours is utilized. According to Equations (10)–(17), SDR(t) decides the internal prices for each time
slot. As depicted in Figure 4, it is clearly shown that the buying and selling prices change with
an increase in SDR(t). As shown in Figure 6a,b, the modified dynamic price model discourages
customers from participating during low energy generation. Additionally, a prosumer that refused
to sell surplus energy during peak generation will be disincentivized. The disincentive is applied
using a demurrage mechanism in which the redemptive value of the energy-backed prices declines
with time. It further leads to either increase in the selling prices or decrease in the buying prices and
makes them worse than the utility selling and buying prices. The reason for the results shown in
Figure 6a,b is that the demurrage mechanism is triggered when consumers delay buying local energy.
As a result, all the prices will be affected. The mechanism will also penalize the consumer by increasing
the buying price and by decreasing the selling price value for the prosumers whenever they hoard
energy. Generally, an increase in SDR(t) decreases both the selling and buying prices and vice versa.
However, the SDR(t) would be enhanced by adjusting the electricity load consumption, in which the
value of the prices are reduced.
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Figure 5. Energy generation and demand for 24 h from a prosumer.



Sustainability 2020, 12, 3385 19 of 28

0 5 10 15 20

Time (hours)

0

20

40

60

80

100

120

140

P
ri
c
e
 (

C
e
n
ts

)

Pr Selling with Demurrage

Grid Buying Price

Pr Buying with Demurrage

Grid Selling Price

(a)

0 5 10 15 20

Time (hours)

0

5

10

15

20

25

30

P
ri
c
e
 (

C
e
n
ts

)

Pr Selling with Demurrage

Grid Buying Price

Pr Buying with Demurrage

Grid Selling Price

(b)
Figure 6. (a) Internal Prices with Critical Peak Price (CPP) for buying and selling with demurrage
and without demurrage; (b) internal prices with Real-Time Price (RTP) for buying and selling with
demurrage and without demurrage.

7.3. Results of Customers Cost

The results in Figure 5 show the typical energy consumption for an average household and the
PV energy generation of a residential prosumer. The results show that the average energy demand for
a day is approximately the same for all hours except from 10:00 to approximately 18:00, whereby the
consumption is higher. It causes an issue in a typical average household which abruptly increases the
electricity cost while trading energy using utility prices. As a result of this problem, electricity load
optimization takes place. In our scenario, we first optimize the average household electricity load by
shifting the electricity load from on-peak hours to off-peak hours as shown in Figure 7. The reason
for applying the scheduling algorithm is to shift all shiftable appliances to a cheaper price hour
that reduces the total electricity cost for a day. The electricity load shifting is carried out using the
scheduling algorithm. The scheduling algorithm is adopted from Reference [36] to shift the electricity
load to off-peak hours. As discussed in the previous sections, the role of the customers depends on the
net load power. Figure 8 shows a net load power of a prosumer after shifting the electricity load.
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Figure 7. Energy demand for a single household with scheduled and unscheduled consumption.
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Figure 8. Net load of the prosumer.

The results in Figures 9a and 10a show that, after applying the optimization algorithm,
the electricity cost reduces drastically when using utility prices. Still, the electricity costs are higher
between 10:00 and 18:00. To further reduce the electricity cost, we trade with locally generated energy,
where the prices are lower than the utility electricity prices.
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Figure 9. Cont.
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Figure 9. (a) Electricity cost for a single household with scheduled and unscheduled consumption
using CPP; (b) electricity cost of scheduled, scheduled with demurrage, and unscheduled without
demurrage using CPP.
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Figure 10. (a) Electricity cost for a single household with scheduled and unscheduled consumption
using RTP; (b) electricity cost of scheduled, scheduled with demurrage, and unscheduled without
demurrage using RTP.
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The results in Figures 9b and 10b show that the customers achieve effective cost savings with local
energy trading as compared with the main grid. The economic benefits of trading with local energy
not only are for prosumers but also involves the consumers too. Moreover, the results in Figures 11a
and 12a show the electricity cost savings when trading with purely locally generated energy and when
trading with either utility with scheduled appliances load or a combination of both methods by taking
CPP and RTP as base pricing schemes. It is because the dynamic prices for LEM are always better
depending on the SDR(t) as compared to the utility prices.

