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Abstract: In developed countries, buildings are involved in almost 50% of total energy use and
30% of global annual greenhouse gas emissions. The operational energy needs of buildings are
highly dependent on various building physical, operational, and functional characteristics, as well
as meteorological and temporal properties. Besides physics-based energy modeling of buildings,
Artificial Intelligence (AI) has the capability to provide faster and higher accuracy estimates, given
buildings’ historic energy consumption data. Looking beyond individual building levels, forecasting
building energy performance can help city and community managers have a better understanding of
their future energy needs, and to plan for satisfying them more efficiently. Focusing at an urban scale,
this research develops a campus energy use prediction tool for predicting the effects of long-term
climate change on the energy performance of buildings using AI techniques. The tool comprises
four steps: Data Collection, AI Development, Model Validation, and Model Implementation, and
can predict the energy use of campus buildings with 90% accuracy. We have relied on energy use
data of buildings situated in the University of Florida, Gainesville, Florida (FL). To study the impact
of climate change, we have used climate properties of three future weather files of Gainesville, FL,
developed by the North American Regional Climate Change Assessment Program (NARCCAP),
represented based on their impact: median (year 2063), hottest (2057), and coldest (2041).

Keywords: climate change; building energy performance forecasting; machine learning;
urban buildings energy; scenario analysis

1. Introduction

1.1. Climate Change and Building Energy

The Third United States National Climate Assessment [1] describes climate change consisting of
long-term variations in temperature, wind, precipitation, and all other aspects of the Earth climate.
In the 21th century, the Earth temperature increase is likely to be the largest among any century
in the past ten centuries. There are robust indications that the average temperature of Earth will
increase for 2 ◦C in the 21st century [2]. Although this amount of change may sound insignificant,
it can cause considerable changes in the Earth’s climate and disturb its natural weather systems.
As a result, extensive drought and reduced crops, rapid and considerable rise in sea levels, and stronger
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hurricanes and cyclones are highly probable and soon would threaten human survival. According to
the Intergovernmental Panel on Climate Change (IPCC) geological records, passing 450 ppm average
CO2 concentration means an ice-free planet with water levels 220 feet higher than today. Continuing
business as usual will likely increase the CO2 concentration levels to pass 450 ppm by 2050 [2].

Globally, buildings are involved in almost 50% of total energy usage and 30% of annual greenhouse
gas emissions [3]. According to the International Energy Agency [4], in the United States nationwide,
buildings account for 39% of total energy consumption, 30% of Global Warming Potential (GWP),
30% of raw materials consumption, 30% of waste, 12% of water usage, and 68% of electricity usage.
Also, the primary source for satisfying the electricity demands of buildings are power plants which
utilize water for functioning. Based on research conducted by the US Geological Survey in 2000 [5],
52% of total surface water and 39% of all freshwater withdrawals were consumed for thermoelectric
power generation in power plants in that year.

In the European Union (EU), residential buildings consume 22% of total energy. Policy makers
have recognized this sector’s potential to contribute towards lowering energy consumption and CO2

emissions. Therefore, several policies and directives were issued in order to enhance building energy
performance [6]. The main purpose of such policies is to promote the improvements of building energy
performance through requirements such as calculation of integrated energy performance of buildings,
application of minimum criteria for new and renovated buildings, energy performance certifications,
and HVAC systems inspection [7]. In United Kingdom (UK), CO2 emissions are set to be reduced by at
least 26% by 2020 and 80% by 2050, compared to 1990 levels [8]. Another example is the Committee on
Climate Change (CCC) that defined a series of carbon budgets in order to create the background for
meeting 2050-desired CO2 levels in each contributing sector [9].

During recent decades, a vast range of national-level building energy demand models were
developed in a disaggregated way, varying considerably regarding data input requirements and
sociotechnical assumptions about building operation [10]. Therefore, their expected results vary
considerably based on these assumptions. However, a better understanding of the limitations and
capabilities of these models would benefit both building scientists and policy makers. Such knowledge
would help policy makers to determine which building parameters are important for national carbon
reduction and to come up with more effective adaptation strategies [7]. Furthermore, construction
professionals could also benefit from this knowledge in developing techniques and business strategies
for sustainable refurbishment.

1.2. Urban Building Energy Consumption

According to the United Nations World Population Prospects [11], by 2050, two-thirds of the
world’s population will be urban, increasing the negative effects of climate change and the importance
of seeking practical solutions. Global energy and environmental challenges have led city governments
to gradually modify their policies, decisions, and strategies towards greener and energy efficient
approaches. In the U.S., state governments have set ambitious goals in reducing their Greenhouse Gas
(GHG) emissions, such as 80% by 2050 in New York City [12] and Boston [13]. Besides understanding
current consumption patterns, forecasting urban building energy performance is crucial to meeting
such goals.

Considering the potentials beyond individual building scale, urban planners, civil engineers,
and construction managers can considerably contribute to form energy efficient cities [14]. However,
the problem includes complex details, making the solution difficult [15]. Currently, both planning and
research communities agree that there is an urgent need for a new understanding of the role of urban
planning in dealing with these rising issues. Moving above the common tasks of defining strategic
plans and designing a city’s spatial aspects, urban planners must carefully address energy and resource
management issues simultaneously [15]. Increasing interests in accurate building energy performance
simulation tools, as well as the traditional focus on developing certification procedures, shows the
interests of experts and researchers in assessing the energy performance of individual buildings rather
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than large building stocks. However, in order to achieve the desired global environmental goals, it is
extremely important to focus on evaluating the energy performance of buildings at a regional, urban,
or national scale [14].

1.3. Building Energy Performance Forecasting (BEPF)

Improvements in computer technology have made computers reliable and common tools in
optimizing building design and assessment of their performance. Also, the speed and accuracy of
computer calculations make them important tools, contributing to the engineering of a building’s life
cycle [16]. As a result, computer simulations are extensively implemented in the design and operation
of buildings [17]. Among them, energy simulation models are essentially used in BEPF. However,
optimization models are not frequently used in designing building energy performance, due to the
complexity of building systems and their dynamic thermal behavior [16]. Yet, as today’s computers
are growing more capable, systematic prediction and optimization approaches are becoming more
feasible to achieve in building energy performance assessment and design [14].

