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Abstract: The Sustainable Development Goals 2030 Agenda of United Nations raises the need of
clean and affordable energy. In the pathway for more efficient and environmentally friendly solutions,
new alternative power technologies and energy sources are developed. Among these, the use of
syngas fuels for electricity generation can be a viable alternative in areas with high biomass or coal
availability. This paper presents the energy, environmental and economic analyses of a modern
combined cycle plant with the aim to evaluate the potential for a combined power plant running with
alternative fuels. The goal is to identify the optimal design in terms of operating conditions and its
environmental impact. Two possible configurations are investigated in the power plant presented:
with the possibility to export or not export steam. An economic analysis is proposed to assess the
plant feasibility. The effect of the different components in its performance is assessed. The impact of
using four different syngases as fuel is evaluated and compared with the natural gas fuelled power
cycle. The results show that a better efficiency is obtained for the syngas 1 (up to 54%), in respect to
the others. Concerning pollutant emissions, the syngas with a GHG impact and lower carbon dioxide
(CO2) percentage is syngas 2.

Keywords: Sustainable Development Goals; clean energy; alternative fuels; combined cycle power
plant; numerical modelling; biomass

1. Introduction

Research Background

Nowadays, the concern for climate change and the limited availability of fossil fuel sources are
pushing research to focus on sustainable energy resources. Taken as a reference, 1990 emission limits
of Greenhouse Gases (GHGs) concentrations should decrease to 50% until 2050 [1–3]. On this pathway,
different policies have been defined in favor of energy production from clean sources [4–6] to support
Sustainable Development Goals (SDGs) [7].

The optimization of energy production systems including heat, cold and gas, assumes today a
fundamental role in the electricity sector [8–11].

In recent years, combined cycle power technologies (CCPP) are widely used as energy production
systems because of their high global efficiencies [12–14] and lower environmental impact than other
conventional technologies [15–22]. Among other benefits of CCPP compared to other fossil fuel
technologies are smaller investments per kW, faster construction and higher operation flexibility [23].
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In CCPP performance analysis, most of the approaches are based on the principle of energy
conservation [24–28]. Ersayn et al. [29] investigated the energy and exergy performance of a CCPP as a
function of its components and modifications adding new components, obtaining an improvement
of first and second law efficiency, respectively, from 45% to 56% and from 24% to 50%. Kotowicz
and Brzeczek [30] proposed a methodology to improve the performance of a CCPP. It is based on the
improvement of gas turbine features, and to consider another steam cycle. Recent studies analyze key
parameters and operation conditions to optimize CCPP systems [31]. Jahangiri et al. [32] developed
exergy, thermodynamical and economic analyses based on the effect of a flue gas injection system.
Kilani et al. [33] analyzed the effect of two applications of steam injection within the combustion
chamber. They obtained that with an adequate steam injection process which can improve the overall
cycle efficiency up to 6%. Ganjehkaviri et al. [34] developed a thermodynamic modelling of a CCPP
under different designs.

A proper numerical model must be used for a correct evaluation of CCPP performance [35].
Different commercial tools, as GateCycle, Aspen or Thermoflex, can be used to implement this kind
of numerical analysis. Liu et al. [36] developed a simulation of a combined cycle gas turbine power
plants using Aspen HYSIS software package. They showed a comparison between the results obtained
from two simulation tools (Aspen HYSYS and GateCycle).

The main Operational Expenditure (OPEX) in a CCPP is fuel. The use of alternative sustainable
fuels is of high interest for supporting CCPP’s sustainability and viability. The use of alternative fuels
affects the operation conditions of gas turbines and components [37–39].

Biogas, as an alternative fuel to natural gas, has a lower laminar flame speed, a reduced fuel range,
higher requirement energy ignition, and a higher auto-ignition temperature [40,41]. These features
cause its use in natural gas conventional combustion chambers to not give a complete combustion
processes. Chacartegui et al. [42,43] investigated the effects produced by the use of syngas fuel on
the performance and the environmental impact of CCPP. They focused on the difference of fuel
characteristics and combustion products on main components, analyzing the value of Low Heating
Values (LHV)s for various syngas compositions. They also analyzed the effect of syngas combustion,
emissions and combustion chamber performance [44].

