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Abstract: In the field of macro-level safety studies, road traffic safety is significantly related to
socioeconomic factors, such as population, number of vehicles, and Gross Domestic Product (GDP).
Due to different levels of economic and urbanization, the influence of the predictive factors on traffic
safety measurements can differ between cities (or regions). However, such region-level or city-level
heterogeneities have not been adequately concerned in previous studies. The objective of this paper
is to adopt a novel approach for traffic safety analysis with a dataset containing multiple target
variables and samples from different subpopulations. Based on a dataset with annual traffic safety
and socioeconomic measurements from 36 major cities in China, we estimate single-output regression
models, multi-output regression models, and clustering-based regression models. The results indicate
that the 36 cities can be clustered into a metropolitan city class and a non-metropolitan city class, and
the class-specified models can notably improve the goodness-of-fit and the interpretability of city-level
heterogeneities. Specifically, we note that the effect of primary and secondary industrial GDP on traffic
safety is opposite to that of tertiary industrial GDP in the metropolitan city class, while the effects of
the two decomposed GDP on traffic safety are consistent in the non-metropolitan city class. We also
note that the population has a positive effect on the number of fatalities and the number of injures in
metropolitan cities but has no significant influence on traffic safety in non-metropolitan cities.

Keywords: macro-level traffic safety analysis; multi-output regression; clustering-based regression;
socioeconomic predictive variables

1. Introduction

The rapid growth of economy, urbanization, and motorization has been reshaping modern urban
mobility. The increase of household vehicle ownership and the expansion of road networks significantly
improve people’s mobility and accessibility. However, road traffic accidents, which cause fatalities,
injuries, and property damage, have become a major negative externality of economic development.
It was tested and confirmed that economic growth leads to an increased amount of travel, affecting
road traffic safety [1].

As one of the largest developing countries, China has undergone drastic changes in the economy
during these decades. From 1990 to 2010, there was a fourteen-fold increase in the number of total
registered vehicles in China. The conflicts between sudden improvement of mobility and the dated
driving culture and traffic safety laws make the road fatality rate in China (8.3 per M registered vehicles,
and for all the units of measurements in this paper, K, M, and B are the abbreviation for kilo, million,
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and billion, respectively) much higher than in developed countries [2]. As reported by [2], the road
fatality rates in Japan and the United States are 0.615 and 1.28 per M registered vehicles, respectively.
As reported by China’s Ministry of Public Security (MPS), over 80% of the total traffic accidents in
China happen on urban roadways and the percentage of urban road accidents over the total (urban
plus rural) road accidents increased by 0.8% from the year 2014 to the year 2015 (the result was based
on the Report of China Development III—Urban Transportation in Large Cities). Since China is still at
a fast pace of urbanization, the underlying urban traffic safety issues may not be eliminated in the
short-term. Therefore, it is of great importance to investigate the impact of socioeconomic factors on
traffic safety in China.

Due to economic viability, cities in China have heterogeneous features in socioeconomic factors
and traffic safety performance. A good understanding of city-level urban traffic safety indicators
(i.e., measured in the number of fatalities and number of injuries) and its relationship with the
socioeconomic covariates are meaningful in analyzing the urbanization and living conditions across
the country. In the academic field of traffic safety, statistical approaches, such as statistical tests and
regressions, have been adopted in discovering the relationship between the number, frequency, or
severity of traffic accidents and socioeconomic and transportation-related factors [3–6]. Although
some studies classify countries/regions/roadways based on specific factors (e.g., average income and
roadway functional class) and conducted statistical analysis within each class [7–10], the region-level
or city-level heterogeneities have not been adaptively concerned. To this end, statistical clustering
algorithms can be helpful in grouping cities with similar patterns for traffic safety analysis. Moreover,
since the number of fatalities, the number of injuries, and the monetary amount of property damage
are highly correlated, multi-output regressions can be utilized to identify the critical factors related to
different safety measurements, simultaneously.

In this paper, a city-level annual traffic accident dataset and a socioeconomic dataset in China are
fused to investigate the critical factors associated with different traffic safety measurements. The dataset
covers the traffic safety performance and socioeconomic measurements, such as Gross Domestic Product
(GDP) and number annual fatalities of 36 major China’s cities from the year 2010 to the year 2015. Based
on the dataset, we provide a novel application of clustering-based linear models and multi-output
linear models on traffic safety analysis. In general, the first objective of this study is to identify the
association between multiple predictor variables and multiple target variables concerning city-level
heterogeneities. The second objective is to maintain a low level of bias (e.g., estimation error or residual).
We compare different modeling approaches: single-output linear models, multi-output linear models,
and the models integrated with a subpopulation-based K-means clustering procedure. The results
indicate that the major cities in China can be clustered into a metropolitan class and a non-metropolitan
class. The clustering-based approach can significantly improve the goodness-of-fit. We identify
the heterogeneous relationships between traffic safety measurements and key socioeconomic and
transportation-related factors within each city class. Interesting and insightful conclusions are drawn
in detailed results discussions.