Accurate energy forecasting methods have various advantages in planning and optimization of
building energy demands at individual or urban scale. For new buildings, which do not have any
energy consumption history, computer simulation methods are implemented for energy analysis and
forecasting possible future scenarios [18]. However, for existing buildings with available historic
time series energy data, statistical and machine learning approaches can be faster and much more
accurate [19].

Common computer software and regulations are typically very effective in assessing the energy
performance of new buildings. However, once the building is operating, various factors with complex
interactions influence its energy behavior. Due to such interactions, accurate simulation of buildings
using energy simulation software is extremely difficult [17]. Therefore, the use of data-driven
techniques can fundamentally help in assessing the energy performance of existing buildings [20–24].
These techniques rely on a building’s historic data in order to model its future energy use patterns.
The main advantages of the data-driven approach are fast computation of real time data, being
suitable for nonlinear modeling, and higher accuracy levels comparing to deterministic models [25].
However, data-driven approaches are highly dependent on historic data, difficult to generalize, and
nontransparent [26,27].

Focusing on data-driven techniques, this research develops a Campus Energy Use Prediction
(CEUP) tool for predicting the effects of long-term climate change on building energy performance
using artificial intelligence. According to our results:

• CEUP model can predict the energy use of campus buildings with 90% accuracy;
• University of Florida (UF) campus energy use in the upcoming 40 years, based on the North

American Regional Climate Change Assessment Program (NARCCAP) future weather scenarios,
can be up to 20% higher;

• Among climatic and temporal variables, average outdoor temperature is a good measure to
predict hourly energy consumption of campus buildings;

• Space functionality characteristics of various buildings in accurate gross square feet percentages
are used as one of the inputs to our prediction model;

• Incorporating building functionalities in space-level can increase the accuracy of physics-based
building clustering and hence result in better prediction accuracy.

2. Background

Machine Learning Applications in BEPF

In a systematic approach, we reviewed recent studies published since 2015, regarding the
applications of machine learning (ML) in individual and urban level BEPF, according to five criteria of
learning method, building type, energy type, input data, and time scale [28]. Various levels of these
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criteria were used for applying ML methods in BEPF, and there was no solid proof or measure that a
specific method or criterion performs better than the others. Reviewing more than 70 journal papers
in this field, we found that the majority of BEPF studies focus on combining or comparing various
ML methods, as well as categorizing building functionality, characteristics, and consumption patterns.
Out of all the articles, 61% focused on individual building level, while 39% were conducted on an
urban level. The scarcity of research in urban versus individual level ML-based BEPF is considerable.

Most literature focused on predicting electricity (44%), heating and cooling energy (39%), and total
building energy (29%) in both individual and urban levels, while only 2% considered natural gas in
their studies. In urban level studies, predicting building total energy use was more popular among
researchers, while in individual level, more ML-based methods were used for predicting electricity
and heating and cooling energy consumption. Commercial, residential, and educational buildings
were studied in 54%, 39%, and 26% of recent BEPF literature, respectively, addressing the relative
preference of researchers in studying these three types of buildings, mainly due to the availability and
reliability of building consumption and characteristics data. Cluster Analysis (CA) methods were used
more frequently in urban level BEPF, due to their capacities in categorizing various buildings in a
diverse environment.

Among recent studies on educational buildings, none studied several educational buildings in a
campus order. In our initial attempt to address this issue, we evaluated the energy performance of two
buildings representing a section of UF campus buildings. A set of energy efficiency measures
were identified and implemented, assessing their effects on building energy performance [29].
Comparing various time scales, we noticed that hourly prediction resolution was more frequently
used in individual level BEPF, while annual prediction resolution was more frequently used in urban
level BEPF. As information systems management software, hardware, and practices are enhanced,
we observe more studies being conducted on hourly and subhourly ML-based BEPF in urban and
community levels.

Meteorological, occupancy, and temporal data were used much more frequently in BEPF research,
compared to the other input data types, while building functionality and spatial properties were only
used in urban scale studies. Considering the meteorological input data type, which was used in 65% of
all BEPF studies, it is really important to understand the capacities of such input in climate change
adaptation practices, as they could be used as controlling variables in order to adapt to various climate
scenarios. Comparing input data types in individual level BEPF, we noticed that meteorological
data were used much more frequently as learning inputs, compared to all other input data types.
Such focus was not extensive in urban level studies. Accordingly, future urban level BEPF studies
can focus more on simulation based on meteorological data, to be able to further enhance climate
change adaptation practices. In the literature reviewed, there was no study that assessed the effects of
climate change on community building energy performance using future weather scenarios, as well as
addressing adaptation strategies or design resiliency. In order to fill this research gap, we propose the
following method.

3. Methodology

This research develops a Campus Energy Use Prediction (CEUP) tool for predicting the effects of
long-term climate change on the energy performance of buildings using AI techniques. Figure 1 shows
the general structure of CEUP that we developed in this study. The CEUP model uses a four-layer
structure consisting of (1) Data Collection, (2) AI Development, (3) Model Validation, and (4) Model
Implementation, and can predict the energy use of campus buildings with 90% accuracy. We relied on
energy use data of buildings at the University of Florida, Gainesville, Florida (FL).

Layer 1 refers to collecting a building’s specification data, as well as its total monthly and hourly
utility consumption, consisting of electricity, chilled water, steam, and natural gas. In addition,
local monthly and hourly average outdoor temperature, relative humidity, and solar radiation were
collected for the UF Campus. In layer 2, the AI-based energy use prediction model was developed using
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k-means clustering, Principal Component Analysis (PCA), Auto-Regressive Integrated Moving Average
(ARIMA), polynomial regression analysis, and Long Short-Term Memory (LSTM) techniques. In layer
3, the CEUP model was validated using actual energy consumption for a cluster of representative
buildings on campus. Finally, in the fourth layer, campus energy use was predicted using three
future climate scenarios. To study the impact of climate change, we used climate properties of three
future weather files of Gainesville, FL, developed by the North American Regional Climate Change
Assessment Program (NARCCAP) represented and based on their average outdoor air temperature,
relative humidity, and solar radiation: median (year 2063), hottest (year 2057), and coldest (year 2041).
In order to conduct the scenario analysis, we referred to the Technology Roadmap—Energy Efficient
Building Envelopes (International Energy Agency (IEA), 2013) [30], which is used to assess and present
the development of technology products in the building sector. According to the roadmap, we assessed
campus energy use for five envelope scenarios for each of the future climate scenarios. Each layer is
explained in more detail in the following sections.
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4. Model Development and Results

4.1. Layer 1: Data Collection

University of Florida (UF) has an 800 hectare campus and more than 900 buildings. According to
the campus utility data obtained from UF’s Physical Plant Division (PPD), there are a total of
217 buildings with a sensor configuration that captures an individual building’s utility consumption
every 15 minutes. UF also provided access to the documentation of the building’s energy performance
for various energy performance rating systems, such as the US Green Building Council’s (USGBC)
Leadership in Energy and Environmental Design (LEED) rating system. Reviewing energy rating
documentation varying from preliminary design plans to as-built plans and LEED V4 (release date:
Nov. 2013) forms, we could derive some of the thermophysical properties that influence building
energy performance. Twelve buildings had the required information available. The set includes various
primary building functions, such as educational, residential, research laboratory, and sport facilities.
Four types of data were collected for this research: (A) space functionality characteristics; (B) building
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thermophysical properties, including lighting and equipment energy intensities; (C) building energy
use; and (D) historic and future weather data.

