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Abstract: This paper addresses the stochastic used-product return problem in a closed-loop supply
chain consisting of one manufacturer and one retailer concerned with fairness. We resolve the
equilibrium feedback control strategies with no fairness concern retailer, gap fairness concern retailer,
and self-due fairness concern retailer. We find only under a specific condition, the feedback Markov
equilibrium exists, and the expected return rate would approach to the stable state, regardless of
the fairness type the retailer is. The equilibrium prices are decreasing over the return rate, and the
equilibrium collecting control strategy is increasing over the return rate. The increasing of stochastic
disturbance intensity can be beneficial to the supply chain members. The manufacturer should shift
profit to the retailer since the retailer is fairness concern. By the comparison analysis, we find the
gap fairness concern retailer is more aggressive, while the self-due fairness concern retailer is more
reasonable for both the manufacturer and the retailer. Furthermore, we design a hybrid coordinate
contract for the manufacturer to coordinate with the retailer.

Keywords: used-product return; stochastic disturbance; feedback control strategy; fairness concern
type; coordinate contract

1. Introduction

Because of the cost reduction advantage as well as the environmentally friendly advantage of
the used-product remanufacturing, lots of manufacturers, such as HP, Lenovo, Apple, and Xerox,
have launched the remanufacturing closed-loop supply chain (CLSC) strategy [1–3]. Because of the
modern supply chain, the used-product are widely and separately distributed, which brings the
problem of uncertainty on quantity and quality [4–6]. As a result, how the manufacturer should
collect the used-products from customers is an essential problem when the collecting is involved with
uncertainties [7].

In the traditional operations management area, the decision-makers are commonly assumed to be
rational, which means they only care about their payoffs and do not care about other players’ payoffs.
However, there are increasing researches and literature that argue that the players in the supply chain
may have fairness concern, especially when there are one leader and several followers in the supply
chain system [8–11]. The Stackelberg leader in the supply chain always has the distributive power over
other followers, which would result in the unfairness feelings for the followers. Lots of studies have
been dedicated to addressing the operations management problems in the supply chain with fairness
concern. Fehr and Schmidt [8] and Cui et al. [9] studied how fairness may affect the equilibrium of the
supply chain and how to coordinate such a supply chain. Loch and Wu [10] designed an experiment to
study the influences of social preferences on the decisions of the supply chain. This paper is trying to
deal with the used-product collecting problem in a closed-loop supply chain with the retailer being
fairness concern.
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In the past two decades, more and more scholars are focusing on the area of used-product return and
remanufacturing because of the importance of remanufacturing. Atasu et al. [12], Govindan et al. [13],
and Govindan and Soleimani [14] concluded the recent achievement and possible directions for this
area. Our paper is related to three aspects of literature: reverse channel management, dynamic return
problem, and fairness concern operational management.

The reverse channel choice is an essential problem for the CLSC operations management.
Savaskan et al. [15] was the first attempt that formulated the reverse channel choice problem in the
CLSC by using game-theoretic models. They formulated three typical reverse channels, such as
manufacturer collection, retailer collection, and third-party collection. Their results showed that the
retailer collection channel might be the best reverse channel for the CLSC system. Savaskan and
Van Wassenhove [2] further resolved the reverse channel choice problem in the presence of retailers
competing. Huang et al. [16] studied the product return problem in a CLSC with the third-party
and retailer return used-products simultaneously. De Giovanni and Zaccour [17] investigated the
optimal outsource problem of used-product collecting for the manufacturer in a CLSC, where the
third-party firm or the retailer can engage in the collection activities. These papers mainly focused on
the reverse channel choice problem in a CLSC with only one supply chain member involved in the
return activities. Some papers have looked at the responsibility sharing of used-product collecting
among the CLSC members, such as Jacobs and Subramanian [18], Subramanian et al. [19], Jena and
Sarmah [20], and Ma et al. [21]. These papers focused on how to better improve the used-product
return efficiency by cost-sharing or co-operation in the CLSC members.

The above papers mainly adopt the static used-product return model, which ignore the dynamic
characteristics during the collecting process. Some researchers have begun to investigate the effect of
dynamic characteristics on used-product collecting in CLSCs. Guide and Wassenhove [22] discussed the
used-product return problem taking the quality uncertainty into consideration. Nakashima et al. [23]
explored dynamic control decisions in the remanufacturing systems. Fallah et al. [24] investigated
the product return problem with two CLSCs competing in the presence of uncertainty. These papers
focused on the uncertainty of quality or timing during the used-product return process.

Regarding the dynamics in the collection process, Huang et al. [6], De Giovanni and Zaccour [25],
De Giovanni et al. [26] have developed differential game models to investigate the dynamic used-product
collection control problems in different CLSCs. Huang et al. [6] considered the stochastic disturbances
in the return process and formulated the corresponding stochastic differential game and resolved the
equilibrium return control strategy when the manufacturer collects in the CLSC. De Giovanni and
Zaccour [25] adopted the differential game model to investigate the used-product return problem in
a CLSC. They designed the cost and revenue-sharing contract for the CLSC. To better motivate the
CLSC members to invest in product collection activities, De Giovanni et al. [26] studied the incentive
mechanisms in the CLSC using the differential game model. Using the differential game model, our
paper focuses on coping with the used-product return problem in the CLSC with retailer collecting as
well as fairness concern for the retailer.

Our study is also related to the area of fairness concern in the supply chain management.
Cui et al. [9] studied how to coordinate a dyadic supply chain in the presence of fairness concern,
and they showed the traditional wholesale price can coordinate the supply chain when the supply chain
members are fairness concern. Caliskan-Demirag et al. [27] further extended the model of Cui et al. into
the scenario of nonlinear demand functions. Du et al. [28] investigated the newsvendor problem in a
dyadic supply chain where both manufacturer and retailer were concerned with fairness. These studies
mainly focused on the distributional fairness concern in the supply chain, the peer-induced fairness
concern is also receiving attention. Ho and Su [11] first consider the distributional fairness and
peer-induced fairness in the ultimatum game model. Ho et al. [29] incorporated their model into
the setting of the supply chain and discussed the contact design problem in the supply chain when
the two retailers are concern with peer-induced fairness. Nie and Du [30] further considered the
quantity discount contracts with peer-induced fairness and distributional fairness in the supply chain.
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Shu et al. [31] adopted a static model and considered the pricing and collection problem in a CLSC in
which the collectors are concerned with both distributional fairness and peer-induced fairness. Our
study incorporates the concept of fairness into the retailer collecting closed-loop supply chain and
aims at investigating how the presence of fairness concern would affect the equilibrium strategies and
profitability of the supply chain members in the stochastic model setting. Xiao and Huang [32] also
considered the stochastic collection problem in a CLSC, while they mainly focused on the third-party
collection channel and we concerned about the retailer collection channel.