The heating value of syngas, (that is composed mainly of CO and H), is lower than the LHV of
natural gas. It implies a higher fuel supply to the combustor, increasing mass flow evolving through
turbine. As described in [44], the use of syngas fuel and the derived combustion products affects
the performance and the design of a CCPP plant. Syngas composition depends on the parameters
involved in the gasification process [40,45–51]. Liang and Edward [45] highlighted the influence of the
gasification process evolution on syngas properties. Due to the limited operational problems of the
gas turbine elements, Kim et al. [50] deepened the study of energy performance limits in a combined
cycle plant. In a CCPP plant, various elements like gas turbines are influenced from the adoption of
syngas fuels from fossil or vegetal sources [44,51]. Some approaches are based on improving LHV by
increasing CH4 presence in syngas trough methane enrichment procedures [52]. Recent studies are
based on the natural gas/syngas use mixtures in order to obtain the optimal performance in terms of
fuel efficiency and also flame velocity and propagation with a lower environmental impact in terms of
pollutant emissions [53,54]. In this sense, numerical simulation represents today an important tool for
the prevision of the effects in use of syngas [55–60].

This paper develops energy, environmental and economic analyses of a modern combined cycle
plant with the objective to evaluate the potential benefits for a combined power plant running with
alternative fuels in an area with a high biomass availability in order to reduce costs and global emissions.
Different components and key parameters are examined. The CCPP under study is composed of
two gas turbogenerators, two heat recovery steam generators and one steam turbogenerator as main
equipment. Components of the CCPP plant are individually modelled, in order to be subsequently
integrated in the whole system. Two power plant integrations are considered, with and without steam
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supply to a CHP facility. The optimal working conditions for the production of energy are evaluated
and the impact of using syngas fuel in power plant performance is assessed.

Finally, with the aim to highlight the economic benefits of a technical-economic analysis of
the plant feasibility, considering an operating plant profile is developed. Several scenarios are
discussed, considering different factors of plant utilization, showing the potential interest of the
proposed integration.

2. Reference Power Plant and Models

2.1. Location of Geographical Area and Demand Model Definition

Since 2005, an outstanding growth of energy demand has been experienced in India due to several
reasons. One of the effects of the fast growth in Indian society has been the increase in electricity
demand due to the fact that both industrial and urban areas have grown, and there is an increasing
demand of new resources to sustain the economic development.

The potential for production of renewable syngas is strongly linked to the capacity for biomass
gasification. The Ministry of New and Renewable Energy of the Government of India has recently
reported that the actual availability of biomass in India is about 500 million metric tons per year,
estimating a surplus biomass supply of 120–150 million metric tons per annum, referring rural and
agricultural traces for a potential of about 18,000 MW [61]. Part of this biomass can be exploited as
sustainable raw material for gasification producing alternative fuel for power production. It also
can be used as alternative fuel to reduce natural gas supply dependence. In this way, the proper
spatial location of biomass can improve the logistic network reducing fuel final costs [62–64]. As fossil
fuels, biomass energy application will produce pollutant formations, but with adequate application
of gasification and power technologies, they will have a lower impact than other fossil fuel sources
and power conversion technologies. In this work is studied the installation of a CCPP plant in the city
of Gurgaon located at 30 km from the city of Delhi (India) shown in Figure 1a. It is conceived as a
Combined Heat and Power plant, where steam is provided to a refinery near the New Delhi area.
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The position is strategic because the idea is to allow the energy production with low environmental
impact near megacities as New Delhi, in a region with a higher availability of biomass (crop residues,
plantation and manure biomass) and a higher biomass power potential [64]. In Figure 1b, the biomass
energy potential in India in year 2016 is reported.