(A) Space functionality characteristics were determined using the percentages of different
functional spaces in every building, which were calculated for each building used in this study.
Offices, classrooms, teaching labs, research areas, auditoriums, gymnasiums, and residential areas are
some of the functional spaces used for this classification. For instance, Rinker Hall (Bldg. ID 0272),
which houses UF’s School of Construction Management, consists of 14% classrooms and 25% office
areas, while Hough Graduate School of Business (Bldg. ID 0064) has 21% office areas and 22%
classrooms. The space classification percentages were based on the Gross Square Feet (GSF) area of
the buildings [29]. Table 1 represents the list of space functionality percentages used in this study.
Note that space functionalities like campus supply, residential, or sport that were mostly zero for the
selected buildings were removed from the study in later sections.

(B) The building thermophysical properties that we could derive from the energy performance
documents, and can be seen in Table 2, were total Gross Square Feet (GSM), number of floors, exterior
walls U-value (W/m2 ◦C), windows U-value (W/m2 ◦C), window to wall ratio, Solar Heat Gain
Coefficient (SHGC), floor U-value (W/m2 ◦C), roof U-value (W/m2 ◦C), Lighting Power Density (LPD)
(W/m2), and Equipment Power Density (EPD) (W/m2).

(C) Monthly and hourly utility consumption for the 12 buildings were collected for 3 years
(36 months) from January 2015 to December 2017. The buildings are of various ages. The purpose of
choosing a 3-year time period was to make sure that data were available for all the buildings over the
analysis time period. The consumption values are in kilowatt hour (kWh).

(D) Monthly and hourly average outdoor temperatures (◦C), relative humidity (%), and solar
radiation (W/m2) for UF campus were collected from the Florida Automated Weather Network (FAWN)
and can be seen in Figure 2. In addition, in order to assess the effects of climate change on campus
energy consumption, we collected hourly average outdoor temperatures (◦C), relative humidity (%),
and solar radiation (W/m2) for the city of Gainesville, FL for three future weather scenarios based
on their impact, namely the median (year 2063), hottest (2057), and coldest (2041), representing
climate conditions for the 2038 to 2066 period. The climate scenarios were created by a proprietary
algorithm developed by SeventhWave, a not-for-profit company in Madison, Wisconsin. The algorithm
uses climate change variables from North American Regional Climate Change Assessment Program
(NARCCAP), which is an international program that serves the high-resolution climate scenario needs
of the United States, Canada, and northern Mexico, and uses a regional climate model, coupled global
climate model, and time-slice experiments.
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Table 1. Building space functionality percentages.

Bldg. ID Total
GSF

Classroom
(%)

Teaching
Labs (%)

Study Room
(%)

Research
Lab (%)

Office
(%)

Auditorium
(%)

Instructor
Media

(%)

Academic
Supply

(%)

Campus
Supply

(%)

Residential
(%)

Sport
(%)

Unconditioned
(%)

0028 88,732 5.5 0.0 0.0 50.5 11.7 0.0 0.0 0.0 0.0 0.0 0.0 32.3

0064 72,724 21.5 0.6 3.2 0.0 20.6 0.0 0.3 0.0 0.0 0.0 0.0 53.8

0081 23,635 1.4 0.0 1.4 0.0 51.7 0.0 0.7 0.0 0.0 0.0 0.0 44.8

0086 85,155 0.0 0.0 0.0 0.0 5.2 0.0 0.0 0.0 0.0 56.1 0.0 38.7

0110 17,032 53.5 0.0 7.5 0.0 10.1 0.0 0.0 0.0 0.0 0.0 0.0 28.9

0214 85,486 20.0 13.5 7.0 0.5 12.1 1.5 0.0 0.0 0.0 0.0 0.0 45.4

0272 56,352 14.4 18.6 0.0 0.0 25.2 0.0 0.0 0.0 0.8 0.0 0.0 41.0

0289 18,410 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.5 0.0 33.5

0764 19,375 26.1 19.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 42.4

0860 84,804 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 1.0

1375 119,763 0.0 1.4 0.4 1.0 32.1 5.3 0.0 0.0 0.0 0.0 0.0 59.8

1377 93,018 0.0 0.0 0.0 31.4 24.8 0.0 0.0 0.0 0.7 0.0 0.0 43.1
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Table 2. Building thermophysical properties.

Bldg. ID
Total Gross

Square Meter
(GSM) (m2)

Number of
Floors

Window to
Wall (W/W)

Ratio

Exterior Wall
U-value

(W/m2 ◦C)

Windows
U-value

(W/m2 ◦C)

Windows Solar Heat
Gain Coefficient

(SHGC)

Roof U-value
(W/m2 ◦C)

Lighting Power
Density (LPD)

(W/m2)

Equipment Power
Density (EPD)

(W/m2)

0028 8243 2 0.138 0.3878 3.0810 0.30 0.2714 6.1354 18.08334

0064 6756 4 0.203 0.2220 5.1104 0.50 0.1447 9.9162 10.7639

0081 2196 3 0.19 0.2986 1.5331 0.38 0.2839 13.4548 16.1459

0086 7911 5 0.254 0.2285 2.4416 0.24 0.1493 5.9202 9.6875

0110 1582 2 0.072 0.2271 3.9180 0.38 0.3406 10.3010 18.2986

0214 7942 5 0.231 0.7041 4.2586 0.25 0.2725 9.9027 28.2014

0272 5235 3 0.372 0.2328 1.4195 0.28 0.1817 2.4756 10.7316

0289 1710 2 0.13 0.3236 4.0883 0.65 0.2157 15.9306 79.6529

0764 1800 1 0.221 0.6813 1.4763 0.38 0.2271 12.9167 5.3819

0860 7879 1 0.182 0.7041 4.2586 0.60 3.7419 12.3785 5.3281

1375 11,126 3 0.41 0.1589 1.9135 0.35 0.2044 10.8716 15.8229

1377 8642 5 0.31 0.2328 2.6574 0.81 0.2612 12.3785 7.7501
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Figure 2. Average outdoor temperature (◦C), relative humidity (%), and solar radiation (W/m2) at the
University of Florida (UF) for January 2015 to December 2017.

