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Abstract: Climate change is increasing the risk of extreme events, resulting in social and economic
challenges. I examined recent past (1971–2000), current and near future (2010–2039), and future
(2040–2069) fire and heat hazard combined with population growth by different regions and residential
densities (i.e., exurban low and high densities, suburban, and urban low and high densities). Regional
values for extreme fire weather days varied greatly. Temperature and number of extreme fire weather
days increased over time for all residential density categories, with the greatest increases in the
exurban low-density category. The urban high-density category was about 0.8 to 1 ◦C cooler than
the urban low-density category. The areas of the urban and suburban density categories increased
relative to the exurban low-density category. Holding climate change constant at 1970–2000 resulted
in a temperature increase of 0.4 to 0.8 ◦C by 2060, indicating future population increases in warmer
areas. Overall, U.S. residents will experience greater exposure to fire hazard and heat over time
due to climate change, and compound risk emerges because fire weather and heat are coupled and
have effects across sectors. Movement to urban centers will help offset exposure to fire but not heat,
because urban areas are heat islands; however, urban high-density areas had lower base temperatures,
likely due to city locations along coastlines. This analysis provides a timely look at potential trends in
fire and heat risk by residential density classes due to the expansion and migration of US populations.

Keywords: climate change; compound risk; implications; land use; socioeconomic; wildland-urban
interface; WUI

1. Introduction

Climate change has far-reaching implications for economic and social stability, including loss of
services and security, affecting quality and quantity of lives. Climate change is expected to increase
severe weather events, including heat waves, fire, flooding, hurricanes, and drought. At recent
temperatures, Oppenheimer et al. [1] assigned moderate risk from extreme weather events, high level
of risk beginning below 1 ◦C of warming, and severe and widespread impacts during the next few
decades. Indeed, climate change may have already been increasing the number and severity of natural
disasters during past decades. During the 1980s, 2.8 events occurred per year that each cost at least a
billion dollars, for a total of $127.7B [2]. During the 1990s, 5.2 billion dollar events occurred per year,
for a total of $456.7B. During the 2000s, 5.9 billion dollar events occurred per year, for a total of $510.3B.
During the 2010s, 11.9 billion dollar events occurred per year, for a total of $802.2B. Additionally, the
budget for fire suppression has increased during the past decades to billions of dollars [3].

Climate change is expected to cause migration from coastal areas of inundation and heat [4,5].
This would reverse migration during the past 50 or more years, after air conditioning became available,
of movement by households and firms to locations that will experience seawater rise and heat waves
(e.g., Florida and southern coastal locations; 5). However, not all 13.1 million people at risk of 1.8 m
inundation [4] may be likely to migrate beyond a short distance within a county. Migration decisions
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based on climate amenities may have a lesser influence than jobs, housing costs, and family, perhaps
resulting in climate change migration for no more than 5% of regional populations [6]. For residents,
having access to the best available information about risk of extreme events will help inform decisions
about migration, real estate purchases, and mitigation of risk to people and property. Many residents
in the United States are unaware of natural disaster risks to property, livelihood, safety, and overall
well-being due to inadequate information or inaccessible disclosure of exposure, despite billions of
dollars invested in risk determination [7,8].

Warming in hot locations in the United States is expected to increase annual national mortality
rates at 5.4 (±0.5) deaths per 100,000 per ◦C in warming, after offsetting mortality reductions in cool
regions [9]. Projected heat index increases for both US and global populations recently have been
coordinated with population scenarios at 1 km resolution and prior to these studies, at least 28 studies
estimated future heat-related mortality for at least one US city [10–12]. Morefield et al. [13] applied
EPA’s Integrated Climate and Land Use Scenarios at 90 m ([6]; developed in part by Morefield) and the
Benefits Mapping and Analysis Program to comprehensively model heat risk, determining that future
changes in climate may cause about 3000 to 16,000 heat-related deaths annually.

