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Abstract: The price–volume relationship of stocks can be impacted substantially by structural changes
and market volatility. In this paper, we analyze China’s stock market behavior and subsequent
price–volume equation, with emphasis on two periods of market volatility and structural changes
during 2007–2008 and 2015–2016. To account for the impacts of unknown volatility and time breaks,
we embed the price–volume relationship into a vector autoregression (VAR) framework with structural
breaks and volatility thresholds. Our results indicate that significant time-breaking effects exist and
that the high-low volatility effects are substantial. Finally, in its entirety, we identify only a linear
causal relationship from price to volume.

Keywords: Price-volume dynamics; structural change; market uncertainty; threshold VAR; Shanghai
stock market

1. Introduction

Research on the relationship between stock price and trading volume is one of the most important
components of technical analysis of the stock market. It is also a key issue in the field of financial
market prediction and risk management. The dramatic behavior of China’s stock market in recent
years, especially during the two periods of considerable volatility in the years 2007–2008 and 2015–2016,
may have substantially affected the price–volume relationship by structural change and market
volatility. Previous studies have examined the dynamic price–volume relationship through the
application of a VAR framework. However, the conventional VAR approach to the dynamics of
price–volume relations fails to account for the impacts of structural change and market volatility,
which are regular features of China’s stock markets. To this end, this study contributes to the literature
by assessing the price–volume relationship of China’s stock market using a VAR framework with
structural break and volatility thresholds.

2. Literature Review

As discussed by Karpoff [1], the relationship between financial asset returns and trading volume
(price–volume relation) reveals important insights into the operational efficiency and information
dynamics in asset markets. Both Karpoff [1] and Gallant et al. [2] point out that previous empirical work
has focused mainly on the contemporaneous relationship between price change and volume. Yet, as far
as prediction and risk management are concerned, studying the dynamic (causal) relationship between
returns and volume is more informative [3].

Some studies have theoretically investigated the dynamic relationship between trading volume
and stock returns, which may have some causal relationship implications. Copeland [4] and Jennings
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et al. [5] derived the information arrival model and suggest a positive causal relationship between
stock returns and trading volume in both directions. In the mixture of distributions model of Epps
and Epps [6], trading volume is used to measure disagreements, as traders revise their reservation
prices based on the receipt of new market information. The greater the extent of disagreement among
traders, the higher the trading volume. Their model suggests a positive causal relationship running
from trading volume to absolute returns. In Clark’s [7] mixture model, trading volume is a proxy
for the speed of information flow, which is a latent common factor affecting contemporaneous stock
returns and volume. There is, however, no causal relation from trading volume to stock returns
in Clark’s common factor model [7]. Campbell et al. [8] present a model which implies that price
changes accompanied by high volume will tend to be reversed, and this will be less true of price
changes on days with low volume. There are also equilibrium models that emphasize the information
content of volume. Blume et al. [9] stress that volume provides data on the quality or precision of
information on prior price movements, and hence is useful for interpreting the price (return) behavior.
Wang [10] analyzes dynamic relationships between volume and returns on a model with information
asymmetry, which shows that volume may provide information about future returns. Liu et al. [11]
find that the aggressive trading style of informed agents can produce a price–volume relationship in
an agent-based model with information asymmetry. Based on the Kelly criterion of asset allocation,
Wang and Yang [12] present a price–volume model that shows the accumulated absolute deviation of a
risk asset’s return from its risk-free rate is related with its trading volume.

Despite strong theoretical underpinnings and a thorough survey of empirical evidence, Karpoff [1]
finds that the contemporaneous correlation between price changes and trading volume is both mixed
and weak. Gallant et al. [2] also find the same. Since the 1990s, focus has moved to dynamic (causal)
stock return–volume relationships which are mainly based on the Granger causality test. Related to this
study, the even theoretically well-grounded notion of causality from past trading volume to returns,
does not find strong empirical support either. For instance, Lee and Rui [13] report that trading volume
does not predict returns for the next day in Chinese A and B markets in Shanghai and Shenzhen. Chen
et al. [14] report no causal link in France, Italy, Japan, the UK or the US. Lee and Rui [15], using daily
data, find that trading volume does not Granger-cause stock market returns on each of the US, Japanese
and UK stock exchanges. Volume–returns causality is neither found by Rashid [16] for Pakistan, nor by
Pisedtasalasai and Gunasekarage [17] for five south-east Asian emerging markets. Azad et al. [18]
investigate the price–volume relation in three south Asian stock markets and find that there exists a
weak form of market inefficiency in those markets. Chuang et al. [19] find volume to cause returns
in only two out of the ten Asian markets analyzed. Wang et al. [20] investigate the US stock market
return–volume relation from the perspective of out-of-sample stock return predictability, and the
result shows that higher returns do follow more intensive trading. Chen [21] shows S&P 500 trading
activity affects subsequent returns only in bear markets –but exhibits no volume-return causality when
both market phases are considered jointly. Using a cross-country dataset consisting 13 major global
stock indices, Patra and Bhattacharyya [22] find that volume cannot explain the heteroscedasticity of
return. However, some studies do establish the existence of volume-return causality, for example,
Saatcioglu and Starks [23] and Rojas and Kristjanpoller [24] for six Latin American countries. Rzayev
and Ibikunle [25] decompose trading volume into liquidity-driven and information-driven components.
Using a high-frequency S&P 500 stock dataset, they show that the latter is a statistically significant
predictor of one-second stock returns.