The rest of the paper is organized as follows. Section 2 presents a literature review on the
relationship between socioeconomic factors and road traffic safety, where the research gap is identified.
Section 3 provides a novel flowchart of conducting multi-output analysis with a dataset that is
sampled from a verity of subpopulations. Section 4 undertakes a real-world case study on macroscopic
traffic safety analysis based on a city-level dataset in China. We compare the pooled estimated
(i.e., non-clustering-based) models and the clustering-based models in terms of goodness-of-fit and
magnitude and signs of coefficients. Finally, Section 5 concludes this paper and discusses future
research directions.

2. Literature Review

The effect of economic growth on road traffic safety has drawn heated attention from statisticians
and engineering researchers. Based on fatality data from 20 counties, Smeed developed a power
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model that characterizes country-level fatalities with the population and the number of registered
vehicles [11] (the formula is y f = 0.003x1/3

p x2/3
v , where y f denotes the number of fatalities, xp denotes

the population, and xv denotes the number of vehicles). The model was tested and refined based
on other datasets [12,13]. One commonly recognized issue of the early model is that the human
population and vehicle population are positively correlated [14]. Without economic factors, such as
GDP, the model ignores the improvement of road infrastructure and is not capable of capturing the
relation between traffic safety and socioeconomic measurements. Hakim et al. reviewed 14 studies
that attempted to establish the relationship between road safety measurements and demographic and
economic factors and 9 of them included economic predictive variables [15]. A more recent literature
survey was conducted by Wijnen and Rietveld [16]. The review examined 49 empirical analyses on
traffic accidents that cover various countries, such as United States, China, Canada, Russia, Spain,
Belgium. Although the studies were based on different datasets, 34 of the 49 estimates indicated a
statistically significant positive relationship between GDP and the number of road traffic fatalities.
Besides, Yannis et al. conducted statistical tests based on data from 27 countries and found that
economic recession can bring benefits to traffic safety [17].

Some studies claimed a biphasic relationship between fatalities and economic growth, wherein
the increase of GDP has negative impacts on the number of fatalities in high-income countries, but it
behaves oppositely in low-income countries [7,18,19]. Based on the long-term analysis of mortality
(measured in the number of fatalities per capita) and economic performance (measured in GDP per
capita), an inverted U-curve traffic fatality pattern was found [20,21]. Namely, the annual number
of road fatalities per capita in a country first rises with national income and later falls after national
income has passed a certain level. The inverted U-curve reflects the competition between safety and
mobility [22]. The drop in the number of fatalities in countries with higher GDP per capita (also higher
income) may indicate the improvement in medical and health facilities, transportation infrastructure,
and driving behavior [8]. The inverted U-curve phenomenon was interpreted by Elvik through the
following mechanism: (1) economic growth influences the number of trips and the exposure to accident
risk; (2) economic development may affect the travel pattern and lead to risky driving behavior.
For example, economic development may have an impact on the share of young drivers in traffic
volume, the distribution of traffic volume among weekends (or weekend-nights) and weekdays, or
the share of high-risk transport modes in the traffic volume (e.g., heavy goods vehicles or bicycles);
(3) after the economy has reached a high level, it may have a positive impact on the investments in
safety by governments, road users, and companies [23]. In addition to the aforementioned factors,
other socioeconomic variables such as land-use characteristics [24], the age distribution of drivers [25],
alcohol consumptions [26], unemployment and economic recession [27], decomposition of GDP [28],
were found significantly correlated to traffic safety.

In the context of macro-level panel data analysis, the effect of GDP on traffic safety among
countries needs to be treated heterogeneously. This is because there are different patterns of economic
developments and different types of road safety policies across countries. For instance, the heterogeneity
of safety policies in Nordic, Southern, and Eastern parts of Europe raises the problem of convergence
between European countries [29]. In a European road safety project, i.e., DaCoTA (details of this project
can be found at the link http://www.dacota-project.eu/index.html), strong country-level heterogeneity
was found based on long-term statistical models for each involved country [30,31]. The heterogeneous
impacts of socioeconomic factors on traffic safety among counties (or regions) can be modeled by
grouping countries according to indicators such as level of development [21], locations [10], the
hypothesis of cointegration [30,32], etc.