Few models exist of future fire risk for the United States, or they are in development due to
the complexity involved (e.g., [14] ). Wildfire potential, without accounting for population change,
was assessed by Liu et al. [15], using a drought index (Keetch–Byram Drought Index) based on previous
generation climate projections of the Coupled Model Intercomparison Project Phase 3. While fire models
based on climate projections are realizable, challenges to simulating full fire risk nation-wide require
accounting for numerous factors, such as land use, non-native species, vegetation type, fuel availability
and properties, fuel breaks, human-caused ignitions, past fires, and fire suppression. Fire typically
requires moisture to grow vegetation that acts as fuel, followed by drier weather that allows ignitions.
Human-caused fires have expanded the fire season, to triple the length of lightning-caused fire season,
and account for 84% of all wildfires and 44% of total area burned [16]. Intermixing of wildlands and
housing at the wildland–urban interface (WUI) increases likelihood of fire, fire suppression, build-up
of fuel (i.e., vegetation), and fire severity, when fire eventually occurs. Total WUI area in the United
States has increased since 1970 so that now the WUI contains about 10% of the land area occupied by
housing and about 33% of all housing units in the continental United States [17].

Although definitions vary, risk has components of hazard (e.g., summer heat or dangerous fire
weather), exposure (e.g., location by region), and vulnerability (e.g., residential densities, where
exurban residents are more vulnerable to fire due to proximity to vegetation or fuels than suburban or
urban residents). To provide an indication of current risk and future risk as temperatures warm and
populations grow and migrate, I present fire risk based on fire weather and also summer heat risk
during the recent past (1971–2000), present and near future (2010–2039), and the medium-range future
(2040–2069) by dynamic residential densities and stable ecological regions for the continental United
States. For fire risk, I selected an indicator of extreme fire weather, days below the third percentile of
100-h fuel moisture [18,19], and to supply a measure of heat, I selected summer maximum temperature
that translates easily as a “climate amenity”. I applied Integrated Climate and Land Use Scenarios
(ICLUS; [20]), which project residential density classes. With the models, I was able to answer whether
US residents will move from areas with heat risk into areas with fire risk and whether some residential
densities are more at risk. While this is not the first analysis of fire risk for the continental US, I supply
updates and refinements, which could prove useful, given that there appear to be both limited model
sources and summaries. These types of assessments are critical to inform public awareness of natural
hazards and climate change, a first step to safer communities and reductions in loss of life, injury, and
economic costs. Moreover, fire weather and heat are inextricably linked, resulting in compound risk,
with implications for society and ecosystems.
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2. Methods

For ecoregions, I used ecological divisions, slightly modified by merging any spatially disjunct
features into the surrounding region ([21]; Figure 1). Although it is possible to adjust the ‘eco’
component of the ecoregion based on climate change projections [22], the regions are recognizable and
cultural, for example, ‘the South’. Therefore, I held the region boundaries constant in time, and then
converted the shapefile to a raster with characteristics that matched the Integrated Climate and Land
Use Scenarios file (e.g., 90 m resolution; ESRI, Redlands, CA, ArcMap v. 10.5.1).Sustainability 2020, 1, x FOR PEER REVIEW 4 of 14 
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Figure 1. Regions of the continental United States, and residential density categories (gray shades)
during 2000 (a) and 2060 (b). Residential density categories are based on a minimum of 0.05 housing
units per hectare.

I selected a mean ensemble general circulation model and two general circulation models of
HadGEM2-ES365, to match one of the general circulation models applied in Integrated Climate
and Land Use Scenarios (ICLUS; see below) and MIROC-ESM-CHEM, which also was selected by
Morefield et al. [13]. In general, no model is better or worse at representing observed spatial patterns
of basic climate and hydrological variables, despite variability across most regions and seasons [23].
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I additionally focused on the representative concentration pathway of RCP8.5, which best corresponds
with current carbon dioxide concentration trends. If mitigation occurs, RCP8.5 may represent climate
of a later interval. Nonetheless, I analyzed RCP4.5 for comparison purposes.

Integrated Climate and Land Use Scenarios (ICLUS; [20]) v2.1.1 land use projections provide
population growth every 10 years by residential densities (Figure 1). The ICLUS v2.0 documentation
describes the incorporation of climate change into the migration model, although models are available
without climate change. Updates to ICLUS v2.1 include a switch to more recent demographic
components of change (i.e., rates of fertility and mortality). Additionally, the amenity value of local
climate (average precipitation and temperature for summer and winter) was permitted to influence
migration patterns. I selected the RCP8.5 representative concentration pathways, which is the best
match for current concentration trends. This narrative results in a U.S. population that exceeds 730
million by 2100 [6]. Hadley GEM2-ES and GISS-E2-R general circulation model options were available,
but only the Hadley GEM2-ES matched as general circulation model available for fuel moisture data.