A nonlinear relationship between volume and subsequent returns garners some empirical
support [21,26]. A recent paper by Chuang et al. [3] uses quantile regressions to report that for the
NYSE, S&P 500 and FTSE 100 indices, past trading volume exerts a positive (negative) impact on
returns from the top (bottom) of return distribution. Lin [27], using the same methodology, confirms
these findings for six emerging markets. Gebka and Wohar [28] use quantile regression to show
that for a set of mature and emerging Pacific Basin countries, positive (negative) volume-return
causality in high (low) return quantiles is not limited to one market but seems to be a common
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feature across countries. Matilla-García et al. [29] investigate the volume-stock price relation using
the method of non-parametric testing based on permutation entropy. Hasan and Salim [30] and El
Alaoui [31] use multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended
cross-correlation analysis (MF-DCCA) methods to report cross-correlations between price and volume
change. Gupta et al. [32] use the Maximum Overlap Discrete Wavelet Transform (MODWT)-VAR
approach to examine the price–volume relation in China and India’s stock markets; the relationship is
found to vary across different time horizons. Using a nonlinear Granger causality testing framework,
Kyrtsou et al. [33] show that the return–volume relationship for S&P 500 is asymmetric. Wang et al. [34]
use the dependence-switching copula model to examine the price–volume dependence structure
across six major international stock markets; the result shows that the price–volume dependence
is asymmetric. In a model of stochastic volatility with volume (SV-VOL), Chen et al. [35] find that
the exchange-market volume information affects the stock market price–volume relationship. Using
evidence from the Korean stock market, Chae and Kang [36] analyze the influence of abnormal trading
volumes on post-event returns and find low-volume return premiums in the Korean stock market.
Ülkü and Onishchenko [37] show that the predictive role of trading volume for short-horizon reversals
in stock returns can be contrasting by conditioning on different investor types’ trading.

The methodology of the extant literature to investigate the relation between price and trading
volume, no matter linear or nonlinear, rarely considers the impacts of structural change and market
volatility (or market uncertainty), which are common features in China. This paper argues that, if we
use trading volume to measure investors’ trading behavior, then the price–volume relationship can
be interpreted as the bidirectional interaction between trading behavior and market price. On the
one hand, investors make trading decisions based on their expectations of the future stock price.
On the other hand, their trading behavior, in turn, affects the market price. An important fact that
should not be ignored is that investors make trading decisions based on their expectations of future
price, which means investors make trading decisions in an uncertain environment. Therefore, when
making trading decisions, investors not only consider the expected stock price, but they also take the
uncertainty of the future price (i.e., the risk, which can be measured by volatility) into account. Even at
the same expected price, the difference in price uncertainty may lead investors to make rather different
trading decisions. Thus, the price–volume relationship could very possibly be affected by market
uncertainty. In particular, due to the frequent volatility of the Chinese stock markets, the impact of
market uncertainty on the price–volume relationship could be substantial.

Furthermore, due to the short history of China’s stock market, it is far from being a mature and
effective capital market. Hence, the stability of China’s stock market is relatively poor compared to
those of mature markets. Dramatic fluctuations frequently occur in China’s stock market, such as the
two periods of considerable volatility in the years of 2007–2008 and 2015–2016, which may contribute
to significant time-breaking effects on price–volume dynamics, leading the price–volume relationship
in China’s stock market to exhibit a much more complicated structural change characteristic compared
to mature markets.

This study contributes to the literature by applying a threshold VAR approach to investigate
the impacts of market volatility and structural change on the price–volume relation. To account for
the impacts of unknown volatility and time breaks, we embed the price–volume relation in a VAR
framework with structural change and volatility thresholds. The rest of the paper is organized as
follows: Section 3 presents the details of the linear and threshold VAR approach. Then we outline the
data in Section 4; after which we explicitly detail our empirical results in Section 5. Section 6 concludes
the paper.
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3. Methodology

3.1. Linear VAR

According to previous literature, there exists a bidirectional causality between price and volume,
so modeling the price–volume relationship would encounter the problem of endogeneity. The VAR
method, which constructs the model by treating each endogenous variable as a function of the
lagged values of all endogenous variables [38], is an effective instrument for tackling the problem
of endogeneity. The ordinary VAR approach assumes linearity in the model, thus it is also called
linear VAR.

We first use the linear VAR approach to investigate the overall price–volume relation of China’s
stock market. Letting t denote the time index, we set stock returns (rett) and trading volume (volt) as
the explained variables of the two regression equations, denoted by {volt, rett}

T
t=1. The p-order-lagged

values of the two variables are used as the explanatory variables, thus forming a binary VAR (p) system:[
volt
rett

]
=

[
c1

c2

]
+ Li

[
a1i b1i
a2i b2i

][
volt−i
rett−i

]
+

[
ε1t
ε2t

]
(1)

In Equation (1), volt−i and rett−i are auto regression (AR) terms. a1i and b1i, a2i and b2i are the
coefficients of AR terms in the two equations. Li is the lag operator, where i=1, 2,..., p. c1 and c2 are
constant terms and ε1t and ε2t are disturbance terms.

3.2. Threshold VAR

The threshold VAR (TVAR) approach is an extended VAR model that identifies the nonlinear
features in the VAR system. The nonlinearity may emerge from structural change or other asymmetric
effects. For the research object of this study, nonlinearity is taken to mean that the price–volume
relationship could be affected by certain feature variables. The feature variable is called a threshold
variable which can be used to divide the sample. The dividing criterion set by the threshold variable is
the threshold value, according to which the original sample can be divided into several subsamples.
The model nonlinearity captured by the threshold variable allows the coefficient matrix of the model
to change in different subsamples. The threshold variable can either be an endogenous variable of the
VAR system or another exogenous variable. The threshold value can be set to one or more, and the
sample can thus be divided into two or more subsamples.

Assuming that the sample data are {volt, rett, thvt}
T
t=1, where thvt denotes the threshold variable.