2.2. Reference Layout

The reference layout is a CHP combined cycle power plant that provides high pressure steam
for processes in an adjacent refinery. It uses the steam to treat crude oil through a series of chemical
processes that employ the steam generated. It should be possible to demand up to 80 t/h of steam at a
pressure of 102 bars and at a temperature of 445 ◦C, which can be taken from the high pressure steam
just before the entrance to the steam turbine. For the CHP application, the estimated steam demand
evolution curve of the steam consumer company is illustrated in Figure 2.
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The combined cycle rated power is 600 MW with natural gas as main fuel. Figure 3 shows a
detailed layout of the CCPP. It has a configuration 2-2-1: 2 gas turbogenerators/2 heat recovery steam
generators (HRSG)/1 steam turbogenerator.
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Gas turbine exhaust gases generate steam at three pressures in the two heat recovery steam
generators (HRSG). The boiler configuration also includes two additional evaporators, an intermediate
pressure and a low pressure evaporator. Intermediate pressure steam can be mixed with the cold
reheating before reheating and the low pressure steam to the turbine after mixing with the turbine
intermediate pressure outlet. The boiler has two economizers in parallel to heat water at high and
at intermediate pressure. At degasifier exhaust, the feedwater is distributed by means of two high
and intermediate pressure pumps. A recirculation loop is provided to guarantee the conditions of
the inlet water to the first economizer and before the degasifier as well as to control exhaust gases’
stack temperature at 90 ◦C. Economizer water inlet temperature is around 55 ◦C. The generated steam
expands in a three pressures and reheating steam turbine. Live steam enters at turbine at 160 bars and
500 ◦C. Cooling towers are used as water refrigeration system because of the ambient conditions and
water availability. Table 1 reports the main characteristics of the CCPP plant.

Table 1. Main features of the CCPP plant.

Location Province of Gurgaon (India) 30 km from New Delhi.
Rated Power 600 MW
Combined cycle integration (GT/HR/ST) 2 × 2 × 1 with refrigeration tower
CHP/Steam demand 102 bars, 445 ◦C.
Fuel Gas natural/Biomass Syngas
Conditions considered in the study New Delhi local ambient conditions

Gas turbogenerator exhaust gases are used to produce steam in the Heat Recovery Steam Generator
(HRSG). Figure 4 illustrates layout for modelling the steam turbine (in Aspen Plus), with detail of main
flows for the design of the turbine. As indicated in Figure 4, the S83 source is the main steam inlet
from the steam generator. FPT1 gives cold stream conditions and the exit conditions will be those of
the heated stream. The source S82 represents low pressure stream from the boiler, and S23 refers to
turbine discharge. S7 collects the different sealing streams that will be unified before being sent to the
gland steam condenser.
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In Figure 5 are presented the efficiency curve of the generator (a) and the efficiency curve of the
high pressure section as function of the volumetric flow (b).
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Table 2 shows energy losses, expressed in energy fraction, in the different elements of the Heat
Recovery Steam Generator (Figure 3) for different design conditions and loads: winter design, summer
design, annual average and maximum extreme.
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Table 2. Fractional energy losses for Heat Recovery Steam Generator for different design conditions and loads: winter design, summer design, annual average and
maximum extreme.

Fraction of Energy Loss
of Each Equipment SPHT2 SPHT3 SPHT8 SPHT5 SPHT4 EVAP3 SPHT6 ECON3 SPHT1 SPHT9 ECON7 EVAP2 ECON5 ECON6 EVAP1 ECON1

Summer design 100% 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.03

Summer design 75% 0.08 0.08 0.08 0.08 0.08 0.001 0.08 0.08 0.08 0.08 0.08 0.001 0.001 0.001 0.001 0.12

Summer design 50% 0.1 0.1 0.1 0.1 0.1 0.001 0.1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.12

Annual average 100% 0.001 0.001 0.001 0.001 0.001 0.01 0.001 0.08 0.001 0.001 0.08 0.001 0.001 0.001 0.03 0.04

Annual average 75% 0.08 0.08 0.08 0.08 0.08 0.01 0.08 0.08 0.08 0.08 0.08 0.001 0.001 0.001 0.001 0.12

Annual average 50% 0.1 0.1 0.1 0.1 0.1 0.001 0.1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.12