In ICLUS, urban residential densities are defined as at least 4 (3.95) housing units per hectare based
on the U.S. Census Bureau definition of urban population of 1000 people per square mile. The urban
high category at a threshold of at least 25 (24.7) units per hectare is based on typical densities for public
transportation, whereas the suburban areas have a 1 unit per hectare threshold, which is the density
for municipal sewer and water supply services. For what may be considered the wildland–urban
interface, the exurban high category threshold is 0.25 units per hectare and the exurban low category
threshold is 0.05 units per hectare.

Maximum temperature during summer (June, July, August) and extreme fire weather days during
summer (days with 100-hour fuel moisture below the 3rd percentile) were based on downscaling
of general circulation model outputs via the Multivariate Adaptive Constructed Analogs (MACA)
method to 4-km resolution [18,19]. The ensemble mean consisted of 18 (extreme fire weather) or 20
(temperature) general circulation models for the recent past (1971–2000), present and near future
(2010–2039), and the medium-range future (2040–2069).

I projected fuel moisture and temperature .tif files (comprised of summer fuel moisture and
maximum temperature variables for two general circulation models and one ensemble of general
circulation models for three climate intervals) to match details of the ICLUS data, including the Albers
projection. I then applied zonal statistics (ESRI, ArcMap v. 10.5.1; I corroborated test results with R
Core Team zonal statistics, R Foundation for Statistical Computing, Vienna, Austria) to determine
mean values for ecoregions and residential densities. I matched ICLUS at 2000 with fuel moisture and
temperature at 1971–2000, ICLUS at 2030 with fuel moisture and temperature at 2010-2039, and ICLUS
at 2060 with fuel moisture and temperature at 2040–2069. Additionally, I repeated this for residential
densities within each ecoregion. To isolate changes in fuel moisture and temperature from changes in
population, I held one layer constant in time at either 2000 (ICLUS) or 1971–2000 (fuel moisture and
temperature), while varying the other layer to 2060 or 2040–2069, and also compared 1971–2000 and
2040–2069 variables with 2060 land use without climate change.

3. Results

By region, temperature differences were generally consistent by latitude among general circulation
models. From 1971–2000 to 2010–2039, the ensemble model increased slightly less than 2 ◦C, the MIROC
model increased about 2 ◦C, and the Hadley model increased almost 2.5 ◦C (Table 1). Likewise, from
2010–2039 to 2040–2069, the ensemble model increased about 2 ◦C, the MIROC model increased about
2.5 ◦C, and the Hadley model increased almost 3 ◦C. Fire weather based on 100-hour fuel moisture
below the third percentile was extremely variable among general circulation models (Table 1; Figure 2).
The intermountain region overall had the greatest number of extreme fire weather days, ranging from
19 to 25 days by 2040–2069, but the Hadley model projected the most extreme fire weather days of
>25 days in the southern US, particularly for the southeast and east regions. The RCP4.5 values for
2040–2069 were intermediate between RCP8.5 values for 2010–2039 and 2040–2069.
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Table 1. Mean values of maximum summer temperature (◦C) and number of summer days with
100-hour fuels below the third percentile by region for the ensemble general circulation model (GCM),
MIROC-ESM-CHEM (MIR), and HadGEM2-ES365 (Had) and RCP8.5 for different climate years and
RCP4.5 for 2040–2069.