In this paper, we consider a closed-loop supply chain with one manufacturer and one retailer, where
the manufacturer sells new products and collects used-products through the retailer, simultaneously.
The manufacturer is the Stackelberg leader in the channel, and the retailer is the follower such as the
retailer is assumed to be concerned of distribution unfairness. We consider two types of the retailer
with different fairness concern preference, i.e., gap fairness concern retailer and self-due fairness
concern retailer. The unfair feeling of gap fairness concern retailer comes from the profit gap between
the retailer and the manufacturer, which is widely used in the literature, such as Nie and Du [30],
Li et al. [33], and Li and Li [34]. The unfairness of self-due fairness concern retailer comes from the
profit difference between the profit the retailer actually receives and the profit the retailer considers
as he deserved. Following Du et al. [28], we take the Nash bargaining profit as the self-due profit
for the retailer. Therefore, the main difference for the gap fairness concern for the self-due fairness
concern is the fairness reference point. The gap fairness retailer takes the leader’s profit as the fairness
reference point, while the self-due fairness retailer takes his Nash bargaining profit as the fairness
reference point.

Our main results are as follows. First, we investigate the Markov equilibrium for the scenario
with no fairness concern retailer, gap fairness concern retailer, and self-due fairness concern retailer.
We find only under a specific condition, the feedback Markov equilibrium exists for a particular
closed-loop supply chain system, and the expected return rate will approach to a stable state, whatever
the preference of fairness concern is. Second, we compare the expected equilibrium results for the
supply chain members in different scenarios. We find that the presence of fairness concern of the
retailer would neither affect the equilibrium strategies for the retailer, nor the manufacturer. The type
of self-due fairness concern is more reasonable for the retailer to express its concern of fairness and is
more acceptable for the manufacturer to consider its profit shifting for the retailer. Third, we further
design a hybrid coordinate contract for the manufacturer to coordinate with the retailer.

The remainder of this paper is organized as follows. Section 2 presents our modeling framework.
Section 3 resolves the feedback equilibrium of the stochastic differential game with the retailer being
fairness neutral. Section 4 is the equilibrium analysis for the stochastic differential game models with
the retailer being fairness concern. Section 4.1 is the analysis for the gap fairness concern retailer and
Section 4.2 is self-due fairness concern retailer. Section 5 conducts a numerical analysis to compare the
gap fairness model with the self-due fairness model. We design a hybrid contract for the closed-loop
supply chain in Section 6. Section 7 concludes the paper.

2. Problem Formulation and Model Setup

Consider a closed-loop supply chain system, consisting of one manufacturer and one retailer.
The manufacturer distributes its new products and collects the used products through the retailer.
The unit production cost for the manufacturer is c when only the raw material is used to make the
new product. The manufacturer also makes use of the used products to make the new product, with a
unit production cost cr. It is reasonable to assume cr < c, which means remanufacturing is attractive
for the manufacturer on saving production cost. This assumption can also be found in Savaskan and
Van Wassenhove [2], Huang et al. [6], and Savaskan et al. [15]. Denote ∆ = c − cr as the unit cost
savings from remanufacturing the used product. We assume that the products made from the used
products as materials are the same as the ones made from the raw materials. Thus, the case where the
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products were made from used products are differentiated from the products made from the materials
is beyond the scope of this paper. The notations are summarized in Table 1.

Table 1. Notations throughout the paper.

Notation Definition

c, cr Unit production cost of product with raw material and used products
∆ Unit cost savings from remanufacturing
R(t) Return rate of used products at time t
E(t) Collecting effort of the retailer at time t
ω(t), p(t) Wholesale price and retail price of product at time t
D(t) Demand rate of product
s Unit subsidy manufacturer gives to retailer for collecting used products
k Scaling parameter of collecting cost function
θ Effect of collecting efforts on return rate
δ Decaying rate of return rate
σ(R(t)) Variance of the stochastic disturbance
z(t) Standard Wiener process
ζ(t) Standard normal random variables
a Market potential of product
b Elasticity of demand with respect to price
ρ Discount rate for decision makers
λ, β Fairness concern parameter and Nash bargaining parameter of retailer
πi(t), Ui(t) Profit rate and utility rate of player i at time t, i = m, r represent manufacturer and retailer

Jx
i , Vx

i
Objective function and value function for player i under the model x, where i = m, r and
x = NF, GF, SF, C, SC.

The planning horizon of the CLSC members are infinite, i.e., t ∈ [0, ∞) . R(t) is the return rate
at time t, which represents the percentage of products that are made by using used-products rather
than raw materials. Denote E(t) as the collection efforts level of the retailer at time t, which indicates
the efforts that the retailer invests on collecting activities, such as collecting advertising and collecting
facilities maintaining. The cost function of the retailer for investing in collecting activities is assumed
to be kE2(t)/2, where k > 0 is a scaling parameter that represents the cost coefficient for the retailer to
collect used-products.

Following the setting in Huang et al. [6] and Xiao and Huang [32], we formulate the return rate by
the Itô equation as

dR(t) = (θE(t) − δR(t))dt + σ(R(t))dz(t), R(0) = R0 ≥ 0. (1)

where θ is the effect of collection efforts on the return rate; δ measures the decaying rate of the return
rate. R0 ∈ [0, 1] is the initial return rate of the CLSC system. σ(R(t)) is a variance term and z(t) is
a standard Wiener process. Equation (1) captures the dynamics and stochastic disturbance in the
used-product return process.

To ensure that the return rate satisfies 0 ≤ R ≤ 1, E and σ(R) should be continuous functions.
Similar to Huang et al. [6], we will adopt σ(R) = σR for the sake of mathematical simplicity. It can
be verified that E(R) ≥ 0 when R ∈ [0, 1]. Thus, we can conclude that the return rate 0 ≤ R ≤ 1 can
be meted.

The manufacturer announces the wholesale price ω(t) and distributes new products to the retailer,
and then the retailer sets the retail price p(t) to sell new products to the consumers and decides its
collecting efforts E(t) to collect used-products from consumers and transfers to the manufacturer for
remanufacturing. For every unit of collected used product, the retailer receives subsidy s.

The demand of the retailer at time t is denoted by D(t). We adopt a standard linear demand
function [6,14], which is given by

D(t) = a− bp(t). (2)
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where a represents the market potential of the product, and b defines the elasticity of demand with
respect to price.