Winter design 100% 0.001 0.001 0.001 0.001 0.001 0.01 0.001 0.08 0.001 0.001 0.08 0.001 0.001 0.001 0.03 0.04

Winter design 75% 0.08 0.08 0.08 0.08 0.08 0.01 0.08 0.08 0.08 0.08 0.08 0.001 0.001 0.001 0.001 0.12

Winter design 50% 0.1 0.1 0.1 0.1 0.1 0.001 0.1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.12

Winter minimum 100% 0.001 0.001 0.001 0.001 0.001 0.01 0.001 0.08 0.001 0.01 0.08 0.001 0.001 0.001 0.03 0.04

Winter minimum 75% 0.08 0.08 0.08 0.08 0.08 0.01 0.08 0.08 0.08 0.08 0.08 0.001 0.001 0.001 0.001 0.12

Winter minimum 50% 0.1 0.1 0.1 0.1 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.12

Maximum extreme 100% 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.04 0.001 0.001 0.001 0.03

Maximum extreme 75% 0.08 0.08 0.08 0.08 0.08 0.001 0.08 0.08 0.08 0.08 0.08 0.001 0.001 0.001 0.001 0.12

Maximum extreme 50% 0.1 0.1 0.1 0.1 0.1 0.001 0.1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.12
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Figure 6 shows the Temperature Heat Transfer diagram, TQ diagram of the Heat Recovery Steam
Generator, HRSG, under design conditions. Red line represents the evolution of the exhaust gases
through the HRSG. Blue line represents the steam and water in the different elements.
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3. Model Definition

3.1. Operational Curves

In order to maximize CCPP performance, four different gas turbine models were evaluated.
They were selected because of their suitability to the global system requirements. The four gas turbines
considered are GE 7FA.05 (TG1), Siemens SGT6-8000H (TG2), GE7FA.04 (TG3) and GEM9001E (TG4).

To estimate power cycle performance, the curves of each turbine are implemented in the numerical
simulation. The same configurations for the generator and steam turbine have been kept in the analysis
of the different gas turbines. In the first analysis, natural gas has been considered as fuel. Natural gas
composition is given in Table 3.

Table 3. Natural gas composition.

Units Natural Gas

Methane % mol 84.777%
Ethane % mol 6.338%

Propane % mol 0.248%
Nitrogen % mol 8.637%

LHV kJ/kg 43,034.16
HCV kJ/kg 47,701.28

ratio H/C - 3.861

Additional analyses are performed considering the effect of using alternative syngas fuels.
They are obtained through a gasification process that consists of a partial oxidation of a solid fuel.
The characteristics of the syngas fuel compositions and features used in this work are given in Table 4.
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Table 4. Composition of the syngases considered.

Syngas 1 [67] Syngas 2 [68] Syngas 3 [69] Syngas 4 [70]

CH4 % 1.00% 0.37% 0.00% 7.10%
N2 % 6.55% 0.00% 12.47% 0.00%
H2 % 35.79% 49.66% 22.09% 39.40%
CO % 34.84% 48.68% 60.52% 33.42%
CO2 % 21.82% 1.29% 3.88% 19.59%
Ar % 0.00% 0.00% 1.04% 0.00%
O2 % 0.00% 0.00% 0.00% 0.49%

H2O % 0.00% 0.00% 0.00% 0.00%
LHV kJ/kg (25 ◦C) 8756 17,102 9771 12,306

The effects of the different fuels on CO2 emission are analyzed in the next section.

3.2. System Optimization Discussion

The cycle efficiency, η, is defined as the ratio between the net power,
.

Wnet between, and the fuel
consumption, indicated as Ctot:

η =

.
Wnet

Ctot
(1)

and the Heat Rate:
HR =

Ctot
.

Wnet
∗ 3600 (2)

In Table 5 are reported the estimated net power values for the steam turbine, considering the four
different gas turbines at full load operation working at different ambient temperatures.