4.2. Layer 2: AI Development

This section describes how the model was developed for AI model implementation. In order to
forecast the energy performance of buildings based on their historic consumption and climate data and
thermophysical properties, we implemented k-means clustering, PCA, ARIMA, polynomial regression
analysis, and Long Short-Term Memory (LSTM) methods.

4.2.1. K-Means Clustering

For clustering, we used eight input variables which are a linear combination of the initially
introduced thermophysical and space functionality variables as follows:

1. Building Thermophysical Properties: 1.1. Total U-value × Area (W/◦C), 1.2. Windows
SHGC × Area (m2), and 1.3. Total Power (W).

2. Space Functionality Percentages: 2.1. Classroom, 2.2. Office, 2.3. Residential, 2.4. Teaching
Laboratories, and 2.5. Research Laboratories.

Variable 1.1 is the sum–product of exterior walls and windows U-values and their surface areas in
W/◦C, variable 1.2 is the sum–product of window SHGC and their surface area in m2, and variable 1.3
is building total lighting and equipment power in Watts.

The buildings were clustered into similar building types using the k-means approach to reduce the
complexity of forecasting, so that there was no need to model each and every campus building in order
to predict its energy consumption. Also, building clusters were used in extrapolating representative
building energy use to campus energy use. K-means is usually used for cluster analysis in data mining.
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It aims to partition n observations into k clusters in which each observation fits to the cluster with the
closest mean, that is, the cluster prototype.

Figure 3 shows the results of clustering buildings based on their thermophysical and space
functionality properties using k-means clustering. The method alternates between two steps:

1. Assigning each observation to the cluster with the least-squared Euclidean distance from its mean.
2. Calculating the new means of the observations in the new clusters.
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Figure 3. Building clustering using their thermophysical and space functionality properties.

Here, each axis is a unitless linear combination of the eight independent thermophysical and
space functionality variables that we defined in our study. The reason for using such functions was
simply that we were unable to map each of the buildings in an 8-dimensional space. Therefore,
we needed to use these functions to map the buildings in a 2-dimensional space. As a result, we could
partition the buildings into four clusters of educational (yellow), residential (green), research (purple),
and sport (blue) buildings. We could observe that buildings with similar space functionalities and
thermophysical properties are located closer to each other in the k-means clustering 2-dimensional
map. Also, we see that building 0860 is located near the residential buildings, but as we knew the
sport functionality of this building, we categorized it in a different cluster.

Figure 4 shows the 3-year (2015–2017) monthly energy consumption in MWh for buildings within
each of the clusters. Clusters 0, 1, 2, and 3 are of type research, sport, residential, and educational
buildings, respectively. The relative similarity of the consumption patterns over time for the buildings
within a cluster could be observed.
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4.2.2. PCA and ARIMA

PCA is a multivariate statistical approach for assessing the correlations existing among a set
of intercorrelated variables. Being able to categorize a complex and highly intercorrelated set of
variables, PCA gives a better understanding of cause and effect relationships. Tardioli et al. [31] used
PCA, k-means clustering, and RF to identify representative buildings and building groups in a set of
commercial urban buildings by using building typology, construction period, district location, building
final use and geometric information. In this study, we conducted PCA in order to prioritize the eight
independent variables based on their effects on campus building energy consumption.

ARIMA models are the most typical model of time series prediction methods. Lu et al. [32] used
ARIMA, ANN, and SVR to predict the hourly electricity, heating, and cooling energy consumption
for a set of community sports buildings, in which they considered building heterogeneity to improve
forecast accuracy. Initially, ARIMA forecasting was conducted for each cluster prototype representing
the average amount of energy consumption of buildings within each cluster. Here, the training size was
75% of the available data and the testing size was 25%. After training, the overall energy consumption
of buildings could be forecasted using their cluster prototype for 2018. The dependent variable was the
total monthly energy consumption, normalized by the average outdoor temperature in each month,
in order to include the effects of this climate variable in the prediction model.

As a measure of accuracy, we used Mean Squared Error (MSE). We calculated the error percentages
by dividing MSE by the cluster’s representative building energy consumption, which was the average
amount of energy consumption of buildings within each cluster. Table 3 shows the comparison of
output errors of the forecasting results.
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Table 3. Comparison of prediction error percentages.

Bldg. ID

MSE/Mean Percentage of Error

Autoregressive Integrated
Moving Average (ARIMA)

Principal Component Analysis
(PCA) + ARIMA

0028 8.13 8.87

0064 15.60 12.16

0081 30.19 20.37

0086 19.68 17.48

0110 18.62 11.40

0214 16.29 12.66

0272 17.18 17.17

0289 13.50 10.70

0764 27.17 4.49

0860 20.12 17.64

1375 29.62 21.05

1377 8.87 6.38

Based on this comparison, we concluded that for the majority of buildings, conducting PCA with
ARIMA forecasting would result in better accuracy. Also, it should be noted that PCA reduces the
dimension of input variables significantly and hence results in better accuracy. Consequently, in order
to increase the model accuracy levels, instead of forecasting only based on cluster representative
buildings, we conducted PCA and ARIMA for all the 12 buildings used in this study.

4.3. Layer 3: Model Validation

To make CEUP more reliable, we needed to validate it with the buildings’ actual energy use.
The validation process was essential in order to produce realistic energy use predictions. Our validation
method followed these steps:

1. Compare CEUP results with the buildings’ actual energy use;
2. Calculate validation measures (i.e., RMSE, etc.);
3. Compare the validation measures to the allowable range according to building energy codes.