The discount rate for the supply chain members is denoted as ρ. πi(t)(i = m, r) is the profit rate
of player i at time t, where m and r represent the manufacturer and the retailer, respectively.

πm(t) = (ω(t) − c + ∆R(t))D(t) − sR(t)D(t). (3)

πr(t) = (p(t) −ω(t))D(t) + sR(t)D(t) − 1
2 kE2(t). (4)

Denote Jx
i (i = m, r; x = NF, GF, SF, C, SC) as the objective function for player i under the model

x, where i = m and r represents the manufacturer and retailer, respectively. NF represents the
benchmark model with no fairness concern retailer, GF represents the model with gap fairness concern
retailer, SF represents the model with self-due fairness concern retailer, C represents the centralized
supply chain decision model, and SC represents the coordinated supply chain model. We will deal
with these models in the next sections. We first investigate the model with no fairness concern retailer,
which serves as the benchmark model in Section 3. Then the models with fairness concern retailer are
discussed in Section 4. Section 4.1 is the model with gap fairness concern retailer, and Section 4.2 is the
model with self-due fairness concern retailer. We will design a coordinate contract for the manufacturer
to coordinate the supply chain in Section 6.

3. Benchmark: NF Model-No Fairness Concern

In this section, we will consider the problem with retailer collecting in the closed-loop supply chain
in the presence of stochastic disturbance, and there is no fairness concern for the retailer. The objective
function of the manufacturer is formulated as

max
ω(t)≥0

{
JNF
m = E

∫
∞

0 e−ρtπm(t)dt
}
. (5)

The objective function of the retailer is formulated as

max
p(t)≥0, E(t)≥0

{
JNF
r = E

∫
∞

0 e−ρtπr(t)dt
}
. (6)

The supply chain members seek to maximize their expected discounted profit stream subject to
the system dynamics in Equation (1).

3.1. The Feedback Equilibrium Strategies

Denoting Vi(i = m, r) as the value functions of the supply chain member, we formulate the
Hamilton–Jacobi–Bellman equation for the retailer as

ρVNF
r = max

p, E

{
(p−ω)D + sRD− 1

2 kE2 +
∂VNF

r
∂R (θE− δR) + σ2

2 R2 ∂
2VNF

r
∂R2

}
. (7)

The best response of the retailer can be resolved by the first-order condition as

p = a+bω−sbR
2b , E = θ

k
∂VNF

r
∂R . (8)

It is shown that the retail price is increasing in the return rate which means the retail price will go
down when the return rate goes up. The collecting effort is relevant with the marginal value of the
return rate to the retailer. The HJB equation of the manufacturer can be formulated by

ρVNF
m = max

ω

{
(ω− c + ∆R)D− sRD +

∂VNF
m
∂R (θE− δR) + σ2

2 R2 ∂
2VNF

m
∂R2

}
. (9)
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Taking the best response of the retailer into the value function of the manufacturer, the optimal
wholesale price control strategy is calculated by

ωNF∗ =
a + b(c− (∆ − 2s)R)

2b
.

Thus, the equilibrium control strategy of the retailer is derived as

pNF∗ =
3a + b(c− ∆R)

4b
, ENF∗ =

θ
k
∂VNF

r
∂R

.

Inserting the equilibrium control strategies into the HJB equations yields

ρVNF∗
r =

(
1
16

∆2b +
1
2
σ2 ∂

2VNF∗
r

∂R2

)
R2 +

[
1
8

∆(a− bc) − δ
∂VNF∗

r
∂R

]
R +

1
16b

(a− bc)2 +
θ2

2k
∂2VNF∗

r

∂R2 ,

ρVNF∗
m =

(
1
8

∆2b +
1
2
σ2 ∂

2VNF∗
m

∂R2

)
R2 +

[
1
4

∆(a− bc) − δ
∂VNF∗

m
∂R

]
R +

1
8b

(a− bc)2 +
θ2

k
∂VNF∗

m
∂R

∂VNF∗
r
∂R

.

As the value functions are quadratic in terms of the return rate after substituting the equilibrium
control strategies into the value functions, we conjecture the value functions of the supply chain

members as VNF
r = e0 + e1R + e2R2 and VNF

m = f0 + f1R + f2R2. Then we have ∂VNF
r
∂R = e1 + 2e2R,

∂VNF
m
∂R = f1 + 2 f2R, ∂

2VNF
r

∂R2 = 2e2, ∂
2VNF

m
∂R2 = 2 f2. Taking the value functions and their derivations back into

the HJB equations yields the coefficients equations which are to be solved,
ρe0 = θ2

2k e1
2 + 1

16b (a− bc)2

ρe1 = 2θ2

k e2e1 − δe1 +
1
8 ∆(a− bc)

ρe2 = 2θ2

k e2
2
− (2δ− σ2)e2 +

1
16 ∆2b


ρ f0 = θ2

k e1 f1 + 1
8b (a− bc)2

ρ f1 = 2θ2

k e2 f1 − δ f1 + 2θ2

k e1 f2 + 1
4 ∆(a− bc)

ρ f2 = f2
(

4θ2

k e2 − 2δ+ σ2
)
+ 1

8 ∆2b

Denote θk =
θ2

k , the coefficients are calculated by
e0 = 1

ρ

(
θk
2 e1

2 +
(a−bc)2

16b

)
e1 =

∆(a−bc)
8[ρ+δ−2θke2]

e2 =
(ρ+2δ−σ2)−

√
(ρ+2δ−σ2)

2
−θk∆2b/2

4θk


f0 = 1

ρ

(
θke1 f1 +

(a−bc)2

8b

)
f1 =

∆(a−bc)+8θke1 f2
4[ρ+δ−2θke2]

f2 = ∆2b
8(ρ+2δ−σ2−4θke2)

Proposition 1 characterizes the equilibrium strategies, the retailer being no fairness concern.

Proposition 1. When θk <
8(ρ+δ)(δ−σ2)

∆2b , NF model exists only one feedback Stackelberg Markov equilibrium.
The equilibrium wholesale price is calculated by

ωNF∗ =
a+b(c−(∆−2s)R)

2b . (10)

The equilibrium retail price is
pNF∗ =

3a+b(c−∆R)
4b . (11)

The equilibrium collecting control strategy is

ENF∗ = θ
k (2e2R + e1). (12)
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Proof. The equilibrium collection control strategy ENF∗ should be positive, i.e.,

ENF∗ =
θ
k
(2e2R + e1) > 0, ∀ ∈ R [0, 1]

If e1 < 0, ENF∗would be negative when R = 0 or R is small positive values. Since equilibrium control
strategy ENF∗ is requested to be positive, e1 is required to be positive, which means ρ+ δ− 2θke2 > 0.

