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Abstract: Fifty-four groundwater samples were collected from Hamra Alasad in Al-Madinah City.
The chemical and microbial characteristics of the samples were analyzed and compared with their
respective standards. The results revealed that 90.7% of the samples showed higher amounts of NO3.
However, 59.3% of the samples were found unfit for irrigation purposes due to a high salinity hazard.
Most of the groundwater samples were highly saline, yet no sodicity hazards were anticipated as
predicted by sodium adsorption ratio (SAR). Generally, the soluble cations and anions, dissolved salts,
boron, and NO3

− exceeded the maximum permissible limits for drinking water in most of the samples;
however, Pb, Cd, As, Zn, Cu, Ni, Co, Fe, Mn, and Cr were within the permissible limits. Furthermore,
42.6%, 24.1%, 18.5%, 14.8%, 1.9%, and 37.0% of the samples were infected by a total coliforms group,
fecal coliform, Escherichia coli, Staphylococcus sp., Salmonella sp., and Shigilla sp., respectively. The water
quality index revealed that 3.7% of the samples were good for drinking (class II), and 9.3% were very
poor (class IV). The remaining samples were unfit for drinking (class V) due to high salinity and/or
microbial contamination. Durov and Piper diagrams revealed that the majority of water samples
were of the calcium sulfate–chloride type. Overall, 87% of water samples were inappropriate for
drinking purposes, while 77.8% were unsuitable for irrigation.
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1. Introduction

The Kingdom of Saudi Arabia (KSA), located in an arid environment, has limited renewable water
resources [1]. There is a potential risk of water scarcity in the future due to a rapidly changing climate
and anthropogenic activities [2]. The kingdom depends largely on the desalination of seawater and
groundwater for different purposes such as drinking, irrigation, and industry [3]. Al-Madinah City is
located in the western part of the KSA, and attracts a preponderance of religious tourists. It mainly
depends on groundwater to meet its water requirements. Al-Madinah is one of the most significant
cities in the KSA for historical and religion reasons. Various agricultural farms around Al-Madinah
city conduct important agricultural activities including vegetables, dates, and alfalfa production.
In Al-Madinah, there is a water stress due to the rapidly increasing population, extensive pumping
out of groundwater resources, and prevalence of arid to semi-arid conditions [4]. This stress has
undoubtedly led to the deterioration of the groundwater [1,5]. Hydrochemical characteristics including
cations, anions, heavy metals, nitrates, chlorides, and organics of the groundwater to determine water
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quality indices should be used to help sustain the groundwater [6,7]. The chemical characteristics
of groundwater, such as pH, dissolved salts and gases, metals, and organics, are controlled by the
exchange of cations within the geological aquifer, dissolution of minerals, and evaporation and redox
reactions [8,9]. Spatiotemporal assessment and monitoring of the groundwater are essential for
sustainability [10].

The water quality index (WQI) is an effective method to evaluate water quality and help
policymakers. WQI integrates water quality parameters into a single number, which represents the
quality of water [11–14]. The WQI has been successfully computed and applied by several researchers
to investigate the water quality of water resources worldwide [11,14–19]. All WQI calculations depend
on the integration of physiochemical parameters [10,19–21]. Backman et al. [22] used the WQI for
evaluating the groundwater quality in Finland. Ketata-Rokbani et al. [23] presented the WQI with a GIS
to evaluate the quality of the groundwater in Tunisia. Furthermore, Aly et al. [10,19] used the WQI to
assess the water quality in the towns of Hafer Abatein and al-Kharj in the KSA. The groundwater in the
city of Al-Madinah is mainly utilized for agricultural purposes, with some being used for industries [3].
Two aquifers are located in Al-Madinah, i.e., a sedimentary aquifer and a volcanic aquifer. It has been
reported that the alluvium aquifer occupied an ancient basin, which was then covered by volcanic
lava [24]. The abundance of water in this holy city, which is mainly used for human consumption, is a
serious impediment for sustainable agricultural development. As there is a lack of a proper drainage
system, salt accumulates in the soil, causing the deterioration of the groundwater quality in both the
sedimentary and volcanic aquifers. Previous reports have concluded that the water quality in both
aquifers is deteriorating due to salinization [3].

The aims of this investigation are to 1) assess the water quality of the Al-Madinah City groundwater
for irrigation and drinking purposes by using the WQI, and 2) investigate the hydrochemical
classification of the groundwater in Al-Madinah City.