Furthermore, Figure 11b shows that the economic benefit gained by a prosumer is approximately
equal to the consumers’ total electricity cost when using the CPP scheme. Moreover, Figure 12b
shows the profit gained by prosumers when using the RTP scheme. However, the findings show that
the economic benefits gained using CPP is much better than RTP. This is because the RTP scheme
changes in real time for consumers’ usage behaviors. In RTP, price changes on an hourly basis and
consumers are charged with different prices at each interval of time, while the CPP scheme defines
distinct pricing frameworks for different seasons and annual events, which allows proper planning for
the energy users.
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Figure 11. (a) Comparison of total P2P cost with demurrage, total P2P and scheduled cost
with demurrage, total cost scheduled without demurrage, and total unscheduled cost using CPP;
(b) comparison of consumer cost, prosumer cost and profit, and prosumer profit using CPP.
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Figure 12. (a) Comparison of total P2P cost with demurrage, total P2P and scheduled cost
with demurrage, total cost scheduled without demurrage, and total unscheduled cost using RTP;
(b) comparison of consumer cost, prosumer cost and profit, and prosumer profit using RTP.

7.4. Feasible Region for Energy Load and Electricity Cost

A Feasible Region (FR) [36], solution space or feasible set is a collection of possible points that
satisfy constraints of the objective problem. In this article, CPP price signal cost for a household
lies in the range of (11.40, 111858.75) cents and the load consumption without the HEM model and
demurrage mechanism lies between (1.00, 13.25) kW for the four possible cases, as shown in Tables 6
and 7. Moreover, the price signal cost for the RTP scheme falls inside the range of (10.63, 5167.50)
cents for each household. Likewise, in each situation (case), the hourly energy consumption for every
household comes within the range of (1.00, 13.25) kW in the RTP pricing scheme. As it can be seen in
Tables 6 and 7, to satisfy FR with modified price, the hourly electricity cost has to be less than or equal
to the maximum of 11858.75 and 5167.50 cents without HEM and demurrage mechanisms, respectively.
Similarly, each household energy consumption satisfies the optimization problem constraints given in
Equations (23) and (24) and falls within the FR boundary. To compute the FR points, the maximum and
minimum energy loads are multiplied with maximum and minimum electricity cost prices collected
from the utility and the agreed price from local energy trading. The modified prices achieve optimal
electricity cost for every time interval as compared to the original price, which falls within the FR range.

Furthermore, the demurrage mechanism affects electricity cost of the prosumers when energy is
hoarded and increases cost when consumers delay purchasing energy at the agreed time. These effects
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depend on the agreement made by the prosumers and the consumers involved in the energy
trading process.

7.5. Performance with Different Numbers of Customers Involved in P2P Sharing of Energy

In reality, it is almost impossible to find all the customers participating in local energy trading.
Some might wish to be involved in local energy trading while others do not. In this study, we consider
different numbers of customers participating in energy trading to carry out the evaluation . The number
of customers in the evaluation varies from “0” to “100”, with an interval of “20” as an increment.
The number “100” means that all the customers are prosumers, while the number “0” implies that all
the customers are not participating in local energy trading. We assume that the PV power generations
of all the prosumers are the same and that the energy consumptions are also the same. As depicted
in Figure 13, a decrease in the number of customers participating in energy trading increases the
self-consumption of energy. According to Equation (28), in terms of self-sufficiency, when the number
of customers participating in energy trading increases, the self-sufficiency of energy also increases.

Table 6. Cases formulated for CPP.

Cases Load Price CPP Cost CPP Price at Agreed
Time

Cost at Agreed
Time

Minimum load, Maximum price 1.00 kWh 895.00 Cents 895.00 Cents 60.00 Cents 60.00 Cents
Minimum load, Minimum price 1.00 kWh 11.40 Cents 11.40 Cents 10.40 Cents 10.40 Cents
Maximum load, Minimum price 13.25 kWh 11.40 Cents 151.05 Cents 10.40 Cents 137.80 Cents
Maximum load, Maximum price 13.25 kWh 895.00 Cents 11,858.75 Cents 60.00 Cents 792.00 Cents

Table 7. Cases formulated for RTP.