Table 5. Steam Turbine Net Power (MW) for different gas turbines model at full load operation.
GE 7FA.05 (TG1), Siemens SGT6-8000H (TG2), GE7FA.04 (TG3), GEM9001E (TG4).

Net Power ST (MW)
TG1 TG2 TG3 TG4

100% Charge TG

Ambient Temperature
(◦C)

11.5 ◦C 212.12 244.43 170.07 113.27
15.7 ◦C 211.74 242.47 170.76 113.28
26.5 ◦C 205.96 236.78 168.06 113.40
38.4 ◦C 202.04 222.48 159.36 108.24

Cycle net power, efficiency and Heat Rate as function of temperature are presented in Figure 7.
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Figure 7a–c show main parameters of the CCPP for the four gas turbines selected, at full load
operation conditions and fuelled with natural gas. As ambient temperature increases, the power
provided by the gas turbine and the steam turbine drop. It is due to the effect on air density, the
decrease in the steam generated in the HRSG and the drop in turbine expansion. Comparing the
results obtained for the gas turbines under analysis, Siemens SGT6-8000H gas turbine combined cycle
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achieves a higher power, with a higher exhaust gas mass flow and a higher steam generation. Siemens
SGT6-8000H (TG2) reaches the highest value in power: an additional share of the 8% compared to the
GE 7FA.05 (TG1) and up to 17% in respect to GE7FA.04 (TG3).

Table 6 reports net power of the cycle considering the four different gas turbines at full load
operations, at different ambient temperatures.

Table 6. Net Power of the Cycle for the different gas turbines at full load operation. GE 7FA.05 (TG1),
Siemens SGT6-8000H (TG2), GE7FA.04 (TG3), GEM9001E (TG4).

Cycle Net Power (MW)
TG1 TG2 TG3 TG4

100% Charge TG

Ambient Temperature
(◦C)

11.5 ◦C 675.990 731.808 539.939 354.854
15.7 ◦C 667.889 721.735 540.418 349.233
26.5 ◦C 637.402 690.083 520.028 335.964
38.4 ◦C 601.325 642.004 479.576 315.271

Cycle efficiency is evaluated through gross power, flow composition, exhaust gas temperature,
fuel features and parasitic power consumption of auxiliaries. Cycle efficiency values at full load
operation and different ambient temperature are given in Table 7.

Table 7. Cycle efficiency for different gas turbines at full load operation. GE 7FA.05 (TG1), Siemens
SGT6-8000H (TG2), GE7FA.04 (TG3), GEM9001E (TG4).

Cycle Efficiency (%)
TG1 TG2 TG3 TG4

100% Charge TG

Ambient Temperature
(◦C)

11.5 ◦C 57.43 58.74 50.90 51.52
15.7 ◦C 56.71 59.26 50.94 51.57
26.5 ◦C 53.59 56.44 49.01 51.70
38.4 ◦C 49.24 52.41 45.20 51.15

Figure 7b,c show cycle efficiency and heat rate trends obtained from the simulations for the four
gas turbines. Siemens SGT6-8000H (TG2) has an efficiency 18% and 35% higher than GE 7FA.05 (TG1)
and GE7FA.04 (TG3) respectively. It is also possible to observe how GEM9001E (TG4) is the turbine in
which ambient temperature changes have a minor effect on the efficiency.

Additional to these analyses, other aspects must be taken into account, comparing those with a
higher efficiency, GE 7FA.05 (TG1) and Siemens SGT6-8000H (TG2). The GE turbine has an annular
tube combustion chamber and Siemens gas turbine has an annular design, with a probable less uniform
fuel/air mixture. Besides, it has a dry, low NOx system with a lower temperature with reduced NOx
emissions with full load operation.

4. Effect of Fuel Operation

Based on a criterion of lower emissions, in this section, the effect of using alternative fuels is
analyzed. In Figure 8 is presented the degradation curve of the gas turbine considered in this section.
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Table 8 shows net power values for the different fuels considered at different ambient temperatures.
These values are obtained considering full load operation capacity of the gas turbine for the
considered syngases.

Table 8. Combined Cycle net power fuelled with different syngases.