Then the mathematical expression of the TVAR model is shown as follows:[
volt
rett

]
= I(thvt ≤ γ)

([
c1

c2

]
+ Li

[
a1i b1i
a2i b2i

][
volt−i
rett−i

])
+ I(thvt > γ)([

c′1
c′2

]
+ Li

[
a′1i b′1i
a′2i b′2i

][
volt−i
rett−i

])
+

[
ε1t
ε2t

] (2)

In Equation (2), I(·) is an indicative function, which is equal to 1 if the expression in parentheses is
true and 0 otherwise. γ is the threshold value to be estimated. It can be seen that the TVAR model is a
nonlinear model because it cannot be expressed as a linear function of each parameter. The estimation
methodology of the TVAR model is in minimizing the sum of square residuals (SSR), where a two-step
approach is used: first, taking the value of γ as given, use a linear regression approach to estimate the
coefficients of Equation (2) and then calculate the sum of squared residuals SSR(γ), which is a function
of γ. Second, choose γ to minimize SSR(γ) and the coefficients can be estimated accordingly.

The likelihood ratio (LR) testing approach can be used to test the significance of the threshold
effect [39]:

LR = [SSR∗ − SSR(γ̂)]/σ̂2 (3)
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The null hypothesis (H0) of the LR test is, “There exists no threshold effect”. SSR∗ is the sum
of squared residuals under H0 (that is, linear VAR). SSR(γ̂) is the sum of the squared residuals of
the TVAR estimation result. σ̂2 is the consistent estimator of the variance of the disturbance term.
The larger the value of SSR∗ − SSR(γ̂), the more the SSR is increased under H0, and the more it tends
to reject H0.

Similarly, when setting two threshold values (i.e., γ1 and γ2, γ1 < γ2), the TVAR model can be
expressed as shown in Equation (4):[

volt
rett

]
= I(thvt ≤ γ1)

([
c1

c2

]
+ Li

[
a1i b1i
a2i b2i

][
volt−1

rett−1

])
+I(γ1 < thvt ≤ γ2)

([
c′1
c′2

]
+ Li

[
a′1i b′1i
a′2i b′2i

][
volt−1

rett−1

])
+I(thvt > γ2)

([
c′′1
c′′2

]
+ Li

[
a′′1i b′′1i
a′′2i b′′2i

][
volt−1

rett−1

])
+

[
ε1t
ε2t

] (4)

The key to constructing a TVAR model lies in the selection of the threshold variables. With the
selection of different threshold variables, both the estimation results and their implications are different.
When setting a deterministic time dummy as a threshold variable (thvt = t), we can examine the
structural change characteristics of the VAR system [40].

3.3. Research Design

We first model the price–volume relationship of China’s stock market in a linear VAR framework,
and then use the Granger causality test to investigate the overall characteristics of the price–volume
relationship. Second, we construct a TVAR model with a time threshold (thvt = t). Based on the
estimated time threshold values, we divide the sample into several subsamples, in which the Granger
causality test is performed in detail, to identify the structural change characteristics of the price–volume
relationship. Finally, market volatility is used as a threshold variable (thvt = σ2

ret,t) to construct a TVAR
model to examine the asymmetric impacts of market uncertainty on the price–volume relationship.

4. Data

The daily data of closing price (Pt) and trading volume (Qt) of the Shanghai Stock Index from March
4, 2003 to April 22, 2019 were collected. The number of sample observations was 3923. The original
data were processed as follows: first, calculate the daily return (rett) of the Shanghai Stock Index
according to Equation (5); second, detrend the trading volume series according to regression Equation
(6), in which T is the time variable and then filter the regression residual term out and use it as the
adjusted volume (volt).

rett = [log(Pt) − log(Pt−1)] ∗ 100 (5)

log(Qt) = c + αT + ε (6)

We use price volatility to measure market uncertainty. Fit rett with the GARCH (1,1) model as
shown in Equation (7), then filter σ2

ret,t out and use it as the measure of market volatility. Mean Equation : rett = c + φrett−1 + εt

Variance Equation : σ2
ret,t = ω+ αε2

t−1 + βσ2
ret,t−1

(7)

The time series plots for all variables are shown in Figure 1. As can be seen, there exists a
clear positive correlation between the price and trading volume of the Shanghai Stock Index; it was
particularly significant during the period of the two extreme volatilities in 2007–2008 and 2015–2016.
However, the major distinction between the two volatility periods was that the extent of variation of
trading volume in 2015–2016 was more drastic than in 2007–2008. The market displays a noteworthy
feature of volatility clustering, with high volatility periods mainly clustering during 2007–2008 and
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2015–2016. In those periods, the variability of price and volume was also relatively high, which was
likely to cause structural changes in the price–volume relationship.
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Figure 1. Data plots. Figure 1. Data plots.

Table 1 shows the results for descriptive statistics. Both price series before and after adjustment
have kurtosis characteristics. The original price series was right skewed, and the adjusted one was left
skewed. Both volume series, before and after the adjustment show kurtosis features and were right
skewed. The J-B test significantly rejects the normal distribution hypothesis for all variables, which
indicates that all these time series were skewed during the sample period. The ADF test shows that both
adjusted price and volume series have no unit roots, thus satisfying the conditions for VAR modeling.
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Table 1. Descriptive statistics.

Variable Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis J-B ADF

Pt 2570.48 2574.68 6092.06 1011.50 921.42 0.68 3.87 428.28 ***
(0.0000)

−2.00
(0.2858)

Qt 121.90 98.04 857.13 4.08 115.39 2.37 10.48 12,801.70 ***
(0.0000)

−3.60 *
(0.0058)

rett 0.02 0.06 9.03 −9.26 1.60 −0.50 7.42 3357.60 ***
(0.0000)

−61.42 ***
(0.0001)

volt 0.00 −0.04 1.69 −1.58 0.63 0.22 2.49 73.10 ***
(0.0000)

−4.9825 ***
(0.0000)

σ2
ret,t 2.75 1.78 17.52 0.25 2.65 2.10 7.64 6389.75 ***

(0.0000)
−4.2570 ***

(0.0005)

Note: p-value in parentheses. * and *** represent significance level at the 5% and 0.1%, respectively.