The equation regarding e2 is

ρe2 =
2θ2

k
e2

2
− (2δ− σ2)e2 +

1
16

∆2b

Solving the equation yields,

e2 =
(ρ+ 2δ− σ2) ±

√
(ρ+ 2δ− σ2)2

− θk∆2b/2

4θk

Therefore,

(a) When e2 =
(ρ+2δ−σ2)+

√
(ρ+2δ−σ2)

2
−θk∆2b/2

4θk
, from ρ + δ − 2θke2 > 0 we can infer that θk >

8(ρ+ δ)(δ− σ2)/∆2b, which is k < θ2∆2b/
(
8(ρ+ δ)(δ− σ2)

)
. This is counterintuitive as the collection cost

coefficient should not be very small (Savaskan and Van Wassenhove [2], and Savaskan et al. [14]).

(b) When e2 =
(ρ+2δ−σ2)−

√
(ρ+2δ−σ2)

2
−θk∆2b/2

4θk
, from ρ + δ − 2θke2 > 0 we can infer that θk <

8(ρ+ δ)(δ− σ2)/∆2b, which is k > θ2∆2b/(8(ρ+ δ)(δ− σ2)). This is quite consistent with the reality that
the collection cost coefficient would not be very small, otherwise the collection firm would like to
collect all the used products.

Consequently, we rule out the larger root by assuming θk < 8(ρ+ δ)(δ− σ2)/∆2b. When e2 =

(ρ+2δ−σ2)−

√
(ρ+2δ−σ2)

2
−θk∆2b/2

4θk
, we can verify that e1 > 0, and ENF∗ > 0, ∀R ∈ [0, 1]. �

The equilibrium wholesale price in Proposition 1 can be rewritten as

ωNF∗ =
a+b(c−(∆−2s)R)

2b =
a+b(c−∆R)

2b + sR. (13)

It is evident that the manufacturer would raise its wholesale price according to the transfer
subsidy s. Thus, on the one hand, the manufacturer gives collecting subsidy to the retailer, and on the
other hand, the manufacturer raises the wholesale price by sR, which is the same with the subsidy.
The net unit profit for the retailer is pNF∗

−ωNF∗ + sR = [a− b(c− ∆R)]/4b, which is irrelevant to the
transfer subsidy. As a result, the transfer subsidy has no impact on the profit for the retailer and
the manufacturer.

3.2. The Evolutionary Path of the Return Rate

We derive the evolutionary path of the return rate under the equilibrium control strategies in this
subsection. Inserting the equilibrium collecting strategy into Equation (1),

dRNF(t) =
(
(2θke2 − δ)RNF(t) + θke1

)
dt + σ

(
RNF(t)

)
dz(t). (14)

Since θk <
8(ρ+δ)(δ−σ2)

∆2b
, we have 2θke2 − δ < 0. Denote ξ = −(2θke2 − δ), and let σ

(
RNF(t)

)
=

σRNF(t), thus
dRNF(t) = (−ξRNF(t) + θke1)dt + σRNF(t)dz(t). (15)
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Using the stochastic integral equation and taking the expectation,

E
[
RNF(t)

]
= R(0) +

∫ t
0 (−ξE

[
RNF(u)

]
+ θke1)du. (16)

The above can be seen as an ordinary differential equation in E[R(t)] with E[R(0)] = R(0). Solving
the equation, we have the following result,

E
[
RNF(t)

]
=

θke1
ξ +

(
R(0) − θke1

ξ

)
e−ξt. (17)

Assuming that θk < ξ/e1 to ensure that the long-run return rate is smaller than 1. Proposition 2
characterizes the expected evolutionary path of the stochastic return rate.

Proposition 2. In model NF, the expected evolutionary path of return rate is calculated by,

E
[
RNF(t)

]
=

θke1
ξ +

(
R(0) − θke1

ξ

)
e−ξt. (18)

The long-run stable expected return rate can be calculated as,

lim
t→∞

E
[
RNF(t)

]
=

θke1
ξ . (19)

The return rate is not stable because of the stochastic disturbance. However, there exists a stable
long-run expected return rate for a specific closed-loop supply chain system. The long-run expected
return rate is unique which means the system will converge to a specific state for a particular closed-loop
supply chain. From the expected evolutionary path of the return rate, we have:

dE
[
RNF(t)

]
dt

= −ξ
(
R(0) −

θke1

ξ

)
e−ξt.

When R(0) > θke1
ξ , dE

[
RNF(t)

]
/dt < 0; when R(0) < θke1

ξ , dE
[
RNF(t)

]
/dt > 0. The expected return

rate may increase or decrease over time, which depends on the initial return rate of the system. The
long-run stable state is the best for the system, even when the initial return rate is above the long-run
stable state. That is to say, keeping a high initial return rate is not as good as shrinking into the long-run
stable state.

3.3. The Numerical Analysis with No Fairness Concern

In this subsection, we would like to conduct a numerical analysis for the NF model to illustrate
our theoretical results. The system parameters are chosen by a = 40, b = 0.8, c = 6, ∆ = 2,
θ = 1, δ = 1, ρ = 0.15, k = 20, σ = 0.1, s = 1. We utilize the following equation to approximate
the system dynamics under equilibrium collecting control strategy,

R(t + dt) = R(t) + (−ξR(t) + θke1)dt + σR(t)
√

dtζ(t). (20)

where
{
ζ(t)

}
are independent and identically distributed (i.i.d) standard normal random variables.

Time step dt is set by 0.01.
Figure 1 illustrates the evolutionary path of the return rate in the presence of stochastic disturbances.

The return rate may increase or decrease over time in terms of expected value. The expectation of
the return rate will converge into a stable state along with time, whatever the initial return rate is.
The optimal strategy for the retailer is to keep the system state as close as possible to the stable state,
even though the initial return rate is above the stable state. The return rate always hovers around its
expectation as a result of the stochastic disturbance.
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Figure 3 shows the impact of disturbance intensity on the collecting efforts as well as the return
rate. The retailer will raise its collecting effort level when the stochastic disturbance intensity is
increasing. As a result, the corresponding expected return rate will increase with the increasing of
collecting effort. We can expect that the profit rate of the supply chain members will benefit from the
increasing of stochastic disturbance intensity. This may come from that the retailer has to raise its
collecting effort level to avoid the return rate deviated too far from the stable state, which results in a
higher return rate, a lower retail price for the closed-loop supply chain system, and thus a higher profit
rate for the supply chain members. However, it should be noticed that this effect is not that prominent
which could infer from the increment value.
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4. Equilibrium Strategies with Fairness Concern Models

In this section, we will deal with the equilibrium strategies for the supply chain members with the
retailer being concerned with fairness. We consider two types of fairness concern retailer, i.e., the gap
fairness concern retailer in Section 4.1 (GF model) and self-due fairness concern retailer in Section 4.2
(SF model). We will use these theoretical results to discuss the impact of fairness on the closed-loop
supply chain.