Region GCM Had MIR GCM Had MIR

1971–2000

East 28.6 28.6 28.5 2.3 3.4 2.2
Northeast 24.8 25.0 24.7 1.9 1.9 1.6

Plains 30.7 30.6 30.8 5.3 5.6 6.0
Prairie 30.8 30.8 30.9 3.8 4.7 4.4

Intermountain 26.3 26.2 26.2 9.4 9.3 9.6
Southeast 32.5 32.5 32.5 1.6 2.7 2.2
Southwest 33.7 33.6 33.6 7.0 6.8 6.8

West 26.7 26.5 26.6 7.2 7.1 7.4

2010–2039 RCP8.5

East 30.3 31.4 30.5 4.8 11.3 3.8
Northeast 26.5 27.0 26.6 3.2 3.3 2.4

Plains 32.5 33.0 32.8 7.5 7.8 5.9
Prairie 32.6 33.4 32.9 6.5 9.5 6.5

Intermountain 28.2 28.7 28.6 13.0 12.4 11.5
Southeast 34.0 34.9 34.4 3.8 11.7 4.8
Southwest 35.4 36.1 35.9 9.2 11.8 12.7

West 28.4 28.7 28.7 9.5 8.6 7.8

2040–2069 RCP8.5

East 32.4 35.1 33.2 7.5 26.6 7.0
Northeast 28.5 29.6 29.2 4.5 9.9 2.3

Plains 34.5 35.7 35.6 11.0 17.0 11.4
Prairie 34.6 36.4 36.0 9.4 20.6 11.1

Intermountain 30.3 31.7 31.5 18.7 25.4 23.6
Southeast 35.7 38.4 37.1 6.9 30.1 14.6
Southwest 37.1 37.8 38.2 11.8 15.2 18.6

West 30.1 30.8 30.9 12.4 14.6 12.7

2040–2069 RCP4.5

East 31.3 33.1 32.0 4.8 13.3 5.9
Northeast 27.5 28.6 28.0 3.4 7.7 2.3

Plains 33.5 34.3 34.6 9.8 13.3 13.1
Prairie 33.7 34.8 35.4 7.8 11.6 13.4

Intermountain 29.2 30.4 29.9 16.0 19.7 16.8
Southeast 34.9 36.4 35.5 4.3 13.3 8.1
Southwest 36.3 36.7 37.6 10.7 9.9 17.4

West 29.3 30.0 30.0 11.1 11.6 11.4
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Figure 2. Number of summer days below the third percentile of 100-h fuel moisture for the ensemble
general circulation model (a), HadGEM2-ES365 (b), and MIROC-ESM-CHEM (c) during 2039–2060.

By residential density categories (Table 2; Figure 3), heat increased over time by about 3.5 ◦C
to 6.5 ◦C by model, with greatest increases in the exurban low-density class. Approximately a 1 ◦C
difference existed between the coolest residential density category of urban high-density and the
warmest residential density category of urban low-density, which increased slightly over time from
0.8 to 1 ◦C. The urban high-density also had the least number of extreme fire weather days, although
wildfires are not likely to occur in urban areas, which do not have continuous vegetation cover to
spread fire. The exurban low-density category had the greatest number of extreme fire weather days
by 2040–2069, but the differences among residential densities were slight except in the Hadley model,
which projected 25 days for exurban low-density, 22 days for exurban high-density, and 20 days for
suburban. Extreme fire weather days increased over time from about three days during 1971–2000
to four or five days during 2010–2039 to seven or eight days during 2040–2069 for the ensemble and
MIROC models and from about 3.5 days to 8 days to 20 days for the Hadley model. The RCP4.5 values
for 2040–2069 were intermediate between RCP8.5 values for 2010-2039 and 2040-2069. Results were
extremely variable by region (Supplementary Table S1).
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Table 2. Mean values of maximum summer temperature (◦C) and number of summer days with 100-hour fuels below the third percentile by land use and year,
with land use area (square kilometers), for the ensemble general circulation model (GCM), MIROC-ESM-CHEM (MIR), and HadGEM2-ES365 (Had) and RCP8.5 for
different climate intervals and RCP4.5 for 2040–2069. The 2060 land use model without climate change (no cc), 2000 land use with 2040–2069 variable values, and 2060
land use with 1971–2000 values allow isolation of different effects.