2. Materials and Methods

2.1. Study Area

Al-Madinah City is situated in the KSA in the western part of Arabian Peninsula, known as the
Arabian Shield province, around 400 km from Mecca City [25]. The holy city is located at 24◦28′ N
and 39◦36′ E. The city has a population of 995,619 inhabitants [26]; however, it exceeds 1.5 million
in Hajj season. Its topography comprises of plains and hilly areas as well as valleys. Generally,
the ground elevation in the plains ranges between 600 m and 620 m above mean sea level (AMSL).
The mountainous areas are situated in the northern, southern, and western part of the city, with an
elevation of 800 m to 1500 m AMSL. The slope of the area is from east to west until the slope reaches
the Al-Aqiq valley. During last two decades, Al-Madinah has moved from being totally dependent
on its groundwater to almost entirely dependent on desalinated water from the Yanbou Desalination
Plant. The groundwater in the city is utilized in agriculture and some industries.

The climate of Al-Madinah City ranges from semi-arid to arid with a hot and dry environment.
In the summer season, it is very hot and in the winter season it is moderately cold. The average
temperature during summer ranges between 25–42 ◦C, whereas in winter it ranges between 10–24 ◦C [24].
The temperature reaches its highest level during August, while its lowest level is during January.
Most of the rainfall happens during November, December, and January, with occasional rainstorms
taking place in April.

2.2. Hydrology

Saud et al. [3], stated that the total discharge of groundwater in Al-Madinah during 1968 was
2 × 105 m3, which exceeded the recharge value. This has resulted in a drawdown of 10 m over a
period of 25 years. The total groundwater storage within the aquifer was estimated to be 5.7 ×
109 m 3. Saud et al. [3] pointed out that the sub-basaltic alluvium was more important, despite it



Sustainability 2020, 12, 3106 3 of 14

having a low permeability. Moreover, the maximum amount of the groundwater stored within it was
7.5 × 108 m3. Al-Madinah’s groundwater depression has formed due to over-pumping. A decline in
the groundwater levels up to 0.1 to 0.15 m/month has been noticed, suggesting that the average annual
input and output is 2.95 × 107 m3 and 4.05 × 107 m3, respectively, from the sub-basaltic alluvium
aquifers. The Al-Madinah area was evaluated at having a shortage of 1.1 × 107 m3 [3]. The Water and
Sewerage Directory of Al-Madinah reported the presence of two well fields in the southern parts of the
city. Among them, the Quba well field comprises 31 wells, of which only two are currently functional
with a production of 2000 m3/day. These wells are approximately 110 m deep. All other wells were left
un-operational, owing to their low production and/or a higher salinity levels. Lately, the well field in
Abyar Almashi has been developed. Overall, the groundwater in Al-Madinah is characterized by high
salinity, contamination in some sites, and continuous fluctuation of the water table in the aquifer due
to withdrawals and low recharge.

2.3. Chemical Analysis

Fifty-four groundwater samples were gathered from Hamra Al-Asad in the Al-Madinah region
(Figure 1). The depth of the wells ranged between 10–110 m (personal communications). All of the
samples were stored in an icebox and transported to laboratories at the King Saud University in Riyadh
for analysis. After testing the taste, the water samples were subjected to the following analyses: electric
conductivity (EC), water reaction (pH), soluble ions (calcium (Ca2+), magnesium (Mg2+), sodium
(Na+), potassium (K+), carbonate (CO3

2−), bicarbonate (HCO3
−), chloride (Cl−), and sulfate (SO4

2−)),
nitrate (NO3

−), boron (B), and heavy metals. The EC (dS·m−1) and pH were determined in the field
using a portable EC/pH meter (Hanna, HI 9811-5). The ions Mg2+ and Ca2+ were determined using
the titration method with ethylenediaminetetraacetic acid. In addition, K+ and Na+ were determined
by a flame photometer (Corning 400) [27]. The ions CO3

−2 and HCO3
− were determined using acid

titration; the Cl− ion was determined using silver nitrate titration [27]. Furthermore, SO4
2− was

estimated using a turbidity procedure [28], while NO3
− and B were established using methods utilizing

phenoldisulfonic acid and azomethine-H, respectively [29,30].
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Water samples for heavy metal analyses were filtered and acidified using HNO3 to a pH < 2.
Furthermore, the analyses of the heavy metals were carried out using an ICP PerkinElmer Model
4300DV [29,31].