5. Empirical Results and Discussion

5.1. Overall Price-Volume Relationship in China’s Stock Market

According to the Schwartz Information Criterion (SIC), the optimal lag order of the VAR model
was determined to be 6. Therefore, we construct a VAR (6) model based on Equation (1). The Granger
causality test result (Table 2) shows that price was the Granger cause of volume at the 0.1% significance
level. Trading volume was also the Granger cause of price, but with significance level only at 5%. Given
that the sample size was relatively large, 5% significance level was not that persuasive. Therefore,
it can be inferred that the price of the China stock market significantly affects trading volume during
2003–2019, while the reverse impact of volume on price was much weaker.

Table 2. Results for the Granger causality tests (full sample).

Null Hypothesis Alternative Hypothesis χ2 Statistic Test Result

Volume does not Granger cause price volt
G.C
→ rett

12.76 *
(0.0471) Reject

Price does not Granger cause volume rett
G.C
→ volt

369.25 ***
(0.0000) Reject

Note: X G.C
→ Y denotes X Granger causes Y. p-value in parentheses. * and *** represent significance level at the 5%

and 0.1%, respectively.

5.2. Test of Structural Change

5.2.1. Estimation of Time Thresholds

According to Equation (2) and/or Equation (4), we construct a TVAR model with time as the
threshold variable (thvt = t). The selection process of time threshold values is shown in Figure 2,
where the upper graphs are the time plots of the threshold variable (Since the time is a kind of special
threshold variable, its sequence diagram is an upward sloping straight line.); the middle graphs
show the ordering of the threshold variable; and the lower ones give the results of the grid search
(The horizontal axis shows the threshold value searched out, and the vertical axis shows the sum
of squared residuals (SSR).). The estimating and testing results of the TVAR model are listed in
Table 3A. When a single threshold value was set, the estimated threshold value was t = 2015/06/11,
and the LR statistics of both equations in the TVAR system reject the null hypothesis of “no threshold
effect” at a 0.1% significance level, indicating that there exists significant structural break effect for the
price–volume relation at t=2015/06/11. When two threshold values were set, the estimated threshold
values were t1=2015/06/11 and t2=2016/03/31; the estimation result passes the LR test as well.
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Table 3. The estimation results of time threshold values.

Threshold Variable Setting the Numberof
Threshold Values

Threshold Value Estimate
LR Test

Equation Ret Equation Vol

Panel A: sample period 2003/3/4–2019/4/22

t 1 T = 2015/06/11 88.56 ***
(0.0000)

321.76 ***
(0.0000)

t 2 t1 = 2015/06/11
t2 = 2016/03/31

88.56 ***
(0.0000)

321.76 ***
(0.0000)

Panel B: sample period 2003/3/4–2015/06/11

t 1 t’ =2007/10/15 31.71 ***
(0.0000)

157.75 ***
(0.0000)

t 2 t3 =2007/10/15
t4 =2008/11/03

31.71 ***
(0.0000)

157.75 ***
(0.0000)

Note: p-value in parentheses. *** represent significance level at the 0.1%, respectively.

The estimation result of the TVAR model matches the trend of China’s stock market quite well.
Two threshold values, t1 and t2, exactly identify the bull and bear cycle of 2015–2016. At t1, the Shanghai
Stock Index rose to its highest level at 5121 before it began to slump all the way down to the lowest
level of 1707 at t2.

t1 and t2 divide the original sample period into three sub-ranges, namely 2003/03/04–2015/06/11,
2015/06/11–2016/03/31 and 2016/03/31–2019/4/22. Since the time span of the sub-range 2003/3/4–2014/8/28
was relatively long, and it contains a complete bull and bear cycle, the price–volume relation could
have also encountered significant structural changes during this period. Therefore, we construct the
TVAR model again for the sub-range 2003/3/4–2015/06/11. The estimating and testing results are shown
in Table 3B. The single threshold value estimated was t’=2007/10/15, and the two threshold values
estimated were t3=2007/10/15 and t4=2008/11/03. All estimation results pass the LR test, which suggests
that there exist significant structural breaking effects at t3 and t4.

The estimation result of the TVAR model based on sample range 2003/3/4–2015/06/11 also matches
the trend of China’s stock market very well. Two threshold values, t3 and t4, exactly identify the bull
and bear cycle of 2007–2008. At t3, the Shanghai Stock Index rose to a historical high level of 6030
before it began to slump all the way down to the lowest level of 1719 at t4.

So far, we have identified four, time threshold values (Figure 3)—t1, t2, t3 and t4—at which
significant structural changes of the price–volume relationship occurred. According to the sequence of
the four, time threshold values being identified, the significance of structural changes at t1, t2, t3 and t4
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can be ordered as t1>t2>t3>t4. Therefore, it can be inferred that: it was usually during the period of the
stock market crash when the price–volume relationship significantly changes. Second, when the stock
market begins to slump after reaching a peak, the degree of structural change was more significant
(t1>t2, t3>t4). Third, the structural changes in the price–volume relationship in 2014–2015 was more
significant than in 2007–2008.
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5.2.2. The structural Change Characteristics of the Price-Volume Relation

According to t1, t2, t3 and t4, the original sample can be divided into five subsamples, in which we
can, respectively, construct the linear VAR. Granger causality test results (Table 4) in a linear framework
show that only in subsample 1 does the trading volume Granger cause price change. That is, trading
volume has a certain effect on the price only before the stock market collapse in 2007; after that the
effect was no longer significant. On the contrary, the effect of price on trading volume was always
highly significant except for in subsample 4.

Table 4. Results of the Granger-causality tests (subsamples).