Land Use Area GCM Had MIR GCM Had MIR Land Use GCM Had MIR GCM Had MIR

2000 1971–2000 2060 no cc 1971–2000

Exurban, low-density 362,732 29.1 29.2 29.1 2.3 3.2 2.4 29.9 29.9 29.8 2.6 3.5 2.7
Exurban, high-density 179,933 29.6 29.6 29.6 2.7 3.5 2.9 30.1 30.1 30.0 2.8 3.6 3.0

Suburban 61,137 30.1 30.1 30.0 2.9 3.6 3.0 30.5 30.5 30.4 2.8 3.6 3.0
Urban, low-density 52,935 30.2 30.2 30.1 3.4 4.1 3.4 30.7 30.6 30.6 3.4 4.1 3.5
Urban, high-density 2986 29.4 29.4 29.3 2.7 3.4 2.7 29.9 29.9 29.8 2.8 3.4 2.9

2030 2010–2039 RCP8.5 2060 2040–2069 RCP4.5

Exurban, low-density 515,820 31.5 32.3 31.6 4.7 9.9 3.9 32.5 34.0 33.1 5.2 12.3 6.7
Exurban, high-density 261,415 31.6 32.4 31.8 4.8 8.8 4.2 32.6 34.0 33.3 5.4 11.6 7.1

Suburban 95,177 31.9 32.6 32.1 4.7 8.1 4.1 32.9 34.3 33.6 5.3 10.8 7.2
Urban, low-density 83,283 32.1 32.7 32.3 5.3 8.3 5.0 33.1 34.3 34.0 6.0 11.0 8.2
Urban, high-density 7200 31.2 31.7 31.5 4.4 6.1 4.1 32.3 33.2 33.1 4.8 8.4 6.6

2060 2040–2069 RCP8.5 2060 no cc 2040–2069 RCP8.5

Exurban, low-density 565,298 33.4 35.8 34.2 7.5 24.8 8.8 33.3 35.7 34.1 7.3 24.5 8.4
Exurban, high-density 300,486 33.5 35.7 34.3 7.4 22.2 8.7 33.4 35.5 34.2 7.3 21.8 8.4

Suburban 120,101 33.8 35.8 34.6 7.1 20.2 8.4 33.6 35.6 34.5 7.0 20.0 8.3
Urban, low-density 116,687 33.9 35.6 34.7 7.7 18.8 9.0 33.7 35.4 34.6 7.7 18.8 8.9
Urban, high-density 14,022 32.9 34.2 33.7 6.2 13.7 7.1 32.7 34.1 33.6 6.4 14.2 7.1

2000 2040–2069 RCP8.5 2060 1971–2000

Exurban, low-density 362,732 32.7 35.1 33.4 6.8 23.1 7.2 479,043 29.9 29.9 29.9 2.7 3.6 2.9
Exurban, high-density 179,933 33.1 35.2 33.9 7.2 21.0 8.2 236,722 30.1 30.1 30.1 2.8 3.6 3.0

Suburban 61,137 33.5 35.4 34.4 7.2 19.8 8.4 81,926 30.5 30.5 30.4 2.8 3.6 3.0
Urban, low-density 52,935 33.6 35.3 34.5 7.8 18.7 8.9 66,789 30.7 30.7 30.6 3.4 4.1 3.6
Urban, high-density 2986 32.7 34.0 33.5 6.2 13.8 6.9 4620 29.9 29.9 29.8 2.7 3.3 2.8
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Figure 3. Box plots of temperature (◦C) and number of extreme fire weather days for means of the
ensemble general circulation model, HadGEM2-ES365, and MIROC-ESM-CHEM during 1971–2000
(RCP8.5), 2010–2039 (RCP8.5), 2040–2069 (RCP8.5), and 2040–2069 (RCP4.5) by residential density
categories of exurban low (white) and high (gray) densities, suburban (yellow), and urban low (pink)
and high (purple) densities.

While holding land use constant at 2000 in combination with 2049–2060 climate change,
temperature increased by 3.3 to 6 ◦C, depending on general circulation model and residential densities.
Similarly, the number of extreme fire weather days increased by 3.5 to 20 days, depending on general
circulation model and residential densities. While holding climate change constant at 1970–2000
in combination with 2060 land use, number of extreme fire weather days overall was similar, but
temperature increased by 0.4 to 0.8 ◦C, indicating movement to warmer areas (Table 2). Similarly,
2049-2060 values were greater for 2060 land use than 2000 land use. The 2060 land use model was
similar with and without the incorporation of climate change.