The aforementioned research efforts provide us insightful findings in the science of traffic safety.
However, one general limitation of the previous studies is that the correlation between different traffic
safety measurements was not considered. That is, a traffic safety dataset may include several correlated
safety measurements, such as the number of fatalities, number of injuries, and number of accidents.
Due to the correlation, historical data on the number of injures can be beneficial for the analysis of the
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number of fatalities. In this manner, we can utilize multi-output modeling approaches to involve the
correlations among different safety measurements, such that the goodness-of-fit will improve, and the
key factors of different safety measurements will be identified simultaneously. Besides, the modeling
of region-level heterogeneity has not been adequately explored. In addition to simple classifications of
regions (or cities, countries) by economic level or location, statistical clustering algorithms can be an
alternative to group regions based on the combination of multiple socioeconomic factors and traffic
safety performance. This paper aims to fill the two research gaps and ascertain city-level traffic safety
patterns in China.

3. Clustering-Based Multi-Output Linear Models

Let us consider a dataset D with N samples, i.e., D =
{(

x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN, yN

)}
. For i ∈

{1, 2, . . . , N}, vector xi = (xi,1, xi,2, . . . xi,m) is the vector of m descriptive or predictive variables (also
referred to as independent variables) and yi =

(
yi,1, yi,2, . . . yi,d

)
denotes the vector of d target variables

(also referred to as dependent variables). The objective is to develop the following linear model that
depicts the relationship between xi and yi:

yi = xiw + ei (1)

where w denotes a m× d coefficient matrix, and ei denotes a 1× d residual vector.
Based on a conventional setting, we assume all the data records (i.e., predictive variables and

target variables) in D come from the same population. Thereby, one coefficient matrix w is sufficient to
explain the linear relationship between the predictive variables and the target variables.

In a more general case, the samples can also originate from various subpopulations. Some of
the subpopulations may share common features, while some of them may have distinctive statistical
patterns. Concerning the heterogeneity among the subpopulations, one can cluster samples with
similar patterns into disjointed classes (also referred to as groups or clusters) and fit linear models for
each specific class. The clustering-based linear model is formulated as below:

yi = xiwk + ei (2)

where
(
xi, yi

)
belongs to class k, wk denotes its coefficient matrix, and there are K classes in the dataset,

i.e., k ∈ {1, 2, . . . , K}. Note that a subpopulation is not identical to a class. For instance, in traffic safety
analysis, a subpopulation can be labeled by the city and a class can be a group of cities with a similar
GDP level.

In this section, we first introduce multi-output regression models used in this study, then we
propose a novel approach of clustering-based regression.

3.1. Multi-Output Regression Models

Multi-output regression models have been widely used in a variety of research questions such
as stock price prediction, travel behavior prediction, and multiple genetic trait prediction [33–35].
The major difference between multi-output regression models and single-output regression models
(i.e., the traditional procedure of doing regressions for each target variable separately) is that the
former attempt to take advantage of correlations among the target variables and improve predictive
accuracy [36]. A variety of approaches have been developed to model the correlations of the target
variables, such as linear transformation from a multi-output regression problem to a single-output
problem [37,38], and simultaneous consideration of task correlations and noise correlations [39]. In this
paper, we utilize the well-known regularized linear model for solving multi-output regression problems.
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The objective function of a regularized linear model with a single target variable and a combined
l1-norm and l2-norm regularization penalty is given by

min
w

1
2N

N∑
i=1

(yi − xiw)2 + λ1‖w‖1 + λ2‖w‖22 (3)

where yi denotes the one-dimensional target variable, λ1 ≥ 0 and λ2 ≥ 0 are complexity parameters
for the l1-norm and l2-norm penalties, respectively. In the objective function, term 1

2N
∑N

i=1(yi − xiw)2

represents the least square loss for linear models, term λ1‖w‖1 and term λ2‖w‖22 are used for model
regularization to enhance the prediction accuracy and interpretability. Note that λ1 = 0 indicates a
ridge regression [40], and λ2 = 0 represents a lasso regression [41].

The model in Equation (3) can be extended to a multi-output regression model (also referred to as
multi-task learning regression) with the following objective function:

min
w

1
2N

N∑
i=1

‖yi − xiw‖2F + λ1Φ(w) + λ2‖w‖2F (4)

where the l1-norm is replaced by a cross-task regularization term λ1Φ(w) with Φ(w) to be the
penalty function. The cross-task regularization penalty can have different formulations, such as a
l2−1-norm (i.e., Φ(w) = ‖w‖2,1), and a trace form (i.e., Φ(w) = tr(w), where tr(·) denotes the trace
operator of a matrix). Compared with single-output models that fit each target variable separately,
the multi-output regularized linear model ensures better predictive performance especially when the
targets are correlated [42].