For validation of CEUP monthly energy forecasting, according to availability of actual energy
consumption data, we used the buildings’ monthly energy consumption data from year 2017.
As an example, Figure 5 shows actual versus CEUP simulated energy use for the educational cluster
representative, UF Rinker School of Construction Management. Other than the month of February,
the actual versus CEUP simulated energy consumption patterns were quite similar. The inconsistency
can by due to energy sensor malfunction in that specific month.

Referring to the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) guidelines, the acceptable range of CVRMSE for monthly validation is ±15%. Table 4
shows the CVRMSE calculations for actual energy use versus CEUP simulations for Rinker Hall.
The calculated 14.1% CVRMSE is within the acceptable ranges of ASHRAE code.
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Figure 5. Actual versus Campus Energy Use Prediction (CEUP) simulated energy.

Table 4. CVRMSE for actual vs. CEUP results in MWh for Rinker Hall, the educational cluster representative.

Actual CEUP

Jan 85.95 98.45

Feb 79.23 113.69

Mar 96.38 97.28

Apr 100.35 109.59

May 102.43 115.16

Jun 103.67 113.40

Jul 115.13 123.07

Aug 116.71 119.84

Sept 116.66 135.38

Oct 112.69 127.17

Nov 97.07 102.55

Dec 85.42 78.52

CVRMSE 14.1%

Accordingly, the CVRMSE for actual energy use versus CEUP simulations for research, sport,
and residential cluster representative buildings were calculated as 9.22%, 8.3%, and 9.13%, meeting
ASHRAE requirements and validating CEUP acceptable levels of accuracy.

4.4. Layer 4: Model Implementation

4.4.1. Hourly Energy Use Prediction Based on Climate and Temporal Properties

In order to predict the energy use of campus buildings in hourly time intervals, and regarding
data availability, we collected hourly utility consumption data for eight of the sample buildings used
in this study for two years between January 2016 to December 2017 (dependent variables). In addition,
average outdoor temperature (◦C), relative humidity (%), and solar radiation (W/m2) values were
collected for the two years of study, as well as the three years of future climate scenarios for the years
2041, 2057, and 2063. Furthermore, to account for the effects of seasonality, we introduced hour of day
as the temporal variable (independent variables). Also, we have considered the absolute deviation of
average outdoor temperature and cooling degree days baseline (Tcdd, 18.3 ◦C) and its squared values
as two other independent variables for our study. In order to predict a campus building’s hourly
energy use, we assessed the performance of two methods that we describe in the following sections.
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Polynomial Regression Analysis

Initially, we calculated the correlation coefficients between the buildings’ energy use and the
four climatic and temporal predictive variables for hourly values, which can be found in Table 5.
The correlations between the buildings’ hourly energy consumptions and average outdoor temperature
was considerably higher than the other two climatic variables and the temporal variable. This shows
that among climatic and temporal variables, average outdoor temperature is a better measure to
predict hourly energy consumption of campus buildings given the available consumption data. Then,
we conducted regression analysis to assess the performance of the four variables in predicting the
buildings’ hourly energy consumption. Six degrees of regression were tested for the prediction
variables. R-squared values which are statistical measures of how close the data are to the fitted
regression line, were calculated for each degree of regression analysis.

Table 5. Correlation coefficients between dependent and independent variables for hourly energy
consumption values.

Hour
of Day T.Avg T.Cdd Sq

T.Cdd
Rel.
Hum.

Sol.
Rad.

Bldg.
0064

Bldg.
0081

Bldg.
0110

Bldg.
0272

Bldg.
0764

Bldg.
0028

Bldg.
1375

Bldg.
1377

Hour of Day 1 0.23 0.06 0.04 −0.35 0.06 0.28 0.01 0.29 0.00 0.07 −0.14 0.16 0.06
T.Avg 0.23 1 0.16 0.10 −0.34 0.53 0.73 −0.14 0.17 −0.04 0.62 −0.69 0.82 0.81
T.Cdd 0.06 0.16 1 0.96 −0.35 0.42 0.30 0.00 0.11 0.02 0.35 0.11 0.34 0.23

Sq T.Cdd 0.04 0.10 0.96 1 −0.34 0.39 0.24 0.01 0.08 0.02 0.31 0.17 0.28 0.18
Rel. Hum. −0.35 −0.34 −0.35 −0.34 1 −0.61 −0.22 −0.16 −0.20 −0.03 −0.30 0.02 −0.25 0.00
Sol. Rad. 0.06 0.53 0.42 0.39 −0.61 1 0.44 0.18 0.29 0.00 0.49 −0.18 0.52 0.36

Bldg. 0064 0.28 0.73 0.30 0.24 −0.22 0.44 1 −0.02 0.26 −0.01 0.73 −0.48 0.73 0.73
Bldg. 0081 0.01 −0.14 0.00 0.01 −0.16 0.18 −0.02 1 0.13 0.01 0.06 0.20 −0.11 −0.16
Bldg. 0110 0.29 0.17 0.11 0.08 −0.20 0.29 0.26 0.13 1 0.00 0.20 −-0.04 0.19 0.06
Bldg. 0272 0.00 −0.04 0.02 0.02 −0.03 0.00 −0.01 0.01 0.00 1 0.00 0.06 −0.02 −0.03
Bldg. 0764 0.07 0.62 0.35 0.31 −0.30 0.49 0.73 0.06 0.20 0.00 1 −0.35 0.66 0.61
Bldg. 0028 -0.14 −0.69 0.11 0.17 0.02 −0.18 −0.48 0.20 −0.04 0.06 −0.35 1 −0.56 −0.59
Bldg. 1375 0.16 0.82 0.34 0.28 −0.25 0.52 0.73 −0.11 0.19 −0.02 0.66 −0.56 1 0.84
Bldg. 1377 0.06 0.81 0.23 0.18 0.00 0.36 0.73 −0.16 0.06 −0.03 0.61 −0.59 0.84 1

As it can be seen in Table 6, as we increased the polynomial degrees, the R-squared values tended
to increase, toward higher accuracy of fitted lines. However, raising the polynomial regression degrees
can result in higher chances of overfitting the regression, which we wanted to avoid. Therefore,
we concluded that polynomial regression analysis is not an appropriate method for predicting hourly
energy use of campus buildings over an entire year, given the amount of available data. It was expected
that other models that can capture more feedbacks would perform better than regression models.

Table 6. R-squared values of various degrees of polynomial regression analysis of the buildings’ hourly
energy use.