2.4. Microbial Analysis

The total colony count was determined by nutrient agar methods; however, the coliforms (as
one group) and E. coli were determined by the Colilert or defined substrate methods, as described by
Edberg et al. [32], Fricker et al. [33], Eckner [34], and Maheux et al. [35].

2.5. WQI Computing

The chemistry of the groundwater was explored by computing the WQI. It has been established
that the WQI is a vital parameter for measuring the groundwater quality. The WQI can be calculated
by assigning a relative weight (wi) to each parameter based on their importance in the overall water
quality. Briefly, the calculations of the WQI comprised three steps as follows [10,11,14–17,36].

2.5.1. Assigning Weight

The 13 parameters were given a weight (wi) according to their significance in determining drinking
water quality (Table 1). The wi was calculated by using a weighted arithmetic index method as reported
by Ramakrishnaiah et al. [37]. The weights ranged between 1 and 5, with 5 being the utmost important
parameter and 1 being the least important parameter (Table 1) [37].

Table 1. Relative weight for parameters for the groundwater collected from Al-Madinah City, Western
Saudi Arabia.

Chemical Parameters Weights (wi) Relative Weight (wi) WHO Standard

pH 3 0.073 8.5
TDS 4 0.098 600

Calcium 2 0.049 75
Magnesium 2 0.049 50

Sodium 2 0.049 200
Potassium 2 0.049 12

Bicarbonate 2 0.049 120
Chloride 3 0.073 250
Sulfate 3 0.073 250
Nitrate 5 0.122 10
Boron 3 0.073 0.5

As 5 0.122 0.01
Cd 5 0.122 0.003

Total coliform Unsuitable

Total 41 1.000

2.5.2. Relative Weight (Wi)

Wi was calculated as follows:
Wi =

wi∑n
i=1 wi

(1)

where Wi is the weight of the parameter and n is the total number of parameters (Table 1).

2.5.3. Quality Rating Scale (qi)

The qi was calculated by dividing the water sample concentration to a respective standard,
as follows:

qi =
Ci
Si
× 100 (2)
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where Ci is the concentration (mg L−1) and Si is the permissible limit value as given by the WHO
standard [38]. Lastly, the sub-index of ith parameter (SIi) of each chemical parameter was calculated
as follows:

SIi = Wi × qi (3)

Then, the WQI was calculated by taking a sum of all calculated sub-indices as follows:

WQI =
n∑

i=1

Sli (4)

The values of the WQI were classified into five classes (Table 2).

Table 2. Water quality classification ranges and types based on the calculated water quality indices
(WQI) values.

WQI Range Class Type of Water

<50 I Excellent water
50–100.1 II Good water
100–200.1 III Poor water
200–300.1 IV Very poor water

>300 V Water unsuitable for drinking

2.6. Hydrochemical Characteristics

To investigate the hydrochemical characteristics of the collected water samples, the Piper, Schoeller,
and Durov diagrams were constructed by using Geochemistry Software AquaChem 2014.2 to identify
the water type [39,40]. In addition, hazards due to salinity, sodium adsorption ratio (SAR), total hardness
(TH), and Kelly’s ratio (KR) were computed.

2.7. Geochemical Modeling: The Saturation Index (SI)

The SI of a mineral was calculated using the PHREEQC model [41] (Equation (5)):

SI = log IAP/kt (5)

where IAP is the Ion Activity Product of the mineral and kt is the solubility at chemical equilibrium [42].

2.8. Statistical Analyses

The statistical analyses carried out included the determination of maximum, minimum, average,
standard deviation, variance, standard error, median, and skewness. These analyses were conducted
using Excel [10].

3. Results and Discussion

3.1. Groundwater Evaluation for Drinking

A total of 42.6%, 24.1%, 18.5%, 14.8%, 1.9%, and 37.0% of waters were infected by total coliforms,
fecal coliforms, E. coli, Staphylococcus sp., Salmonella sp., and Shigilla sp., respectively (Table 3).
This finding is in agreement with the finding of Al-Makishah [43].
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Table 3. Microbial analyses of the groundwater samples collected from Al-Madinah City, Western
Saudi Arabia.

Sample No Total Coliform Fecal Coliform E. coli Staphylococcus sp. Salmonella sp. Shigilla sp.