4.1. GF Model: Gap Fairness Concern

The unfair feeling of gap fairness concern retailer comes from the profit gap between the retailer
and the manufacturer. The retailer considers unfair when the profit the manufacturer earns is more than
that the retailer earns, and the more the profit gap, the more unfairness the retailer will think. The gap
fairness concern model is similar to Nie and Du [29], Li and Li [31]. Assuming the manufacturer to be
fairness neutral, the objective function of the manufacturer is given by

max
ω(t)≥0

{
JGF
m = E

∫
∞

0
e−ρtπm(t)dt

}
.

The retailer considers not only about its own profits but also the profit gap between his profit and
the manufacturer’s, thus the objective function is formulated by

max
p(t)≥0, E(t)≥0

{
JGF
r = E

∫
∞

0 e−ρt[πr(t) + λ(πr(t) −πm(t))]dt
}
. (21)

where λ ∈ [0, 1] represents the fairness concern parameter for the retailer, and the larger it is, the more
the retailer is concerned about the fairness of supply chain distribution. The feeling of unfairness
comes from the profit gap between the manufacturer’s and the retailer, i.e., (πm(t) −πr(t)). The greater
the gap, the more the retailer fells unfairness. Following the same method, we derive the equilibrium
strategy for the supply chain members in Proposition 3. The proof of Proposition 3 and 4 are put in the
Appendix A.

Proposition 3. When θk <
8(ρ+δ)(δ−σ2)

∆2b , GF model exists only one feedback Stackelberg Markov equilibrium.
The equilibrium wholesale price is calculated by

ωGF∗ =
a(λ+1)+b[c(3λ+1)−(∆(3λ+1)−2s(2λ+1))R]

2b(2λ+1) . (22)
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The equilibrium retail price is
pGF∗ =

3a+b(c−∆R)
4b . (23)

The equilibrium collecting control strategy is

EGF∗ = θ
k(λ+1) (2g2R + g1). (24)

where

g1 =
∆(λ+ 1)(a− bc)

8[ρ+ δ− 2θkg2/(λ+ 1)]
, g2 =

(ρ+ 2δ− σ2) −

√
(ρ+ 2δ− σ2)2

− θk∆2b/2

4θk/(λ+ 1)
.

It is shown in Proposition 3 that the presence of gap fairness concern does not affect the existence
of Markov equilibrium. The retailer would make his responses according to his feeling about fairness.
However, the equilibrium strategies of the retailer are not going to be altered as the manufacturer has
taken the retailer’s concern of fairness into consideration. The manufacturer will shift profit to the
retailer by way of turning down the wholesale price.

Proposition 4. In model GF, the expected evolutionary path of return rate is calculated by,

E
[
RGF(t)

]
=

θk g1
ν(λ+1) +

(
R(0) − θk g1

ν(λ+1)

)
e−νt. (25)

The long-run stable expected return rate can be calculated as,

lim
t→∞

E
[
RGF(t)

]
=

θk g1
ν(λ+1) . (26)

where ν = −
(

2θk g2
(λ+1) − δ

)
.

4.2. SF Model: Self-Due Fairness Concern

Unlike the gap fairness concern retailer, the self-due fairness concern retailer takes self-due as the
fairness reference point. When the profit the retailer earns in the supply chain is above at the reference
point, the retailer considers it is fairness; otherwise if the retailer’s profit is below the reference point,
the retailer fells unfairness. Following Du et al. [27], we incorporate the Nash bargaining point as the
self-due reference point for the retailer. As such, the retailer takes the Nash bargaining point to be
a fairness distribution between the supply chain members. Also, assuming the manufacturer to be
fairness neutral, we formulate the objective function of the manufacturer as

max
ω(t)≥0

{
JSF
m = E

∫
∞

0
e−ρtπm(t)dt

}
.

Taking the Nash bargaining point as the self-due fairness reference point, the objective function of
the retailer in model SF is formulated as

max
p(t)≥0, E(t)≥0

{
JSF
r = E

∫
∞

0 e−ρt[πr(t) + λ(πr(t) −πr(t))]dt
}
. (27)

In which πr(t) is the Nash bargaining profit for the retailer. Denote β ∈ (0, 1) as the Nash
bargaining power parameter for the retailer, the Nash bargaining point is calculated in the following.
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Lemma 1. Suppose the manufacturer is fairness neutral, and the retailer is fairness concern with fairness
concern parameter λ, the Nash bargaining reference point for the retailer is given by

πr =
β(1+λ)
1+βλ (πr + πm). (28)

Proof. Because of fairness neutral, the utility rate at time t for the manufacturer is Um(t) = πm(t). As a
result of fairness concern, the utility rate for the retailer is Ur(t) = πr(t) + λ(πr(t) −πr(t)) . According
to Nash bargaining theory, the Nash bargaining point can be solved by maximizing the Nash product
(Ur)

β(Um)
1−β, i.e.,

max
πr, πm

Ψ = (Ur)
β(Um)

1−β, (29)

s.t. πr + πm = π.

The Nash bargaining reference point can be solved as πr =
β(1+λ)
1+βλ π =

β(1+λ)
1+βλ (πr + πm). �

Substituting the Nash bargaining reference point, the objective for the retailer is

max
p(t)≥0, E(t)≥0

{
JSF
r = E

∫
∞

0 e−ρt
[
πr(t) + λ

(
πr(t) −

β(1+λ)
1+βλ (πr(t) + πm(t))

)]
dt

}
. (30)

which could be rewrite as

max
p(t)≥0, E(t)≥0

{
JSF
r = E

∫
∞

0 e−ρt
[(
β(1+λ)
1+βλ +

1−β
1+βλ

)
πr(t) + λ

(
1−β

1+βλπr(t) −
β(1+λ)
1+βλ πm(t)

)]
dt

}
. (31)

In the Nash bargaining point, the retailer is supposed to take β(1+λ)
1+βλ (πr(t) + πm(t)) from the

distribution. However, the retailer actually gets
(
β(1+λ)
1+βλ +

1−β
1+βλ

)
πr(t) as a result of the manufacturer

takes the distribution power in the channel. The difference is 1−β
1+βλπr(t)−

β(1+λ)
1+βλ πm(t), thus when term

is above zero, the retailer will be happy to get more, however, when this term is below zero, the retailer
fells unfairness as the profit he earns is less than his self-due profit. The proof of Proposition 5, 6, and 7
are put in the Appendix A.