For area of residential categories, all areas increased over time (Table 2). Nonetheless, the
percentage of total area (i.e., sum of the five categories) that each category represented over time
changed, with high-density urban increasing from about 0.5% to 1.2%, low-density urban increasing
from about 8% to 10.4%, suburban increasing from about 9.2% to 10.7%, high-density exurban held
steady at about 27%, and high-density exurban decreasing from about 55% to 50.5%. The area of
exurban residential density represents the wildland–urban interface, which has greater potential of
wildfire. Results varied greatly by region (Supplementary Table S1).

4. Discussion

4.1. Will United States Residents Move from Areas with Heat Risk into Areas with Fire Risk and are Some
Residential Densities More at Risk?

Both climate change and socioeconomic factors, which drive population growth and distributions
and land use, are important determinants of risks [1]. Climate change greatly increased temperature
(+3.3 to 6 ◦C) and number of extreme fire weather days (+3.5 to 20 days), but adaptive response
by migration was small, in this model (6; Table 2). Indeed, modeled movement and population
growth alone without climate change increased population exposure to heat slightly (+0.4 to 0.8
◦C). The relative influence of heat and number of extreme fire weather days was much greater than
population dynamics. Climate change risks also varied across regions (Supplementary Table S1).

Nonetheless, continued movement to and growth in urban centers will reduce wildfire exposure.
The exurban low-density category had the greatest number of extreme fire weather days by 2040–2069,
albeit the difference among residential density categories may be minor depending on the general
circulation model. Even though number of extreme fire weather days is based on weather alone,
residential categories impart another measure of fire risk. Despite exceptions, the exurban low- and
high-density residential classes (i.e., WUI) are most at risk of fire due to the presence of continuous
vegetation, which spreads fire, and human-caused ignitions (due to equipment use, smoking, campfires,
railroads, arson, debris burning, children, fireworks, and power lines; [16]). Area of exurban low-density
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decreased over time (55% to 50.5%), as urbanization occurred. Regional variation in area of the exurban
low-density category was great (Supplementary Table S1).

Urban areas have their own, warmer climate than surrounding areas, owing to absorption and
release of heat by buildings, heat from energy use, and lack of surface moisture [12]. Due to the
urban heat island effect, future population growth in urban centers will increase heat risk. The urban
high-density residential category by location is coolest, probably because megacities tend to be located
along coastlines or rivers, which moderate temperature (Table 2; Figure 3). Therefore, heat-related
mortality may be greatest in the urban low-density residential category, which already is 0.8 ◦C warmer
than the urban high-density residential category. However, it may be that densely populated cities
make up for the difference in temperature due to a greater heat island effect.

Uncertainty in estimates originates from many sources, including climate general circulation
models and concentration projections, downscaling, and future changes in population and land use in
response to climate change. Great spatial heterogeneity occurs in projections (Figure 2), reducing the
certainty of conclusions. Fire risk is likely to increase due to extreme fire weather alone, but fire risk is
moderated by many factors. Models will improve with continued development.

4.2. Adaptation

Risk entails hazard (e.g., weather events), exposure to hazard, and vulnerability to harm from
hazards. Risk perception is critical for the realization of vulnerabilities and development of adaptive
actions to reduce the negative effects of climate change and help transition ecosystems and society
to changing conditions [1]. For example, risk in the distant future may not prevail over immediate
concerns or motivate outlays of resources to prepare for future risk, particularly when residents doubt
both risk and effectiveness of mitigation actions [24]. Both failure to recognize change and deferral
of action are able to occur because climate change is slow to develop. Early warning signs include
extreme weather events, flooding, drought, wildfires, and record hottest years. However, shifting
baselines in the perception of normal conditions may cause tolerance for progressive escalation of event
intensity. Moreover, slow development of climate change allows deferral of action to pass to other
generations. It is hoped that technology will avert climate change, but so far that is not in evidence.