Building Polynomial Regression Degrees

1 2 3 4 5 6

Bldg. 0064 0.598 0.782 0.823 0.837 0.855 0.859
Bldg. 0081 0.135 0.283 0.325 0.366 0.395 0.426
Bldg. 0110 0.172 0.295 0.381 0.407 0.436 0.451
Bldg. 0272 0.004 0.009 0.013 0.021 0.032 0.047
Bldg. 0764 0.465 0.689 0.737 0.774 0.789 0.783
Bldg. 0028 0.559 0.612 0.620 0.627 0.636 0.647
Bldg. 1375 0.737 0.767 0.776 0.783 0.789 0.792
Bldg. 1377 0.777 0.850 0.856 0.861 0.865 0.867

Long Short-Term Memory (LSTM)

LSTM blocks are building units for layers of Recurrent Neural Networks (RNN). RNNs composed
of LSTM units are usually called LSTM networks. LSTM units have various architectures. A usual
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LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate. The cell accounts for
memorizing values over random time intervals and, as a result, the memory in LSTM. The three gates
can be considered as an artificial neuron, the same as a feedforward/multilayer neural network. Figure 6
shows a typical LSTM cell used to forecast time series data, where xt is the input vector for LSTM unit,
ft, it, and ot are the activation vectors for the forget gate, the input gate, and the output gate, ht is the
output vector for the LSTM unit, and ct is the cell state vector. Average outdoor temperature, relative
humidity, solar radiation, and hour of the day were used as the predictor variables in this method.
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Figure 6. Common Long Short-Term Memory (LSTM) cell architecture [33]; xt is the input vector for
LSTM unit, ft, it, and ot are the activation vectors for the forget gate, the input gate, and the output
gate, ht is the output vector for the LSTM unit, and ct is the cell state vector.

We allocated 50% of the consumption data to model training and the other 50% to model testing.
Also, while training neural networks, one epoch refers to one passage of the entire training set.
In this analysis, we considered 50 epochs for training and testing steps. Mean squared error was
used as the objective loss function to minimize, in order to assess the accuracy levels of LSTM. As an
example, Figure 7 shows the loss (unitless) values of training and testing hourly energy consumption
for building 1377, Emerging Pathogens Institute, over 50 epochs. As can be seen, after 50 epochs,
the error percentage of tested data was almost 8%, hence, representing the high level of LSTM accuracy
for predicting the buildings’ hourly energy use based on the four climatic and temporal variables, as
well as complying with the +/–15% acceptable error of the ASHRAE-14 guideline.
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Accordingly, we predicted the hourly energy consumption of the eight buildings for the three
climate scenarios. LSTM is a prediction method for time series data, and currently we only know
the building’s consumption values as of now, and hence, there are no data from now to any of the
future years for which we are interested in predicting the consumption pattern and values. As a
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result, the levels of error for predicting three years far in the future was relatively high. Consequently,
the predicted scenario results were normalized by the mean values of consumptions over a year,
in order to mitigate the effects of the induced error. As an example, Figure 8 shows the LSTM-predicted
hourly energy consumption (in MWh) of building 0064, UF Hough Graduate School of Business, for the
median (year 2063), hottest (2057), and coldest (2041) future scenarios.
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median (year 2063), hottest (2057), and coldest (2041) future scenarios.

It should be noted that, based on the nature of the LSTM prediction method, while normalizing and
forecasting the hourly energy consumption values, a few negative values were observed, which were
considered as 0.

4.4.2. Monthly Energy Use Prediction Based on Climate Properties

Table 7 shows the CEUP simulated monthly energy consumption values in MWh for the twelve
buildings used in this study by using the ARIMA forecasting technique. The total energy consumption,
normalized by average outdoor temperature values, was simulated with the CEUP tool for year 2018
and was calculated to be 26,676 MWh for the twelve buildings. According to the utility consumption
data from UF PPD, we could extrapolate the consumption of this set of buildings to the entire UF
campus, based on campus buildings space functionality percentages, and predict 2018 campus energy
consumption to be 812,560 MWh.
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Table 7. CEUP simulated 2018 monthly energy consumption (MWh) for the twelve buildings used in
the study.

Bldg. ID
0028 0064 0081 0086 0110 0214 0272 0289 0764 0860 1375 1377 Totals

Month Tavg

2018-1 14.91 567.8 130.0 53.3 86.6 46.3 89.9 97.3 37.0 25.5 78.6 266.2 544.6 2023.1

2018-2 16.57 574.9 139.6 40.1 68.2 50.3 165.0 115.5 15.2 25.2 66.6 301.9 664.1 2226.7

2018-3 16.72 626.8 143.5 52.2 85.7 42.2 153.3 92.4 34.6 27.0 87.9 283.9 755.2 2384.5

2018-4 21.04 634.1 153.9 43.1 99.4 34.5 150.5 110.7 14.5 24.2 97.3 231.2 511.4 2104.9

2018-5 23.78 711.5 169.3 41.3 99.7 35.6 164.2 119.5 18.8 24.5 101.9 244.0 519.2 2249.5

2018-6 25.15 668.3 172.4 41.8 113.6 40.1 165.8 112.3 12.6 25.6 110.5 250.9 561.8 2275.7

2018-7 26.57 730.2 176.0 44.1 135.0 40.7 178.8 127.3 25.7 25.8 92.2 255.4 566.9 2398.1

2018-8 26.63 717.4 178.3 51.7 124.8 43.2 180.5 115.8 14.9 30.4 93.9 262.1 597.7 2410.6

2018-9 24.91 705.1 136.1 41.5 122.2 43.4 164.6 138.2 27.4 27.1 72.1 240.6 570.5 2288.9

2018-10 21.57 679.5 141.5 43.7 112.4 37.6 168.1 122.4 20.5 29.2 75.1 250.9 480.4 2161.3

2018-11 16.60 575.0 128.6 42.2 76.6 36.2 156.9 102.3 7.7 23.2 49.7 211.6 466.7 1876.7

2018-12 16.02 666.3 148.4 60.5 85.5 53.8 147.7 79.7 18.7 25.7 92.6 275.6 621.7 2276.2

12 buildings
total energy use 26676

4.4.3. Extrapolation to Campus Energy Consumption

We calculated UF campus buildings’ energy consumption by extrapolating the consumption of the
set of representative buildings to the entire UF campus, based on campus buildings’ space functionality
percentages. According to US NARCCAP future climate scenarios, in order to estimate campus
operational energy consumption under long-term climate change, three future climate scenarios,
median, hottest, and coldest annual average temperature, were used. Considering year 2018 as the
simulation baseline, with the mentioned approaches for hourly and monthly CEUP, we predicted
annual campus energy consumption values for the three future climate scenarios. The results in MWh
can be found in Table 8.