Null Hypothesis Alternative Hypothesis χ2 Statistic Test Result

Subsample 1: 2003/3/4–2007/10/15

Volume does not Granger causes price volt
G.C
→ rett

16.88 **
(0.0020) Reject

Price does not Granger causes volume rett
G.C
→ volt

94.95 ***
(0.0000) Reject

Subsample 2: 2007/10/15–2008/11/03

Volume does not Granger causes price volt
G.C
→ rett

1.39
(0.2392) Accept

Price does not Granger causes volume rett
G.C
→ volt

16.64 ***
(0.0000) Reject

Subsample 3: 2008/11/03–2015/06/11

Volume does not Granger causes price volt
G.C
→ rett

14.83
(0.0625) Accept

Price does not Granger causes volume rett
G.C
→ volt

309.81 ***
(0.0000) Reject
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Table 4. Cont.

Null Hypothesis Alternative Hypothesis χ2 Statistic Test Result

Subsample 4: 2015/06/11–2016/03/31

Volume does not Granger causes price volt
G.C
→ rett

3.57
(0.0587) Accept

Price does not Granger causes volume rett
G.C
→ volt

0.02
(0.8959) Accept

Subsample 5: 2016/03/31–2019/4/22

Volume does not Granger causes price volt
G.C
→ rett

0.47
(0.9261) Accept

Price does not Granger causes volume rett
G.C
→ volt

68.90 ***
(0.0000) Reject

Note: X G.C
→ Y denotes X Granger causes Y. p-value in parentheses. ** and *** represent significance level at the 1%

and 0.1%, respectively.

Therefore, it can be inferred that the impact of price on trading volume in China’s stock market
was far larger than in the opposite direction; thus, the market was mainly driven by price, rather than
trading volume.

5.3. The Threshold Effect of Market Volatility on Price-Volume Relation

5.3.1. Estimation of Volatility Thresholds

According to Equation (2) and/or Equation (4), we construct a TVAR model with the level of
market volatility as a threshold variable (thvt = σ2

ret,t). The selection process of volatility threshold
values is shown in Figure 4. The upper graph in Figure 4 contains the time plots of the threshold
variable, which is the same as Figure 1E. The middle and the lower graphs in Figure 4 reflect the
ordering of the threshold variable and the results of a grid search, respectively. The estimating and
testing results of the TVAR model are listed in Table 5. The single threshold value estimated was
σ2

ret,t=6.52 and the two threshold values estimated were σ2
ret,t1=3.09 and σ2

ret,t2=6.52. All estimation
results pass the LR test, indicating that there exist significant threshold effects at σ2

ret,t1 and σ2
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Figure 4. The selection process of volatility thresholds. (a) Setting one threshold value (b) setting two
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Table 5. The estimation results of volatility thresholds.

Threshold Variable Setting the Numberof
Threshold Value

Threshold Estimates
LR test

Equation ret Equation vol

σ2
ret,t 1 σ2

ret,t= 6.52 61.58 ***
(0.0000)

115.32 ***
(0.0000)

σ2
ret,t 2

σ2
ret,t1= 3.09

σ2
ret,t2= 6.52

61.58 ***
(0.0000)

115.32 ***
(0.0000)

Note: p-value in parentheses. *** represent significance level at the 0.1%, respectively.

The estimation results of the TVAR model match the trend of China’s stock market quite well.
As can be seen from Figure 4A, most of the observations of the subsample σ2

ret,t >6.52 were clustering
in the periods of 2007–2008 and 2015–2016 when large movements in the stock market occurred;
which indicates that the price–volume relationship has changed significantly during the two periods
of considerable market volatility. When two threshold values were set (Figure 4b), the estimation
result further divides the subsample σ2

ret,t ≤6.52 into two subsamples, namely, 3.09< σ2
ret,t ≤6.52 and

σ2
ret,t ≤ 3.09. The subsample 3.09 < σ2

ret,t ≤ 6.52 mainly contains periods of relatively higher volatility in
the periods other than 2007–2008 and 2015–2016, which further indicates that the change in market
volatility significantly impacts price–volume relationship.

5.3.2. The Threshold Effect of Market Volatility on the Price-Volume Relationship

According to the volatility threshold values estimated, the original sample can be divided into
several subsamples. However, due to the discontinuity of observations in each subsample, the Granger
causality test in the linear VAR framework cannot be performed in each subsample. Instead, we compare
the changes of coefficient (and significance level) of the explanatory variable in different subsamples
of the TVAR system, to identify the asymmetric impact of market volatility on the price–volume
relationship. In a TVAR (6) system, the price and volume of lags 1 to 6 are used as explanatory variables.
Due to the strong auto-correlation among lagged variables, it was difficult to interpret the implication of
coefficients (and significance levels) of all the lagged variables. In general, the price and volume of the
day before has the highest impact on the price and volume of the day. The more days apart, the lower
the impact was. In other words, the 1-order-lagged explanatory variable has the highest impact on the
explained variable, so the coefficient and significance level of the 1-order-lagged explanatory variable
were the most credible and persuasive. Therefore, we choose to compare the changes in coefficients
(and significance levels) of 1-order-lagged prices and volumes in different subsamples, to identify the
impact of volatility on the price–volume relationship.

The regression result of the TVAR model is shown in Table 6. We first compare the changes in
the coefficient of vol(-1) in equation ret; in subsample σ2

ret,t ≤ 6.52, the coefficient of vol(-1) was 0.3953
at the 1% significance level. However, as market volatility increases, in subsample σ2

ret,t > 6.52 the
coefficient of vol(-1) was no longer significant.

Table 6. TVAR regression results (threshold variable:σ2
ret,t).