Proposition 5. When θk <
8(ρ+δ)(δ−σ2)

∆2b , SF model exists only one feedback Stackelberg Markov equilibrium.
The equilibrium wholesale price is calculated by

ωSF∗ =
a+b[c(1+2βλ)−(∆(1+2βλ)−2s(1+βλ))R]

2b(βλ+1) . (32)

The equilibrium retail price is
pSF∗ =

3a+b(c−∆R)
4b . (33)

The equilibrium collecting control strategy is

ESF∗ =
θ(βλ+1)
k(λ+1) (2l2R + l1). (34)

where

l1 =
∆(a− bc) (λ+1)

(βλ+1)

8
[
ρ+ δ− 2θkl2

(βλ+1)
(λ+1)

] , l2 =
(ρ+ 2δ− σ2) −

√
(ρ+ 2δ− σ2)2

− θk∆2b/2
4θk(βλ+1)
(λ+1)

.

Once again, the presence of self-due fairness concern would not affect the existence of Markov
equilibrium. From Proposition 3 and 5, we could conclude that the preference of fairness concern of
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the retailer would not affect the existence of equilibrium and the equilibrium strategies of the retailer,
whatever the type of fairness concern is. The manufacturer confronts the self-due fairness concern
retailer will choose his wholesale price according to the channel power of the retailer and the fairness
concern degree of the retailer.

Proposition 6. In model SF, the expected evolutionary path of return rate is calculated by,

E
[
RGF(t)

]
=

θkl1
µ

(βλ+1)
(λ+1) +

(
R(0) − θkl1

µ
(βλ+1)
(λ+1)

)
e−µt. (35)

The long-run stable expected return rate can be calculated as,

lim
t→∞

E
[
RGF(t)

]
=

θkl1
µ

(βλ+1)
(λ+1) . (36)

where µ = −
(
2θkl2

(βλ+1)
(λ+1) − δ

)
. We conclude in Proposition 7 with the impact of fairness concern on the feedback

control strategies for the retailer.

Proposition 7. For the same return rate, the retailers with different fairness concern type make the same feedback
control strategies, i.e.,

pNF∗(R) = pGF∗(R) = pSF∗(R), ENF∗(R) = EGF∗(R) = ESF∗(R).

Proposition 7 indicates that whether gap fairness concern or self-due fairness concern would
not affect the equilibrium feedback control strategies, in terms of retail price and collecting effort.
The retailers with different fairness type will make strategy according to his fairness concern type
and the manufacturer’s wholesale price. However, as the manufacturer takes the social preference of
fairness concern into consideration, the retailer would not change his equilibrium strategies compared
to no fairness concern. This means the manufacturer has to shift profit to the retailer in the presence of
fairness concern for the follower. Otherwise, the supply chain system could make even less profit rate
compared to the system with no fairness concern retailer.

5. Numerical Analysis between Different Fairness Type

In this section, we would investigate how the manufacturer would shift profit to the retailer
according to different fairness concern type for the retailer. The approximation is the same as that used
in 3.3. We compare the expected long-run equilibrium profit rate for the manufacturer and the retailer
in Figures 4–6. Figure 4 shows the comparison results of β = 0.1, which represents the scenario in
which the Nash bargaining power is small for the retailer. Thus Figures 5 and 6 represent the scenario
with equal Nash bargaining power and high Nash bargaining power, respectively.

Figures 4–6 illustrate that the more the retailer concerns about fairness, the more profit the
manufacturer will shift to the retailer, irrespective of whether the retailer is gap fairness concern or
self-due fairness concern. When the retailer is gap fairness concern, the profit rate of the retailer will
increase over the fairness concern degree faster than the self-due fairness concern, which makes the
gap fairness concern retailer an aggressive fairness concern type.

Figures 4 and 5 demonstrate that gap fairness concern can bring more profit shifting for the retailer
when the Nash bargaining power of the retailer is below 0.5. When the Nash bargaining power of the
retailer is above 0.5, self-due fairness concern may bring more profit shifting for the retailer. In model
SF, the retailer sets the fairness reference point by Nash bargaining point, according to his bargaining
power. The retailer can accept low distribution when his channel power is small, and he will request
more distribution as his channel power is rising to large. Basically, the self-due fairness concern retailer



Sustainability 2020, 12, 3289 14 of 21

expresses his feeling of unfairness by way of Nash bargaining point. It is seemed to be quite reasonable
for both the retailer and the manufacturer.

In contrast, gap fairness concern retailer is more aggressive when his channel power is low and
conservative when his channel power is rising to large. Although the gap fairness concern may bring
more profit shifting for the retailer when his channel power is low, it may incur the dislike of the
manufacturer, who thought the retailer may be too greedy and thus may decide not to consider the
feeling of the unfairness of the retailer.

Thus, we conclude that the type of self-due fairness concern is more reasonable for the retailer
to express its concern of fairness, and is more acceptable for the manufacturer to consider its profit
shifting for the retailer.
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6. Coordinate Contract

In this section, we first discuss the optimal control strategy for the centralized closed-loop supply
chain, and then design a coordinate contract for the manufacturer to coordinate with the retailer.
Utilizing superscript “C” and “SC” to represent the centralized model and coordinated model in
the following.

6.1. Centralized Model

In the centralized supply chain, there is only one decision-maker who decides both the retail price
as well as the collecting effort, simultaneously. The objective function for the centralized decision
maker is formulated by

max
p(t)≥0, E(t)≥0

{
JC = E

∫
∞

0 e−ρt
[
(p(t) − c + ∆R(t))D(t) − 1

2 kE2(t)
]
dt

}
.

The proof for Proposition 8 can be found in the Appendix A.

Proposition 8. When θk <
2(ρ+δ)(δ−σ2)

∆2b , the optimal feedback control strategies for the centralized model is
calculated by

pC∗ =
a+b(c−∆R)

2b , EC∗ = θ
k (2n2R + n1). (37)

The value function for the supply chain is

VC = n0 + n1R + n2R2. (38)

where 
n0 = 1

ρ

(
θk
2 n1

2 +
(a−bc)2

4b

)
,

n1 =
∆(a−bc)

2[ρ+δ−2θkn2]
,

n2 =
(ρ+2δ−σ2)−

√
(ρ+2δ−σ2)

2
−2θk∆2b

4θk
.