Table 8. Campus energy use and average outdoor temperature for baseline and future climate scenarios.

Actual CEUP Simulation

Year 2018 2018 2041 2063 2057
Scenario Baseline CEUP Coldest Median Hottest

Avg. Outdoor Temp. (◦C) 21.17 21.17 19.82 22.18 20.99
Campus Energy Demand (MWh) 752,858 812,560 780,262 901,999 838,458

Percentage Difference 7.93% +3.64% +11.37% +19.81%

It can be seen that the variation of campus energy use in the upcoming 40 years, based on
NARCCAP future weather scenarios, can be between +3.64% to +19.81%, and should be managed
accordingly. CEUP is a credible tool for predicting campus energy use, and given various possible
climate scenarios, CEUP can be helpful to campus energy managers to plan their energy strategies.
Also, by using additional building data, we can increase the forecasting accuracy levels and develop
the CEUP model to be representative of campus energy performance.

4.4.4. Scenario Analysis

After calculating the campus energy use for the three future scenarios, we wanted to assess how
the changes in building thermophysical properties would change the campus energy consumption
in the three future scenarios of the median (year 2063), hottest (2057), and coldest (2041). In order
to conduct this analysis, we referred to the technology roadmap that is used to assess and present
the development of technology products in building sector. The technology roadmap for building
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sectors can be categorized into five groups: building envelope, lighting, electronics, HVAC, and energy
management, among which our focus is on the building envelope group. According to the Technology
Roadmap—Energy Efficient Building Envelopes (IEA, 2013), we introduced five envelope scenarios for
each of the future climate scenarios, as can be seen in Table 9.

Table 9. Five envelope future scenarios based on Technology Roadmap, International Energy Agency
(IEA), 2013 [30].

Envelope Scenario Envelope Properties
Future Climate Scenario

2041 2063 2057

Coldest Median Hottest

1 Wall U-Value (W/m2 ◦C) 0.24 0.18 0.19
2 Roof U-Value (W/m2 ◦C) 1.99 1.99 1.99
3 Windows U-Value (W/m2 ◦C) 4.26 4.26 4.26
4 Windows SHGC 0.2 0.2 0.2
5 1 to 4 Combined All Above All Above All Above

By updating CEUP results according to the properties of five envelope scenarios, the configurations
of building clusters change, resulting in different campus energy use predictions for the three future
climate scenarios. As an example, Figure 9 shows the updated building k-means clustering result for
envelope scenario 5.
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According to the updated building clustering, CEUP simulation results for the future climate and
envelope scenarios can be seen in Figure 10 and Table 10. In all envelope scenarios, campus energy
consumption rises when compared to the baseline year of 2018. It should be noted that the highest
energy use level happens in year 2057 (hottest climate scenario).
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Table 10. CEUP simulation results for the future climate and envelope scenarios.

Envelope
Scenario

CEUP for Future Climate Scenario (MWh)

2041 Difference
with 2018

Baseline (%)

2063 Difference
with 2018

Baseline (%)

2057 Difference
with 2018

Baseline (%)Coldest Median Hottest

1 775.36 3.64 833.19 11.37 896.33 19.81

2 770.42 2.98 830.57 11.02 887.87 18.68

3 768.85 2.77 829.74 10.91 884.51 18.23

4 775.36 3.64 833.19 11.37 896.33 19.81

5 758.52 1.39 821.14 9.76 871.19 16.45

According to the scenario analysis results, we could observe that scenario 5 had the most influence
on campus energy use when compared to the other scenarios. According to this scenario, campus
energy use can be between 1.39% to 16.45% higher when compared to the amount of energy used by
the campus in the baseline year 2018, for the three future climate scenarios.

5. Conclusions

This study developed a data-driven, campus-scale energy use prediction, which implemented
artificial intelligence in order to assess the effects of long-term climate change. Our study consisted
of four layers: (1) Data Collection, (2) AI Development, (3) Model Validation, and (4) Model
Implementation. We relied on energy use data for buildings at the University of Florida, Gainesville,
FL. To study the impact of climate change, we used average outdoor temperature, solar radiation,
and relative humidity of three future climate weather files of Gainesville, FL, represented and based on
their impact: median (year 2063), hottest (2057), and coldest (2041). In order to conduct the scenario
analysis, we referred to the Technology Roadmap—Energy Efficient Building Envelopes (IEA 2013),
which is used to assess and present the development of technology products in the building sector.
According to the roadmap, we assessed campus energy use for five envelope scenarios for each of the
future climate scenarios.

In this study, we used space functionality characteristics of various buildings in relatively accurate
gross square foot percentages as inputs to our prediction model. This approach is unique to its kind
and has not been used in other data-driven, urban level building energy prediction studies. According
to our results:
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• CEUP model can predict the energy use of campus buildings with 90% accuracy.
• UF campus energy use in the upcoming 40 years, based on NARCCAP future weather scenarios,

can be up to 20% higher.
• Among climatic and temporal variables, average outdoor temperature is a good measure to

predict hourly energy consumption of campus buildings.
• Incorporating building functionalities in space-level can increase the accuracy of physics-based

building clustering and hence result in better prediction accuracy.

CEUP can be a useful tool in predicting residential and commercial buildings’ energy consumption
with more accuracy, and therefore also predict the aggregate energy consumption for urban areas as
well. Given that, CEUP has the potential to be updated with additional buildings and incorporate
various climate variables in order to be used as a comprehensive decision-making tool for city and
community managers. Also, new buildings which are going be added to the community can be
designed based on optimized building specifications, in order to better participate in the reduction of
building environmental footprints. Therefore, CEUP can be both a decision making and sustainable
design tool helpful to building architects as well.