Explanatory
Variable

(1)
σ2

ret,t≤6.52
(2)

σ2
ret,t≤3.09

(3)
3.09<σ2

ret,t≤6.52
(4)

σ2
ret,t>6.52

Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol

ret(-1) 0.0088
(0.0197)

0.0433 ***
(0.0023)

0.0066
(0.0258)

0.0515 ***
(0.0030)

0.0122
(0.0310)

0.0328 ***
(0.0036)

0.0181
(0.0307)

0.0199 ***
(0.0036)

ret(-2) −0.0506 *
(0.0223)

0.0076 **
(0.0026)

−0.0316
(0.0297)

0.0075 *
(0.0034)

−0.0796 *
(0.0350)

0.0078
(0.0040)

−0.0370
(0.0280)

−0.0045
(0.0032)

ret(-3) 0.0717 **
(0.0224)

0.0092 ***
(0.0026)

0.0427
(0.0294)

0.0068 *
(0.0034)

0.1286 ***
(0.0361)

0.0130 **
(0.0042)

−0.0719 **
(0.0274)

−0.0005
(0.0032)

ret(-4) −0.0102
(0.0225)

−0.0003
(0.0026)

−0.0026
(0.0293)

0.0029
(0.0034)

−0.0169
(0.0369)

−0.0052
(0.0043)

0.1051 ***
(0.0271)

0.0003
(0.0031)

ret(-5) 0.0152
(0.0223)

−0.0013
(0.0026)

−0.0096
(0.0289)

0.0012
(0.0033)

0.0519
(0.0368)

−0.0028
(0.0043)

−0.0351
(0.0269)

−0.0028
(0.0031)

ret(-6) −0.0525 *
(0.0214)

−0.0083 ***
(0.0025)

−0.0551 *
(0.0278)

−0.0067 *
(0.0032)

−0.0370
(0.0350)

−0.0088 *
(0.0041)

−0.0919 ***
(0.0263)

−0.0050
(0.0031)
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Table 6. Cont.

Explanatory
Variable

(1)
σ2

ret,t≤6.52
(2)

σ2
ret,t≤3.09

(3)
3.09<σ2

ret,t≤6.52
(4)

σ2
ret,t>6.52

Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol

vol(-1) 0.3953 **
(0.1522)

0.5873 ***
(0.0177)

0.3205
(0.1688)

0.5712 ***
(0.0195)

0.7927 *
(0.3695)

0.6383 ***
(0.0428)

−0.2316
(0.4221)

0.6234 ***
(0.0489)

vol(-2) 0.0046
(0.1777)

0.1112 ***
(0.0206)

0.2036
(0.1946)

0.1338 ***
(0.0225)

−1.0370 *
(0.4515)

0.0108
(0.0523)

0.7211
(0.4611)

0.1568 **
(0.0535)

vol(-3) −0.1071
(0.1786)

0.0821 ***
(0.0207)

−0.1237
(0.1963)

0.0577 *
(0.0227)

0.1943
(0.4513)

0.2063 ***
(0.0522)

0.2895
(0.4541)

0.0267
(0.0527)

vol(-4) −0.1183
(0.1795)

0.0683 **
(0.0208)

−0.1965
(0.1963)

0.0732 **
(0.0227)

0.2009
(0.4632)

0.0085
(0.0536)

−0.6416
(0.4381)

0.0595
(0.0508)

vol(-5) 0.0173
(0.1782)

0.0586 **
(0.0207)

0.1213
(0.1946)

0.0713 **
(0.0225)

−0.4300
(0.4637)

0.0150
(0.0537)

−0.5812
(0.4432)

−0.0035
(0.0514)

vol(-6) −0.0645
(0.1514)

0.0590 ***
(0.0176)

−0.2183
(0.1673)

0.0524 **
(0.0194)

0.5397
(0.3694)

0.0906 *
(0.0428)

0.4553
(0.3719)

0.0616
(0.0431)

Constant 0.0508
(0.0272)

−0.0014
(0.0032)

0.0527
(0.0325)

−0.0047
(0.0038)

−0.0683
(0.0929)

0.0055
(0.0108)

−0.2337
(0.1246)

0.0222
(0.0145)

Note: The optimal lag order was determined to be 6 according to SIC criterion. Standard error in parenthesis,
*, ** and *** represent significance level at the 5%, 1% and 0.1%, respectively.

Then we compare the changes in the coefficient of ret(-1) in equation vol; in subsample σ2
ret,t ≤ 3.09

the coefficient of ret(-1) was 0.0515 at a 0.1% significance level. As market volatility increases,
in subsample 3.09 < σ2

ret,t ≤ 6.52 and subsample σ2
ret,t > 6.52, the coefficient of ret(-1) decreases to 0.0328

and 0.0199, respectively, while still highly significant at 0.1% level.
Therefore, it can be inferred that trading volume only slightly impacts price when market volatility

level was relatively low, while the price significantly impacts trading volume at any time. With the
increase of volatility level, the impact of trading volume on price gradually disappears, while the
impact of price on volume still remains highly significant, but with a gradual decline in economic
significance. The above findings confirm our conjecture in Section 1—market uncertainty (volatility)
significantly affects the price–volume relationship. Since investors make their trading decisions in an
uncertain environment, trading decisions of investors depend not only on their expectations of future
stock price but were also affected by price uncertainty (volatility).