X10 106 cfu/mL

1 10 4 2 Nil 1 16 × 105

2 20 13 12 Nil Nil 18 × 105

3 2 Nil Nil Nil Nil 48 × 109

4 32 8 Nil 1 Nil Nil
5 50 6 2 1 Nil Nil

6–9 Nil Nil Nil Nil Nil Nil
10 10 Nil Nil Nil Nil 32 × 105

11–12 Nil Nil Nil Nil Nil Nil
13 51 Nil Nil Nil Nil Nil
14 Nil Nil Nil Nil Nil Nil
15 8 4 1 Nil Nil 7 × 109

16–18 Nil Nil Nil Nil Nil Nil
19 19 11 3 Nil Nil 64 × 105

20–24 Nil Nil Nil Nil Nil Nil
25 13 Nil Nil Nil Nil 21 × 109

26 21 9 2 66 Nil 40 × 109

27–30 Nil Nil Nil Nil Nil Nil
31 40 32 30 20 Nil 32 × 109

32 13 7 Nil 114 Nil 48 × 109

33 12 9 8 113 Nil 13 × 108

34 41 Nil Nil Nil Nil 20 × 109

35 3 Nil Nil Nil Nil 79 × 109

36 88 52 4 Nil Nil 57 × 109

37 37 Nil Nil Nil Nil 112 × 109

38 Nil Nil Nil Nil Nil Nil
39 39 Nil Nil 3 Nil 68 × 109

40 40 Nil Nil 104 Nil 28 × 109

41 Nil Nil Nil Nil Nil Nil
42–43 42 Nil Nil Nil Nil 44 × 109

44 Nil Nil Nil Nil Nil Nil
45 450 3 Nil Nil Nil 24 × 109

46–50 Nil Nil Nil Nil Nil Nil
51 510 16 14 Nil Nil 88 × 109

52–54 Nil Nil Nil Nil Nil Nil

The results showed that some of the groundwater samples had a noticeably bitter taste due to the
predominance of Ca2+. Nonetheless, according to the WHO, calcium from the calcium-rich water is well
absorbed by the human body and retained, just as the calcium from milk is retained [44]. The results
revealed that the pH values of the collected groundwater samples ranged from 6.5 to 8.4 with an
average of 7.1, suggesting safe limits. However, based on EC values, 77.8% of the groundwater samples
were categorized as having a high salinity hazard, mainly due to highly dissolved soluble ions (Table 4).
Thus, most of the groundwater samples were not suitable for drinking purposes. The concentrations
of NO3 in the collected groundwater samples ranged from 1.8 mg L−1 to 304.2 mg L−1 with an average
of 117.9 mg L−1 (Table 5). The results showed that 50% of the water samples had NO3 concentrations
more than 100 mg L−1, which were above the permissible limit (50 mg NO3 L−1) for public drinking
water supplies [38].
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Table 4. Descriptive statistics of the studied groundwater chemical composition.

No pH
EC Cations (meq L−1) Anions (meq L−1)

(dS·m−1) Ca2+ Mg2+ Na+ K+ CO32− HCO3− Cl− SO42−

Maximum 8.4 8.3 38.2 19.5 39.8 0.7 2.8 8.8 51.3 30.1
Minimum 6.5 0.5 1.0 0.6 0.7 0.0 0.0 0.1 0.7 2.1
Mean 7.1 4.4 16.1 7.3 18.2 0.1 0.1 3.8 23.2 15.2

St.
deviation 0.4 1.7 9.9 3.6 7.5 0.1 0.4 1.9 10.4 7.6

Median 7.1 4.8 14.5 6.8 17.1 0.1 0.0 3.8 22.1 15.0
Skew 1.1 -0.3 0.5 0.7 0.4 2.9 7.3 0.7 0.1 0.1

EC is the electrical conductivity, Ca2+ is calcium ion, Mg2+ is magnesium ion, Na+ is sodium ion, K+ is potassium
ion, CO3

2− is carbonate, HCO3
− is bicarbonate, Cl− is chloride, and SO4

2− is sulfate.

Table 5. Descriptive statistics of the water quality indicators (WQI) of the studied groundwater samples
collected from Al-Madinah, Western Saudi Arabia.

No. NO3− B
SAR MH RSC KR TH (CaCO3 mg/L) Indication

mg L−1

Maximum 304.2 4.7 10.2 0.7 −0.2 1.8 2447.0 Very hard water
Minimum 1.8 0.0 0.6 0.1 −46.9 0.3 116.0 Hard water

Mean 117.9 1.5 5.5 0.4 −19.5 0.9 1162.3 Very hard water
St. deviation 67.3 0.8 2.0 0.2 12.3 0.4 581.2

Median 101.5 1.4 5.2 0.3 −18.2 0.9 1133.0
Skew 0.5 1.3 0.3 0.6 −0.3 0.2 0.2

NO3
− is nitrate ion, B is boron, SAR is the sodium adsorption ratio, MH is the magnesium hazard, RSC is the

residual sodium carbonate, KR is Kelly’s ratio, and TH is total hardness.