(39)
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It is obvious that the retail price is lower and the collecting effort is larger in the centralized model,
compared with that in the decentralized models. The double marginalization effect appears both in the
forward channel and the reverse channel of the closed-loop supply chain. The double marginalization
effect in the forward channel is quite common in the management literature. The reverse side double
marginalization effect mainly comes from that the retailer will choose his collecting effort according to
the marginal value of the return rate to his value function, not according to the total marginal value of
the supply chain members.

6.2. Coordinate Contract

To coordinate the supply chain, there are two parts needed to be considered, i.e., the revenue of
selling the new products and the expenditure of collecting the used-products. As the optimal collecting
effort of the retailer is always E∗ = θ

k
∂Vr
∂R , it is impossible to coordinate the supply chain unless the

manufacturer shares cost expenditure for the retailer. That is to say, suppose VSC
r + VSC

m = VC in the

coordinated model, the collecting effort must satisfy E∗ = θ
k

(
∂VSC

r
∂R +

∂VSC
m

∂R

)
. As such, the closed-loop

supply chain cannot be coordinated by the traditional two-part tariff or revenue sharing contract.
We designed a hybrid contract to coordinate the supply chain in the following Proposition 9. Suppose
the reservation value for the retailer is VR∗

r = r0 + r1R + r2R2. The problem can be summarized as

max
p(t)≥0, E(t)≥0

{
JSC
m = E

∫
∞

0 e−ρt
[
(ω(t) − c + ∆R(t))D(t) − 1

2 (1− η)kE2(t) + F
]
dt

}
. (40)

s.t.


(p(t), E(t)) ∈ argmax

{
JSC
r = E

∫
∞

0 e−ρt
[
(p(t) −ω(t))D(t) − 1

2ηkE2(t) − F
]
dt

}
JSC
r ≥ JR∗

r (41)

Proposition 9. A hybrid contract (ωSC∗, ηSC∗, FSC∗)can coordinate the supply chain. The wholesale price of the
manufacturer is

ωSC∗ = c− ∆R. (42)

The collecting expenditure sharing ratio of the manufacturer is

ηSC∗ = 2r2R+r1
2n2R+n1

. (43)

The franchise fee of the retailer is

FSC∗ =
{
(a−b(c−∆R))2

4b +
θ2(2r2R+r1)(2n2R+n1)

2k − δ(2r2R + r1)R + r2σ2R2
− JR∗

r

}
. (44)

The value functions of the manufacturer and the retailer in the coordinated model are

VSC∗
m = (n0 − r0) + (n1 − r1)R + (n2 − r2)R2, (45)

VSC∗
r = VR∗

r . (46)

Proof. The HJB equation of the retailer is

rVSC
r = max

p, E

{
(p(t) −ω(t))D(t) −

1
2

kE2(t)(1− η) +
∂VSC

r
∂R

(θE− δR) +
σ2

2
R2 ∂

2VSC
r

∂R2 − F
}

.

The optimal response is

p =
a + bω

2b
, E =

θ
ηk
∂VSC

r
∂R

.
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According to JSC
r ≥ JR∗

r , we derive

F ≤ (p−ω)D(t) −
1
2

kE2(1− η) +
∂VSC

r
∂R

(θE− δR) +
σ2

2
R2 ∂

2VSC
r

∂R2 − ρVR∗
r .

The HJB equation of the manufacturer is

ρVSC
m = max

ω

{
(ω− c + ∆R)D−

1
2
ηkE2 +

∂VSC
m

∂R
(θE− δR) +

σ2

2
R2 ∂

2VSC
m

∂R2 + F
}

.

Substituting the optimal responses of the retailer into the HJB equation of the manufacturer and
taking the first-order condition yields

ωSC∗ = c− ∆R.

Thus, the optimal strategy for the retailer is

pSC∗ =
a + b(c− ∆R)

2b
, ESC∗ =

θ
ηk
∂VSC

r
∂R

.

Now the HJB equation for the manufacturer is

ρVSC
m = (p− c + ∆R)D−

1
2

kE2 +

(
∂VSC

m
∂R

+
∂VSC

r
∂R

)
(θE− δR) +

σ2

2
R2

(
∂2VSC

m

∂R2 +
∂2VSC

r

∂R2

)
) − ρVGF∗

r .

To coordinate the supply chain, we must have

ESC∗ =
θ
ηk
∂VSC

r
∂R

=
θ
k

(
∂VSC

r
∂R

+
∂VSC

m
∂R

)
.

That is to say

η =

∂VSC
r

∂R
∂VSC

r
∂R +

∂VSC
m

∂R

.

We have right now

ρ(VSC
m + VR∗

r ) = (p− c + ∆R)D− θ2

2k

(
∂VSC

m
∂R +

∂VSC
r

∂R

)2

+
(
∂VSC

m
∂R +

∂VSC
r

∂R

)
(θE− δR) + σ2

2 R2
(
∂2VSC

m
∂R2 +

∂2VSC
r

∂R2

)
.

Assuming VSC
r = VR∗

r , VSC
r + VSC

m =VC, we can derive that VSC
r = r0 + r1R + r2R2, VSC

m =

(n0 − r0) + (n1 − r1)R + (n2 − r2)R2. �

The wholesale price in the coordinated contract is precisely the marginal cost for the manufacturer,
which equals the unit production cost minus the cost saving from making use of the returned
used-products. The collecting expenditure sharing percentage η is the ratio of the marginal value of
the retailer to the total marginal value of the supply chain members. It indicates that the retailer will
only be willing to making the effort which is in direct proportion to his return rate marginal value.
Only when the manufacturer undertakes the collecting expenditure which is relevant to his return rate
marginal value, the supply chain can be coordinated.

7. Conclusions

This paper addresses the stochastic collecting control problem in a closed-loop supply chain
consisting of one manufacturer and one retailer, concerned with fairness. Stochastic differential
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game models are formulated to discuss the optimal return problem with dynamic characteristics and
random disturbance, and the feedback equilibriums are resolved by the HJB equation method. We also
derived the evolutionary path of the return rate under the equilibrium control strategies for different
models with different fairness concern types. Furthermore, we designed a coordinate contract for the
manufacturer to coordinate with the retailer.