The next steps are to obtain more building data as well as introduce more independent variables
to increase the accuracy levels of the model. As more building data are collected and analyzed, other
building characteristics such as HVAC specifications can be incorporated into the model to improve its
prediction accuracy. In addition, shifting the modeling time intervals to subhourly and near real-time
levels can improve accuracy. Furthermore, as the number of buildings is increased, it is likely that
the number of clusters will also increase, expanding the range of building functionality types within
campuses, communities, and cities. Such modifications can help in improving the level of accuracy
and provide a more accurate building energy use prediction under various climate scenarios.
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ANN Artificial Neural Networks
ARIMA Auto-Regressive Integrated Moving Average
BEPF Building Energy Performance Forecasting
BTU British Thermal Unit
CA Cluster Analysis
CCC Committee on Climate Change
CEUP Campus Energy Use Prediction
FAWN Florida Automated Weather Network
LSTM Long Short-Term Memory
ML Machine Learning
NARCCAP North American Regional Climate Change Assessment Program
PCA Principal Component Analysis
RNN Recurrent Neural Networks
SVR Support Vector Regression
UFPPD UF’s Physical Plant Division



Sustainability 2020, 12, 3223 21 of 22

References

1. Melillo, J.M. Climate Change Impacts in the United States: The Third National Climate Assessment; Government
Printing Office: Washington, DC, USA, 2014.

2. Intergovernmental Panel on Climate Change (IPCC). United Nations Body for Assessing the Science Related to
Climate Change; IPCC: Geneva, Switzerland, 2018.

3. United States Energy Information Administration (EIA). International Energy Outlook 2017. Available
online: https://www.eia.gov/outlooks/archive/ieo17/ (accessed on 4 October 2018).

4. International Energy Agency (IEA). Energy consumption by sector. Available online: http://www.eia.doe.
gov/emeu/aer/pdf/pages/sec2.pdf (accessed on 4 October 2018).

5. Hill, M.C.; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R. MODFLOW-2000, the US Geological Survey Modular
Ground-Water Model; User Guide to the Observation, Sensitivity, and Parameter-Estimation Processes and Three
Post-Processing Programs; No. 2000-184; US Geological Survey: Virginia Reston, VA, USA, 2000.

6. EPBD Directive 2002/91/EC. Directive of the European parliament and of the council on the energy performance
of buildings. Eur. Commun. Off. J. 2003, L001, 65–71. Available online: https://eur-lex.europa.eu/LexUriServ/

LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF (accessed on 4 October 2018).
7. Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: Hoboken, NJ,

USA, 2016.
8. International Energy Agency (IEA). Global Engagement, United Kingdom. Available online: https:

//www.iea.org/countries/United%20Kingdom/ (accessed on 4 October 2018).
9. Committee on Climate Change (CCC), Independent advice to government on building a low-carbon economy

and preparing for climate change. Available online: https://www.theccc.org.uk/ (accessed on 13 May 2017).
10. Perez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build.

2018, 40, 394–398. [CrossRef]
11. United Nations DESA Population Division. World Population Prospects. 2017. Available online: https:

//population.un.org/wpp/ (accessed on 6 December 2018).
12. City of New York. One City Built to Last; Mayor’s Office of Long-Term Planning and Sustainability: New York,

NY, USA, 2014.
13. Greenovate Boston. 2014 Climate Action Plan Update; Greenovate Boston: Boston, MA, USA, 2014.
14. Song, H.; Srinivasan, R.; Jeschke, S.; Sookoor, T. Smart Cities: Foundations, Principles and Applications; John Wiley

& Sons: Hoboken, NJ, USA, 2017.
15. Cajot, S.; Peter, M.; Bahu, J.M.; Guignet, F.; Koch, A.; Maréchal, F. Obstacles in energy planning at the urban

scale. Sustain. Cities Soc. 2017, 30, 223–236. [CrossRef]
16. Berardi, U. A cross-country comparison of the building energy consumptions and trends.

Resour. Conserv. Recycl. 2017, 123, 230–241. [CrossRef]
17. Al-Homoud, M.S. Computer-aided building energy analysis techniques. Build. Environ. 2001, 36.4, 421–433.

[CrossRef]
18. Hong, T.; Luo, X. Modeling Building Energy Performance in Urban Context. In Proceedings of the Building

Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA-USA, Chicago, IL,
USA, 26–28 September 2018.

19. Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building
energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [CrossRef]

20. Ostergard, T.; Jensen, R.L.; Maagaard, S.E. A comparison of six metamodeling techniques applied to building
performance simulations. Appl. Energy 2018, 211, 89–103. [CrossRef]

21. Reinhart, C.F.; Davila, C.C. Urban building energy modeling – A review of a nascent field. Build. Environ.
2016, 97, 196–202. [CrossRef]

22. Wang, Z.; Srinivasan, R.S. A review of artificial intelligence based building energy use prediction: Contrasting
the capabilities of individual and ensemble prediction models. Renew. Sustain. Energy Rev. 2017, 75, 796–808.
[CrossRef]

23. Neto, A.H.; Fiorelli, F.A.S. Comparison between detailed model simulation and artificial neural network for
forecasting building energy consumption. Energy Build. 2018, 40, 2169–2176. [CrossRef]

https://www.eia.gov/outlooks/archive/ieo17/
http://www.eia.doe.gov/emeu/aer/pdf/pages/sec2.pdf
http://www.eia.doe.gov/emeu/aer/pdf/pages/sec2.pdf
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF
https://www.iea.org/countries/United%20Kingdom/
https://www.iea.org/countries/United%20Kingdom/
https://www.theccc.org.uk/
http://dx.doi.org/10.1016/j.enbuild.2007.03.007
https://population.un.org/wpp/
https://population.un.org/wpp/
http://dx.doi.org/10.1016/j.scs.2017.02.003
http://dx.doi.org/10.1016/j.resconrec.2016.03.014
http://dx.doi.org/10.1016/S0360-1323(00)00026-3
http://dx.doi.org/10.1016/j.rser.2017.02.085
http://dx.doi.org/10.1016/j.apenergy.2017.10.102
http://dx.doi.org/10.1016/j.buildenv.2015.12.001
http://dx.doi.org/10.1016/j.rser.2016.10.079
http://dx.doi.org/10.1016/j.enbuild.2008.06.013


Sustainability 2020, 12, 3223 22 of 22

24. Fathi, S.; Srinivasan, R.S.; Ries, R. Campus energy use prediction (CEUP) using artificial intelligence (AI) to
study climate change impacts. In Proceedings of the 2019 Building Simulation Conference, IBPSA, Rome,
Italy, 2–4 September 2019.

25. Robert, C. Machine Learning, a Probabilistic Perspective; MIT press: Cambridge, MA, USA, 2014; pp. 62–63.
26. Eisenhower, B.; O’Neill, Z.; Narayanan, S.; Fonoberov, V.A.; Mezić, I. A methodology for meta-model based
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