Based on the calculated values of the water quality index (WQI), about 3.7% of the water samples
were suitable for drinking purpose (class II), and 9.3% were very poor water (class IV). The rest
of the samples were found to be unfit for drinking purposes (class V) due to high salinity and/or
microbial contamination (Figure 2). Most of the groundwater in Al-Madinah is used for agricultural
purposes [45]. These results are in agreement with the study of Fallatah [2] and Sharaf [4].
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3.2. Groundwater Evaluation for Irrigation

The chemical analyses of the Al-Madinah groundwater samples were analyzed statistically
(Tables 4 and 5).
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Figure 3 shows that the order of cation concentrations is as: Ca2+ > Na++ K+ >Mg2+; whereas,
the order of anions concentrations is as: Cl− > SO4

2− > HCO3
−. The results revealed that the collected

groundwater samples contained a pH of 6.5–8.4, with an average of 7.1 (Table 4). The acceptable limit
of pH for irrigation water is between 6.5 and 8.4 [46]. Consequently, all water samples were within an
acceptable limit due to pH values [45,47]. The EC ranged between 0.5 dS m−1 to 8.3 dS m−1, with an
average value of 4.4 dS m−1 (Table 4). According to the classification by Ayers and Westcot [46], 3.7% of
the water samples had no degree of restriction for use in irrigation. However, 18.5% of the water
samples had slight to moderate salinity. Finally, 77.8% of the groundwater samples were categorized
as having a high salinity hazard. One of the significant methods for defining the hazard of sodium is
the sodium adsorption ratio (SAR) [48], which was calculated as follows:

SAR =
Na√
Ca+Mg

2

(6)

where meq L−1 is the unit for expressing cations (Na, Ca, and Mg).Water 2020, 12, x FOR PEER REVIEW 9 of 15 
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of Al-Madinah City, Western Saudi Arabia.

The values of the SAR ranged between 0.6 and 10.2, with a mean of 5.5 (Table 2). Moreover,
96.3% of the SAR values were < 10. Consequently, the water could be classified as excellent for
irrigation with respect to the sodium hazard [49]. Kelly’s ratio (KR) [50] was calculated as:

KR =
Na

Ca + Mg
(7)

where meq L−1 is the unit for expressing cations (Na, Ca, and Mg) and KR > 1 indicates a high hazard
from sodium.

Thus, 61% of the water samples had a KR < 1, indicating that they did not have any sodium
hazards; instead, 39% of the water samples had a KR > 1, which represented a high sodium hazard if
the waters were used for irrigation (Table 2).
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The residual sodium carbonate (RSC) was calculated from Equation (8) as follows:

RSC = (CO3
− + HCO3

−) − (Ca2+ + Mg2+) (8)

where the cations and anions in Equation (8) are expressed in meq L−1.
A (-) value for the RSC showed that sodium was not likely to be a problem due to adequate

amounts of magnesium and calcium, which were in surplus of magnesium and calcium precipitated in
the form of carbonates. All samples had a negative RSC, indicating that there was no sodium hazard
(Table 2) [51].

Magnesium hazard (MH) was calculated as follows [52]:

MH =
Mg

Ca + Mg
× 100 (9)

where the calcium and magnesium were in units of meq L−1.
If MH < 50, the water is safe for irrigation [52]. In this study, all of the samples had an MH < 50;

consequently, they could be considered as suitable for irrigation with respect to MH (Table 2). The NO3
−

concentrations in the groundwater samples ranged between 1.8 and 304.2 mg L−1, with a mean of
117.9 mg L−1 (Table 2); 50% of the water samples had NO3

− concentrations greater than 100 mg L−1,
probably because of the usage of chemical fertilizers in agricultural production [53]. Of the samples,
18.5% had boron (B) concentration within the permissible limit. However, 75.9% of the samples had a
slight to moderate degree of restriction for use in irrigation. The remaining samples had a severe B
hazard because their B concentration was more than 3 mg/L (Table 2) [1,45].