We have found that only under a specific condition there exists a unique feedback Markov
equilibrium for the closed-loop supply chain. The conditions of the existence for the decentralized
supply chain models are the same, whatever the fairness concern type the retailer is. The equilibrium
wholesale price and retail price strategies decrease over the return rate, and the equilibrium collecting
control strategy increases over the return rate. The evolutionary path of the return rate cannot
be predicted precisely because of the stochastic disturbance in the collecting process. We derived
the expectation of the stochastic return rate that approaches a stable state along with the time.
The monotonicity of the expectation is relevant to the initial value of the return rate, and whatever
the initial return rate is, the expectation approaches the same stable state for a CLSC system.
The manufacturer and the retailer can benefit from the increasing of disturbance intensity, although the
effect is not that obvious in terms of profit increment.

We further investigate how the presence of fairness concern for the retailer would affect the supply
chain system. We derived the feedback equilibriums with two fairness concern types of the retailer,
i.e., the gap fairness concern retailer and the self-due fairness concern retailer. The results indicate that
whether gap fairness concern or self-due fairness concern would not affect the equilibrium feedback
control strategies, in terms of retail price and collecting effort. The manufacturer has to shift profit to
the retailer in the presence of fairness concern for the follower. The gap fairness concern retailer is
more aggressive when his channel power is low and conservative when his channel power is rising to
large. In contrast, the type of self-due fairness concern is more reasonable for the retailer to express
its concern of fairness and is more acceptable for the manufacturer to consider its profit shifting for
the retailer.

We found the traditional two-part tariff or the revenue sharing contract is not able to coordinate
the closed-loop supply chain. We designed a hybrid contract with wholesale price, franchise fee and
collecting expenditure sharing for the manufacturer to coordinate with the retailer. The collecting
expenditure sharing percentage equals the ratio of the marginal value of the retailer to the total marginal
value of the supply chain members.

The managerial implications for the supply chain members are as follows. From the long-run
perspective, the manufacturer who leads the CLSC should shift some revenue to the retailer who
are engaged in the used-products collecting, in order to relieve the fairness concern of the retailer.
The retailer acts as a gap fairness concern type would be too aggressive while self-due fairness concern
type would be more reasonable for both the manufacturer and the retailer to accept the fairness appeal.
Although the manufacturer cannot simply adopt a two-party tariff or a revenue sharing contract to
coordinate the CLSC, the manufacturer could employ the hybrid contract to coordinate the CLSC.

There are several limitations to this research. First, because of the complexity of the stochastic
differential game model, we did not study the CLSC scenario with competing retailers. However, the
competing retailers are more usual in a supply chain with the manufacturer being a leader. Moreover,
the presence of competition would bring the peer-induced fairness problem. Therefore, it would be
interesting how the presence of competition, as well as peer-induced fairness concern, would co-affect
the equilibrium strategies as well as the stable state for the system. Second, we only consider that the
retailer collects the used-product on his own. However, the manufacturer could employ some incentive
programs to better motivate the retailer on used-product collection. As such, what kind of incentive
program should be adopted for the manufacturer and what is the effect of the incentive program on
the system return rate and profit of the supply chain members would be meaningful questions.
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Appendix A

Proof of Proposition 3. In model GF, the Hamilton–Jacobi–Bellman equation for the retailer is
formulated by

ρVGF
r = max

p, E

 (1 + λ)
[
(p−ω)D + sRD− 1

2 kE2
]
− λ[(ω− c + ∆R)D− sRD]

+
∂VGF

r
∂R (θE− δR) + σ2

2 R2 ∂
2VGF

r
∂R2

.

The best response of the retailer can be resolved by the first-order condition as

p =
a(1+λ)+bω(1+2λ)+b(∆Rλ−2Rλs−Rs−cλ)

2b , E = θ
k(1+λ)

∂VGF
r
∂R .

The HJB equation of the manufacturer can be formulated by

ρVGF
m = max

ω

{
(ω− c + ∆R)D− sRD +

∂VGF
m
∂R (θE− δR) + σ2

2 R2 ∂
2VGF

m
∂R2

}
.

Inserting the best response of the retailer into the value function of the manufacturer, we obtain
the optimal wholesale price control strategy as

ωGF∗ =
a(1 + λ) + b(c(1 + 3λ) − (∆(1 + 3λ) − 2s(1 + 2λ))R)

2b(1 + 2λ)
.

Thus, the equilibrium control strategy of the retailer is derived as

pGF∗ =
3a + b(c− ∆R)

4b
, EGF∗ =

θ

k(1 + λ)

∂VGF
r

∂R
.

Following the same procedure, the value functions of the manufacturer and the retailer are
conjectured as: VGF

r = g0 + g1R + g2R2 and VGF
m = h0 + h1R + h2R2. The coefficients are calculated by

g0 = 1
ρ

(
θk

2(λ+1) g1
2 +

(λ+1)(a−bc)2

16b

)
g1 =

∆(a−bc)(λ+1)

8
[
ρ+δ−

2θk g2
(λ+1)

]
g2 =

(ρ+2δ−σ2)−

√
(ρ+2δ−σ2)

2
−θk∆2b/2

4θk/(λ+1)



h0 = 1
ρ

(
θk g1h1
(λ+1) +

(λ+1)(a−bc)2

8b(2λ+1)

)
h1 =

∆(a−bc)(λ+1)
(2λ+1) +

8θk g1h2
(λ+1)

4
[
ρ+δ−

2θk g2
(λ+1)

]
h2 = ∆2b

8
(
ρ+2δ−σ2−

4θk g2
(λ+1)

)
Proof of Proposition 4. In model GF, take the equilibrium collecting strategy into Equation (1),

dRGF(t) =
((

2θk g2
(λ+1) − δ

)
RGF(t) + θk

(λ+1) g1

)
dt + σ(RGF(t))dz(t).

Denote ν = −
(

2θk g2
(λ+1) − δ

)
, and let σ(RGF(t)) = σRGF(t), thus

dRGF(t) =
(
−νRGF(t) + θk

(λ+1) g1

)
dt + σRGF(t)dz(t).
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Make use of the stochastic integral equation and take the expectation,

E
[
RGF(t)

]
= R(0) +

∫ t
0

(
−ξE

[
RGF(u)

]
+

θk
(λ+1) g1

)
du. (47)

The above equation can be solved as the same way of Proposition 2, then the result is

E
[
RGF(t)

]
=

θk g1
ξ(λ+1) +

(
R(0) − θk g1

ξ(λ+1)

)
e−νt.

Similarly, assume θk < ξ(λ+ 1)/g1 to ensure that the long-run return rate is smaller than 1.
Proof of Proposition 5. The procedure is quite similar with the proof of Proposition 1 and 3. We

omit it here.
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