5.4. Robustness Checks

In this section, we examine the robustness of our results to the selection of volatility estimators.
In the above empirical analysis, we use the market volatility estimated via the GARCH model.
To check whether our results are sensitive to other types of volatility estimators, we use two alternative
range-based volatility estimators—σ2

ret,t
P proposed by Parkinson [41] and σ2

ret,t
GK proposed by Garman

and Klass [42]. These two estimators are defined as follows:

σ2
ret,t

P =
1

4ln2
(Ht − Lt)

2 (8)

and
σ2

ret,t
GK = 0.511(Ht − Lt)

2

−0.019[(Ct −Ot)(Ht + Lt − 2Ot)

−2(Ht −Ot)(Lt −Ot)] − 0.383(Ct −Ot)
2

(9)

In Equations (8) and (9), Ht, Lt, Ot and Ct are the natural logarithms of the daily high, low, opening
and closing prices of the Shanghai Stock index. Figures 5 and 6 show the selection process of volatility
thresholds using the two alternative volatility estimators above. Tables 7 and 8 show the regression
result of the TVAR model using these two estimators. The overall qualitative patterns of the dynamic
price–volume relationship in different volatility subsamples using the two range-based volatility
estimators (σ2

ret,t
P and σ2

ret,t
GK) are similar to those observed using the GARCH volatility (σ2

ret,t). With
the increase in volatility level, the impact of volume on price gradually disappears, while the impact of
price on volume remains highly significant, but with a gradual decline in economic significance. This
indicates that our results are robust to different volatility estimators.
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Table 7. TVAR regression results (threshold variable: σ2
ret,t

P).

Explanatory
Variable

(1)
σ2

ret,t
P
≤26.82

(2)
σ2

ret,t
P
≤21.17

(3)
21.17<σ2

ret,t
P
≤26.82

(4)
σ2

ret,t
P>26.82

Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol

ret(-1) 0.0256
(0.0272)

0.0560 ***
(0.0031)

0.0619
(0.0345)

0.0620 ***
(0.0040)

−0.0730
(0.0513)

0.0463 ***
(0.0059)

−0.0084
(0.0213)

0.0238 ***
(0.0024)

ret(-2) −0.0581 *
(0.0239)

0.0052
(0.0027)

−0.0813 **
(0.0290)

0.0034
(0.0033)

0.0152
(0.0514)

0.0076
(0.0059)

−0.0388
(0.0264)

0.0001
(0.0030)

ret(-3) 0.0141
(0.0226)

0.0080 **
(0.0026)

0.0248
(0.0270)

0.0054
(0.0031)

0.0005
(0.0449)

0.0127 *
(0.0052)

0.0337
(0.0272)

0.0026
(0.0031)

ret(-4) −0.0120
(0.0218)

0.0034
(0.0025)

−0.0172
(0.0263)

0.0047
(0.0030)

0.0249
(0.0439)

−0.0026
(0.0051)

0.1187 ***
(0.0273)

−0.0028
(0.0031)

ret(-5) −0.0208
(0.0221)

0.0008
(0.0025)

−0.0374
(0.0259)

0.0002
(0.0030)

0.0484
(0.0469)

0.0006
(0.0054)

0.0176
(0.0265)

−0.0059
(0.0031)

ret(-6) −0.0580 **
(0.0200)

−0.0062 **
(0.0023)

−0.0753 **
(0.0236)

−0.0069 *
(0.0027)

−0.0069
(0.0422)

−0.0039
(0.0049)

−0.0668 *
(0.0279)

−0.007 *
(0.0032)

vol(-1) 0.4183 *
(0.1780)

0.5676 ***
(0.0205)

0.2362
(0.2018)

0.5785 ***
(0.0232)

1.4935 **
(0.5189)

0.6000 ***
(0.0598)

−0.1141
(0.3237)

0.5889 ***
(0.0373)

vol(-2) 0.0722
(0.1877)

0.1409 ***
(0.0216)

0.3307
(0.2048)

0.1466 ***
(0.0236)

−1.6279 **
(0.5322)

0.0512
(0.0613)

0.4568
(0.3652)

0.1277 **
(0.0421)

vol(-3) −0.1484
(0.1846)

0.0479 *
(0.0212)

−0.2420
(0.2003)

0.0439
(0.0231)

0.1456
(0.5121)

0.0779
(0.0590)

0.5060
(0.3854)

0.1595 ***
(0.0444)

vol(-4) −0.1196
(0.1792)

0.0733 ***
(0.0206)

−0.1397
(0.1969)

0.0570 *
(0.0227)

0.3506
(0.4612)

0.1513 **
(0.0531)

−0.5460
(0.4230)

0.0383
(0.0487)

vol(-5) −0.0393
(0.1801)

0.0509 *
(0.0207)

0.0402
(0.1958)

0.0720 **
(0.0226)

−0.3109
(0.4921)

−0.0764
(0.0567)

−0.5117
(0.4010)

0.0426
(0.0462)

vol(-6) −0.0546
(0.1548)

0.0814 ***
(0.0178)

−0.1211
(0.1685)

0.0669 ***
(0.0194)

0.2811
(0.4285)

0.1669 ***
(0.0494)

0.0437
(0.3277)

−0.0195
(0.0377)

Constant 0.0321
(0.0288)

−0.0033
(0.0033)

0.0219
(0.0328)

0.0005
(0.0038)

−0.0165
(0.0947)

−0.0239 *
(0.0109)

0.1847
(0.1063)

0.0065
(0.0122)

Note: The optimal lag order was determined to be 6 according to SIC criterion. Standard error in parenthesis,
*, ** and *** represent significance level at the 5%, 1% and 0.1%, respectively.

Table 8. TVAR regression results (threshold variable:σ2
ret,t

CK).