Cycle Net Power (MW) Natural Gas Syngas 1 Syngas 2 Syngas 3 Syngas 4

Ambient
Temperature

(◦C)

11.5 553.776 615.143 570.883 576.336 592.542
15.7 543.646 603.873 560.440 565.782 581.728
26.5 519.660 577.200 535.701 540.718 556.025
38.4 485.899 539.691 500.842 505.528 519.953

Figure 9 shows the effect of fuel on the net power of the cycle. Using syngas GS1, an additional
11% net power can be obtained, considering full load capacity of the gas turbine for all the fuels and
variation range. Depending on the ambient temperature for all the fuels considered, the heat rate
evolution gives an idea of the power of the fuel consumed per unit of energy produced. Figure 9b
shows the efficiency and Figure 9c shows the Heat Rate. The results show how using syngas fuel
Heat Rate can be decreased by 3% with respect to natural gas. Table 9 shows the Heat Rate values at
different ambient temperatures for the different fuels.
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Table 9. Cycle heat rate for the different syngases considered.

Cycle Heat Rate (kJ/kWh) Natural Gas Syngas 1 Syngas 2 Syngas 3 Syngas 4

Ambient
Temperature

(◦C)

11.5 6864.0 6622.7 6790.1 6774.0 6684.0
15.7 6856.6 6616.1 6782.8 6766.6 6676.6
26.5 6837.5 6599.0 6764.3 6749.3 6659.5
38.4 6918.7 6677.7 6845.7 6829.9 6737.7

Table 10 gives CCPP efficiency operating with the different fuels:

Table 10. Cycle efficiency for the different fuels considered.

Cycle Efficiency (%) Natural Gas Syngas 1 Syngas 2 Syngas 3 Syngas 4

Ambient
Temperature

(◦C)

11.5 52.446 54.356 53.017 53.143 53.858
15.7 52.502 54.410 53.074 53.200 53.865
26.5 52.649 54.552 53.219 53.337 54.056
38.4 52.031 53.909 52.586 52.707 53.429

Figure 10 shows the exhaust CO2 percentage for the analyzed fuels.
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The proper fuel mixture between natural gas and syngas can generate benefits in terms of lower
environmental impact than natural gas, and at the same time, maintain a good combustion performance.

In previous work [44], authors here have proposed three different cases of operative conditions
for the CCPP plant analyzed, changing the percentages of fuel supply between traditional natural gas
and syngas. In Table 11, three mixtures are considered for the analysis, based on syngas 2 (GS2), with a
low CO2 value and good efficiency values.

Table 11. Different cases proposed with different mixture percentage of natural gas and syngas.

Natural Gas (%) Syngas GS2 (%)

Case 1 90 10
Case 2 80 20
Case 3 70 30

Combined Cycle Plant Correction Curves

To analyze into detail the plant behavior, different analyses are performed for different ambient
conditions and for the two different considered operating conditions: without and with steam export.
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The gas turbine GEM9001E (TG4) is used for the analysis. Table 12 shows the estimated outputs of the
plant for both cases.

Table 12. Power and heat rate values without and with steam export at full load operation (100% load).

-REFERENCE VALUES AS POWER PLANT (without Steam Export)

Net Power (MW) 587.68
Net Heat rate (KJ/KWh) 684.13

-REFERENCE VALUES AS CHP (with Steam Export)

Net Power (MW) 576.68
Net Heat rate (KJ/KWh) 6970.5

Figure 11 shows the correction curves of the combined cycle as function of temperature in both
configurations, as CHP with steam extraction (red line in the graph) and as standalone power plant
(black line).
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Figure 11 shows the effect of steam extraction for CHP on the global curves correction factors.
It shows that a temperature drop of 10 ◦C implies a power drop of 4.4% in the standalone power plant
operation mode; meanwhile, that in the CHP operation mode power, decrease is 3.2%. This is due
to the different reference in both cases. Figure 11 shows how an increase in the temperature clearly
penalizes combined cycle net power, i.e., an ambient temperature rise of 9.4 ◦C reduces in 9% the net
power. It can be observed an opposite trend for the heat rate (Figure 11b). For the same increase of
10 ◦C, the heat rate grows by 9% with respect to the reference value. The comparison between the two
case results confirms that at low temperatures, the increase in power acquired by not cogenerating
is more pronounced. As the ambient temperature increases, this effect becomes less important, and
for temperatures around 45 ◦C, the previous trend is reversed since the power delivered is severely
penalized by the maximum extreme conditions.