3.3. Hydrochemical Aspects

The Piper and Schoeller [45] diagrams (Figure 4) revealed that the main water type
identified in the Al-Madinah groundwater was calcium–magnesium/sulfate–chloride, and this
represented 74% of collected samples. However, 26% of samples showed a water type of
sodium–potassium/sulfate–chloride. These water types indicated that the geological composition in
the area was mainly gypsum, anhydrite, and halite.
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Durov’s diagram (Figure 5) showed that the groundwater samples fell in fields 4 and 5. The fitting
of samples in field 4 showed the occurrence of Ca2+ and SO4

2− as the dominant ions in the water and
they reflected the gypsum-bearing sedimentary aquifer; the water was affected by oxidation of pyrite
and sulfide minerals. Field 5 showed that mixing occurred between two or more different facies [9,36].
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3.4. Geochemical Modeling

Groundwater is considered to be saturated with minerals if −1 < SI < +1; moreover, if SI is less
than −1, the groundwater is assumed to be undersaturated and if SI is above +1, it assumed to be
oversaturated [54].

Mineral saturation indices (SI) of the groundwater samples were calculated using the model of
PHREEQC [19,55] (Figure 6). The results showed that most sites contained the following minerals in their
aquifers: anhydrite (CaSO4), goethite (FeOOH), gypsum (CaSO4:2H2O), halite (NaCl), hematite (Fe2O3),
jarosite-K (KFe3(SO4)2(OH)6), and melanterite (FeSO4:7H2O). However, only samples 1, 2, 3, 7, 8,
and 20 contained ausmannite (Mn3O4), manganite (MnOOH), pyrochroite (Mn(OH)2), and pyrolusite
(MnO2). The water samples were found to be undersaturated with halite, hausmannite, jarosite-K,
manganite, melanterite, pyrochroite, and pyrolusite. In addition, 22.2% and 27.8% of the water samples
were undersaturated with sulfate minerals of gypsum and anhydrite, respectively; suggesting more
soluble Ca2+ and SO4

2− dissolved in the groundwater samples. The higher contents of SO4
2− could be

due to the oxidative dissolution of pyrite [56]. However, the remaining samples were saturated with
both minerals. Furthermore, the water samples were found to be oversaturated with respect to goethite
and hematite. Unsaturated minerals have a tendency to dissolve in water samples [19,57]. Thus,
there is an option for an increase in the concentrations of soluble ions dissolved in the groundwater.
This result is in agreement with the results of Al-Barakah et al [58] and Fallatah [2] on their study of
Arabian Shield groundwater.
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Western Saudi Arabia (a): anhydrite, (b): geothite, (c): gypsum, (d): halite, (e): hausmannite, (f):
hematite, (g): jarosite-K, (h): manganite, (i): melanterite, (j): pyrochroite, and (k): pyrolusite.

4. Conclusions

A total of 54 groundwater samples were collected from Al-Madinah City, Western Saudi Arabia
and their hydrochemical characteristics as well as quality were investigated. Various calculated water
quality indices (WQI) showed that 87% of the samples were unsuitable for drinking purposes owing to
their higher salinity levels and/or microbial contamination. Based on the obtained results of soluble
salts, electrical conductivity (EC), and SAR, it was observed that only 3.7% of the water samples were fit
for use in irrigation. Likewise, 18.5% of the water samples had slight to moderate salinity, while 77.8%
of the water samples exhibited a higher salinity hazard. A total of 96.3% of the SAR values were < 10,
indicating that the water was excellent for irrigation. On the other hand, 61% of the samples had a KR < 1,
suggesting that the waters did not have any sodium hazard, whereas 39% of the samples had a KR > 1,
indicating a higher sodium hazard. Contrarily, all of the samples exhibited a magnesium hazard value
of more than 50, suggesting their suitability for irrigation. Based on NO3

−, and boron (B) concentrations
in the water samples, 75.9% of the samples had a slight to moderate degree of restriction for use in
irrigation. The remaining samples were considered to be severely hazardous due to higher B contents.
The Piper and Schoeller diagrams revealed that the main water types identified in the groundwater of
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Al-Madinah City were calcium–magnesium/sulfate–chloride and sodium–potassium/sulfate–chloride,
whereas the Durov’s diagram showed that the groundwater samples fell in fields 4 and 5, suggesting
the presence of Ca2+ and SO4

−2 in the dominant water type. The results of the mineral saturation
indices (SI) exhibited that most of the sampling sites were undersaturated with halite, hausmannite,
jarosite-K, manganite, melanterite, pyrochroite, and pyrolusite. Therefore, it was concluded that 77.8%
of water samples collected from Al-Madinah City were unsuitable for irrigation, whereas 87% were
unsuitable for drinking purposes.
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