Adaptation strategies can reduce vulnerability. For example, U.S. residents have been able to
adapt well to heat due to air conditioning units, which, paradoxically, promote increased climate
warming [25]. Planted trees and other vegetation can likewise help cool cities. Furthermore, switching
to a more sedentary and indoor lifestyle prevents heat-related mortality. Crop workers, who are active
during the summer and typically not U.S. citizens, are particularly vulnerable to heat stroke [26]. Heat
contributes to mortality for people with cardiovascular and respiratory illnesses and the elderly, who
are less able to respond physiologically to heat [27].

Residents and communities have been slower to employ less gratifying and more active adaptation
and mitigation strategies to reduce vulnerability to fire and climate change. Many exurban residents,
who live at the wildland–urban interface with exposure at the intersection of human-caused ignitions
with vegetation, do not take actions to create defensible space on their land by reducing flammable
vegetation and armoring houses against fire [28]. Trees are valuable features in moderation, but high
densities around houses will encourage fires. Wildfire damage to most homes and structures is due to
ignition after wind-borne embers land on a roof or wooden deck or blow in through vents [29]. Instead,
homeowners rely on neighboring public or private landowners for fuel treatment [30], government
emergency services to suppress wildfire, and insurance or federal disaster assistance to cover any
property losses [31]. Programs such as Firewise, Wildfire Risk to Communities, and Ready, Set, Go!
educate and encourage communities to maintain defensible space, develop wildfire plans, and prepare
for evacuation.

Vulnerability to climate change can be exacerbated by increased population and land uses, whereas
sustainable development may reduce vulnerability to climate change [1]. Planning guidelines that
constrain wildland–urban interface sprawl will result in easier wildfire defense and evacuation of
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people from WUI communities. Disclosure of wildfire risk may reduce building and movement into
fire-prone areas, affecting the spread of future housing development in high-risk locations [32].

4.3. Compound Risk

Climate change is affecting ecosystems and society in numerous ways, including increased extreme
weather events. Hot temperatures may compromise health and outside activities of both work and
leisure, such as farming or gardening and summer sports. Fire may cause road closures, breakdown of
infrastructure networks such as electricity, water supply, and health and emergency services, disruption
of livelihoods, injury, ill-health, or even mortality. Fire may lead to post-fire flooding and debris flow
due to loss of vegetation and soil erosion, intensifying vulnerability. On top of heat, fire, and post-fire
events, climate change will increase the likelihood of heavy precipitation and flooding, resulting
in a cascade in which greater temperatures will produce more fires that will interact with floods.
Urbanization in coastal or riverine cities will additionally increase flood exposure. Extreme events
often interact because they are spatially and temporally dependent, leading to underestimation of
risk [33,34].

Compound risk occurs due to synergistic interactions among hazards, resulting in greater risk
than simple summation of independent events, particularly across sectors. For example, heat-related
mortality may be partially related to effects of air quality on respiratory diseases [1]. Hotter weather
contributes to greater ground level ozone (smog) in polluted areas, wildfire smoke, and production
of pollen, exacerbating respiratory problems [1]. Indeed, Mora et al. [35] documented 467 pathways
by which climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms,
sea-level rise, and changes in natural land cover and ocean chemistry affected human health, water,
food, economy, infrastructure, and security.

5. Conclusions

Climate change will greatly increase temperature and number of extreme fire weather days by
2040-2069. The exurban density classes are most vulnerable to wildfire, due to the intersection of
human-caused ignitions and vegetation, and the urban density classes are most vulnerable to heat,
due to the urban heat island effect. Population movement and growth to urban centers will reduce the
percentage area of exurban density classes, reducing exposure to wildfire, but movement and growth
will increase exposure to heat, based on these models. Adaptation strategies can reduce risk. Risk
is compounded by interactions among climate change effects, which may impact health, livelihoods,
assets and homes, well-being and sense of place, and other sectors such as crop yields, food security,
and water resources.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/8/3277/s1,
Table S1: Mean Values of Maximum Summer Temperature (◦C) and Number of Summer Days with 100-Hour
Fuels Below the Third Percentile for the Ensemble General Circulation Model (GCM), MIROC-ESM-CHEM (MIR),
and HadGEM2-ES365 (Had) by Region and Land Use, with Land Use Area (Square Kilometers for 2000, 2030, and
2060), for Different Climate Years.
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