Explanatory
Variable

(1)
σ2

ret,t
CK
≤30.78

(2)
σ2

ret,t
CK
≤22.33

(3)
22.33<σ2

ret,t
CK
≤30.78

(4)
σ2

ret,t
CK>30.78

Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol Equation ret Equation vol

ret(-1) 0.0497 *
(0.0223)

0.0501 ***
(0.0026)

0.0540
(0.0278)

0.0560 ***
(0.0032)

0.0107
(0.0389)

0.0362 ***
(0.0045)

−0.0628 *
(0.0261)

0.0143 ***
(0.0030)

ret(-2) −0.0730 **
(0.0225)

0.0025
(0.0026)

−0.0913 **
(0.0279)

0.0029
(0.0032)

−0.0809
(0.0417)

−0.0026
(0.0048)

−0.0047
(0.0293)

0.0020
(0.0034)

ret(-3) 0.0424 *
(0.0211)

0.0066 **
(0.0024)

0.0324
(0.0254)

0.0083 **
(0.0029)

0.0645
(0.0394)

0.0013
(0.0045)

−0.0448
(0.0308)

0.0006
(0.0035)

ret(-4) −0.0092
(0.0206)

0.002
(0.0024)

−0.0213
(0.0250)

0.0027
(0.0029)

−0.0158
(0.0385)

−0.0031
(0.0044)

0.1648 ***
(0.0312)

−0.0053
(0.0036)

ret(-5) −0.0191
(0.0205)

−0.0012
(0.0024)

−0.0257
(0.0254)

−0.0005
(0.0029)

−0.0226
(0.0361)

−0.0046
(0.0042)

0.0224
(0.0306)

−0.0055
(0.0035)

ret(-6) −0.0579 **
(0.0195)

−0.0060 **
(0.0022)

−0.0752 ***
(0.0225)

-0.0070 **
(0.0026)

−0.0194
(0.0398)

−0.0034
(0.0046)

−0.0635 *
(0.0308)

−0.0105 **
(0.0035)

vol(-1) 0.4115 *
(0.1649)

0.5956 ***
(0.0190)

0.3268
(0.1852)

0.5920 ***
(0.0213)

1.3405 **
(0.4545)

0.6616 ***
(0.0524)

0.1230
(0.3851)

0.5975 ***
(0.0444)

vol(-2) 0.0647
(0.1795)

0.1285 ***
(0.0207)

0.2910
(0.1956)

0.1273 ***
(0.0225)

−1.2933 **
(0.4763)

0.1144 *
(0.0549)

0.3342
(0.4413)

0.0994
(0.0508)

vol(-3) −0.2174
(0.1776)

0.0541 **
(0.0205)

−0.2845
(0.1912)

0.0477 *
(0.0220)

0.2600
(0.4921)

0.0875
(0.0567)

0.6945
(0.4889)

0.1774 **
(0.0563)

vol(-4) −0.0445
(0.1740)

0.0731 ***
(0.0201)

−0.1192
(0.1900)

0.0626 **
(0.0219)

0.5712
(0.4480)

0.1502 **
(0.0516)

−0.8105
(0.5586)

−0.0274
(0.0643)

vol(-5) 0.0043
(0.1743)

0.0486 *
(0.0201)

0.0401
(0.1887)

0.0667 **
(0.0217)

−0.2831
(0.4557)

−0.0505
(0.0525)

−1.0655 *
(0.5171)

0.0556
(0.0596)

vol(-6) −0.1127
(0.1485)

0.0666 ***
(0.0171)

−0.0800
(0.1612)

0.0706 ***
(0.0186)

−0.4978
(0.4066)

0.0260
(0.0468)

0.6897
(0.4241)

0.0420
(0.0488)

Constant 0.0343
(0.0275)

0.0006
(0.0032)

0.0656 *
(0.0309)

0.0023
(0.0036)

−0.1636
(0.0986)

−0.0288 *
(0.0114)

−0.0169
(0.1444)

−0.0239
(0.0166)

Note: The optimal lag order was determined to be 6 according to SIC criterion. Standard error in parenthesis,
*, ** and *** represent significance level at the 5%, 1% and 0.1%, respectively.

6. Conclusions

In literature, the empirical price–volume relationship is examined in a VAR framework. However,
the conventional VAR approach to the dynamics of price–volume relations fails to account for the
impacts of structural changes and volatility levels, which commonly occur in China. This study
contributes to the literature by estimating the price–volume relation in the VAR framework with
structural changes and volatility thresholds. As a result, we obtain the following evidence: first,
the evidence indicates that there exist significant time-breaking effects in the two periods of considerable
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volatility in 2007–2008 and 2015–2016, and the structural change in the latter period was more significant.
Second, the high-low volatility effects are substantial. When the level of volatility was relatively
low, price and volume affect each other. As volatility level increases, the impact of volume on price
gradually disappears; while the impact of price on volume remains highly significant, its economic
significance has also declined. Finally, as a whole, we identify only a linear causal relation from price
to volume. Rather than a volume-driven market, this shows that China’s stock market was mainly
driven by yield.

The findings of this study are of significance for global investors to better understand the
microstructure of China’s stock market and its structural change characteristics. As an emerging
market, China’s stock market is far from mature compared to those of industrialized economies.
The basic issuance and trading system and the investor structure of the Chinese stock market have
been constantly changing in recent years and are still far from reaching the stable level of mature
markets. This is likely to be the reason for the significant structural change effects in the price–volume
relationship of the Chinese stock market over the past decade. Therefore, taking into account the
characteristics of structural change that often exist in the price–volume relation of the Chinese stock
market helps global investors enhance the effectiveness of technical analysis of China’s stock market,
and thus improve their performance of forecasting and risk management.

For policy practitioners, the implications of this study are that the regulators should continuously
improve their management level of the stock market and strengthen the early warning and monitoring
of stock market volatility to avoid the unilateral market boom and slump and maintain the stable
development of the stock market. Once abnormal volatility appears in the stock market, if a bailout
plan through direct market intervention (i.e., government funds go directly into the market to buy
stocks) is deemed necessary, it should be implemented early. This is because, according to our findings,
the price–volume relationship is extremely weak and the impact of trading volume on stock price
essentially disappears in high-volatility periods. During these periods, rescuing the market through
direct market intervention has the weakest effects; for example, during the China stock market crash
in July 2015, 21 Chinese state-owned securities companies directly entered the market to buy stocks,
and the rescue effect was limited.
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