Cases Load Price RTP Cost RTP Price at Agreed
Time

Cost at Agreed
Time

Minimum load, Maximum price 1.00 kWh 390.00 Cents 390.00 Cents 30.00 Cents 30.00 Cents
Minimum load, Minimum price 1.00 kWh 10.63 Cents 10.63 Cents 10.40 Cents 10.40 Cents
Maximum load, Minimum price 13.25 kWh 10.63 Cents 140.85 Cents 10.40 Cents 137.80 Cents
Maximum load, Maximum price 13.25 kWh 390.00 Cents 5167.50 Cents 30.00 Cents 397.50 Cents
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Figure 13. Performance metric with varying number of customers participating in energy trading.
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8. Conclusions and Future Work

In this work, we propose an LEM using private blockchain within a small community with
many PV systems. In this research, users perform trading using a simple exchange mechanism to
eradicate the problem of auctions, as stated in the literature. A dynamic pricing model and HEM
system are introduced to increase economic benefits at both the community and individual levels.
The simulation findings demonstrate that the proposed method reduces electricity cost and optimizes
energy consumption, especially at peak hours. With CPP, the electricity costs are reduced up to 44.73%
when the scheduling algorithm is applied. It reduced the electricity cost up to 65.17% when the
P2P price model and demurrage are used. Furthermore, it reduced the electricity cost up to 51.80%
when applying the P2P pricing model and the scheduling algorithm with demurrage at peak hours.
Similarly, with the RTP scheme, the proposed method that implements the P2P price model with
demurrage mechanism and scheduling algorithm reduces the electricity cost up to 44.37% as compared
to 28.55% when scheduling algorithm is used and to 35.09% when P2P pricing model with demurrage
mechanism is applied at peak hours. Moreover, the proposed method achieves optimal electricity
cost for each time slot as compared to the utility prices and falls within the FR range. Additionally,
the proposed model balances the local energy demand and generation of households without violating
the customers’ comfort. Furthermore, security vulnerability analysis is carried out, and the results
show that the energy trading smart contract is secure and bug-free against the known vulnerabilities
and attacks.

In the future, penalty policy will be incorporated to evaluate prediction deviations in the forecast
profile and to improve trading within the neighborhoods. Additionally, a robust mechanism will be
developed to solve the issues of the creation of rebounce in off-peak hours.
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Nomenclature

API Application User Interface
BES Battery Energy Storage
CDA Continous Double Auction
EV Electric Vehicle
FR Feasible Region
DDoS Distributed Denial of Service
DER Distributed Energy Resources
DoS Denial of Service
DSM Demand Side Management
DR Demand Response
HEM Home Energy Management System
LEM Local Energy Market
LV Low Voltage
MV Medium Voltage
NRES Nonrenewable Energy Sources
P2P Peer-to-Peer
PV Photovoltaic
RES Renewable Energy Source
SDN Software-Defined Network
SMES Superconducting Magnetic Energy Storage
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SDR Supply and Demand Ratio
TOD Transaction-Ordering Dependence
Yap(t) Appliance status
yi Adjusted energy consumption
α Compensation price
Cost(yi(t)) Cost function for customers
TP Customers energy consumption
β Demurrage value
αbuy(t) Main grid buying price at time t
αsell(t) Main grid selling price at time t
Mi(t) Minimum power generated on-site between generated and load profile
NP Net power for both customers
NB Number of prosumers in the network
Nshi f table Number of shiftable appliances
Nnonshi f table Number of non-shiftable appliances
ρ Appliance power rating
EPrice

a (t) Price of electric energy consumed
Prbuy(t) Prosumer’s buying price at t
Prbuyβ(t) Prosumer’s buying price at t with demurrage
Prsell(t) Prosumer’s selling price at time t
Prsellβ(t) Prosumer’s selling price at time t with demurrage
Pi(t) PV energy generated at ith prosumer in a time slot t
Sshi f table Set of shiftable household appliances
Snonshi f table Set of non-shiftable household appliances
SDR(t) Supply and demand ratio
t Time slot
TBP(t) Total buying power
Pconsumption Total consumption of energy for both non-shiftable and shiftable appliances
Cost(i) Total cost for all consumers
Na Total number of appliances in smart home
TSP(t) Total selling power
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