In Figure 12 are shown the effect of combined cycle parameters as function of relative humidity at
different ambient temperatures of 11.5 ◦C, 17.5 ◦C, 26.5 ◦C and 38.4 ◦C without (Figure 12a,b) and with
steam export (Figure 12c,d).
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Figure 12. Effect of relative humidity on combined cycle performance at different ambient temperatures.
Power and Heat Rate correction factors without steam export (a,b); and with steam export (c,d).

The results obtained show that for a relative humidity lower than the reference, the power
decreases and heat rate increases; on the other hand, by increasing relative humidity to values higher
than the reference, the inverse trend is observed. It is clear that for high temperatures (38.4 ◦C), the
fluctuation of the corresponding parameter implies a greater variation. Figure 13 shows the effect of
ambient pressure on combined cycle performance for both configurations.
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Figure 13. Effect of ambient pressure on combined cycle performance. Correction factors with (red
line) and without (black line) steam export for (a) power; (b) heat rate.

Figure 13 shows how power is increased with higher ambient pressure. This effect is greater
with CHP operation, when exporting steam. Power variations of 11% can be obtained depending on
ambient pressure.

Figure 14 shows the effect of fuel’s Low Heat Value (LHV) on combined cycle performance for the
two operative conditions proposed. This situation collects the effect of fuel composition variation.
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Figure 14. Effect of Fuel Low Heat value on combined cycle performance. Correction factors with (red)
and without (black) steam export: (a) power; (b) heat rate.

In regard to the combined cycle power trend with fuel LHV (Figure 14a), results show that for fuels
with LHV lower than the reference, there are not significant variations in power factors. With higher
LHV values, in CHP configuration, steam export condition penalizes generation by 2%. Heat rate is
not affected by the variation and it is practically an independent condition, as highlighted in Figure 14b.
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The relative difference of the factors of both conditions represents a discrepancy of 0.05% in the most
unfavorable case.

Finally, in Figure 15a,b, the cycle parameters have variations when the power factor of the gas
turbine is changed. This has a direct consequence on the power delivered by the gas turbine. The higher
the power factor, the greater the active power generated and the lower the reactive power.
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5. Economic Analysis

For this study, we have assumed that initial investment is divided in 55% provided by the owner
and the 45% will be provided by a loan from the World Bank, with a nominal interest rate of 10%
without commission, with amortizations and annual liquidations. The construction period of the
CCPP can be long and it can go through several years depending on the geographical and commercial
circumstances that can be applied to the project. In our case, we have assumed that the start-up will
be two years after the start of the civil works. In this way, we have considered those two additional
years against the return of the investment in making the investment profitable. We based our analysis
on an initial investment cost of €365M that is broken down according to a percentage of the total as
considered in Table 13:
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Table 13. Capital Expenditure (Capex).

Initial Investment Weight Absolute Value (M€)

Gas turbines (assembly and supply) 28.7% 104.64
Boilers (assembly and supply) 14.0% 50.94

Steam turbines (assembly and supply) 11.0% 40.01
Cooling tower (assembly and supply) 1.7% 6.07

Gas and fuel system 1.9% 6.83
Electrical installations 7.3% 26.63

Civil works and land conditioning 15.9% 57.92
Control systems 4.1% 14.82

External engineering required 3.0% 10.77
Temporary works facilities 2.1% 7.80

Personal expenses 4.6% 16.83
Start-up 5.1% 18.63

Initial expenses (permits, guarantees, etc.) 0.9% 3.11
Total 100% 365

Gas turbines are the most expensive equipment, with the highest fraction of initial investment.
Civil works and steam turbines are the other two main parts of Capital Expenditures CAPEX.

To define Operational Expenditures is required an estimation of operational profile of the plant.
For this estimation, and due to the difficulty to a more accurate estimation, operational costs have been
estimated from a similar plant in terms of relative weights. Total Expenses include fuel expenses, which
is the main concept, operation and maintenance, personnel and other general costs. Their estimated
proportional weight is presented in Figure 16.
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Fuel price, average price at €0.034/kWh of thermal energy released by the fuel, has been considered.
The profitability of the investment project is quantitatively evaluated considering the Net Present

Value NPV. It allows to evaluate short, medium and long-term investments It is defined as:

VAN =
n∑

t=1

Vt

(1 + k)t − Io (3)

where Vt are the cash flows in period t that will have to be calculated; n is the number of years that we
have considered in our time horizon and t in index for each year; k is the discount rate or capital cost
and Io is the initial investment.

Another parameter considered is the Internal Rate of Return (IRR). When the IRR is equal to the
interest rate, the investor is indifferent between making the investment or not. The two necessary
conditions to accept the feasibility of the present CCPP examined are that:
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• the NPV assumes a positive value
• that the IRR is greater than the discount rate.

The breakdown of the calculation of the cash flows considered in the NPV formula for the 25 years
of our case are developed. As shown in Table 14, in the economic evaluation analysis, four scenarios
are considered. To obtain the best options and to understand for which range of plant working the
investment should be more profitable, the utilization factor (defined as quotient between the hours of
operation considered and the total hours of a year) has been varied from 90% to 50%.

Table 14. Utilization factor for the different cases considered.

Utilization Factor Operating Hours per Year

Case 1 0.9 7884
Case 2 0.7 6132
Case 3 0.6 5256
Case 4 0.5 4380

In Table 15 are reported the values of the NPV and IRR for the different cases considered.

Table 15. NPV and IRR values for the different cases considered.

NPV (MM€) IRR (%)

Case 1 137.379 14.122
Case 2 119.455 13.914
Case 3 80.991 13.686
Case 4 47.356 13.516

Results obtained highlight that the plant is more profitable the higher the utilization factor.
As evident in Figure 17, the most profitable case is the option 1. The cases 2, 3 and 4 are respectively
13%, 41% and 66% less profitable than the first option (considering the NPV value, we can consider
about 18, 56 and 90 MM € less NPV).
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On the other hand, it is very interesting to identify the optimal utilization factor of the plant so
that the investment is profitable. On the basis of the established financial model, it is obtained that
when the plant operates less than 43% of the year’s hours, the investment reaches an NPV negative
so the investment is not convenient. In Figure 18 is shown the trend of NPV value considering the
working hours of the plant in the year.
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It is clear that the range that makes the investment profitable is between 70% and 43% of the
operation of the plant throughout the year. It is also evident that the sale due to the sale of steam
assumes a little weight with respect to income from the sale of electricity. In the CCPP, the higher cost
is due to the need to purchase fuel. In fact, this cost exceeds, in most cases, both the initial investment
and the operation and maintenance costs.

6. Conclusions

In this work are presented the analysis of potential energy, environmental and economic benefits
of using alternative fuels for a CCPP located in India, in a region with a potential high availability
of biomass.

The main conclusions of the analyses are:

• The performance of the combined cycle with operating the four different types of syngas have
been estimated and compared with those of the cases of conventional natural gas.

• Among the four syngases analyzed, a better efficiency is achieved for syngas 1 (up to 54%) in
respect to the others. The higher efficiencies and lowest CO2 emissions are obtained fuelling with
syngas 2.

• Two operation modes have been considered, as CHP plant: considering steam exporting to a
refinery and as a standalone power cycle, without exporting steam. Under these two operation
modes, operation curves of the combined cycle are estimated for ambient parameters.

• The analysis is closed with an economic analysis to identify the effect of an annual utilization
factor in power plant viability, to assess the different effects.

The results of this study can provide useful information to power plant engineers and operators,
such as possible performance enhancement modifications to combined cycle power plants.
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