3.2. Clustering-Based Multi-Output Regression Models

Cluster analysis or clustering is the task of classifying a set of data records based on their similarity,
such that data records in the same class (i.e., cluster or group) share a more similar pattern to each
other than to the data records in other classes (i.e., clusters or groups). Statistical clustering is needed
across numerous scientist disciplines, in which unsupervised learning algorithms are often required.
Unsupervised learning means that there is no outcome to be predicted, and the algorithm tries to find
patterns in the data without a predetermined model structure. There are quite a few well-developed,
unsupervised, learning-based, clustering algorithms, such as hierarchical cluster analysis [43], Birch
clustering [44], K-means clustering [45], etc.

For regression analysis with data sampled from a large number of subpopulations (i.e., Equation
(2)), estimating models according to each subpopulation will cause overfitting issues. Thereby,
integrating clustering analysis with the regression model will be beneficial in both capturing the
heterogeneous effects of predictive variables on the target variables and keep the simplicity of the
model. In this paper, we apply a subpopulation-based K-means algorithm to classify data records
before fitting the multi-output or single-output regression model.

We continue with the multi-variate and multi-output setting and suppose the dataset D is collected
from J disjoint subpopulations and there are N j samples for subpopulation j, i.e., D = ∪J

j=1D j and

D j = {(x j
1, y j

1), (x
j
2, y j

2), . . . , (x
j
N j , y j

N j)} for j ∈ {1, 2, . . . , J}. We cluster subpopulations into K (K ≤ J)
classes based on the K-mean algorithm. For k ∈ {1, 2, . . . , K}, we use Ck to denote the subset of data
records that belong to class k, and use

(
pk, qk

)
to denote its centroid, where pk and qk are the centroids of

predictive variables and target variables, respectively. Note that for the subpopulation-based clustering
procedure, if sample i of subpopulation j belongs to class k, i.e., (x j

i , y j
i ) ∈ Ck, then all the other samples

from this subpopulation also belong to class k, i.e., (x j
i , y j

i ) ∈ Ck for i ∈ {1, 2, . . . , N j
}. Besides, each

centroid has m + d dimensions, including both predictive variables and target variables. Any two
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classes k and s are disjoint, i.e.,Ck ∩Cs = ∅, for k , s and k, s ∈ {1, 2, . . . , K}. The union of all clusters is
the full dataset, such that ∪K

k=1Ck = D.

By randomly taking K centroids
{(

p1, q1

)
,
(
p2, q2

)
, . . . ,

(
pK, qK

)}
as the initialization, the subpopulation-

based K-means algorithm proceeds by alternating between the following two steps.

• Assignment step: for each subpopulation, i.e., j ∈ {1, 2, . . . , J}, assign all its samples to class

k ∈ {1, 2, . . . , K} if the sum of the squared Euclidean distances to centroid
(
pk, qk

)
is the minimum:

L( j, k) =
N j∑
i=1

‖

(
x j

i , y j
i

)
−

(
pk, qk

)
‖

2 (5)

Ck =
{(

x j
i , y j

i

)
: L( j, k) ≤ L( j, s), s ∈ {1, 2, . . . , K}, j ∈ {1, 2, . . . , J}, i ∈

{
1, 2, . . . , N j

}}
(6)

where L( j, k) denotes the sum of squared Euclidean distances from each sample in subpopulation
j to the centroid of class k, and L( j, s) denotes the sum of distances to the centroid of class s.

• Updating step: for each class, i.e., k ∈ {1, 2, . . . , K}, calculate the new centroids based on the current
clustering results:

pk =

∑
D j
∈Ck

∑N j

i x j
i∑

D j
∈Ck

N j , qk =

∑
D j
∈Ck

∑N j

i y j
i∑

D j
∈Ck

N j (7)

The algorithm will terminate once the centroids converge. After clustering, the original dataset is
divided into K disjointed datasets and regression models will be fitted for each specific dataset.

For the remaining of this paper, we adopt the following abbreviations to denote the models:

• Model SL: a single-output linear model with the objective function described by Equation (3).
• Model ML: a multi-output linear model with the objective function presented in Equation (4).
• Model CSL: a clustering-based single-output linear model.
• Model CML: a clustering-based multi-output linear model.

4. City-Level Traffic Safety Analysis

The dataset used in this case study is fused based on the annual China city-level traffic safety
statistics from China MPS and the annual city-level socioeconomic data from the China National
Bureau of Statistics. The socioeconomic data is downloaded from the link http://www.stats.gov.cn/.
The Traffic Safety Research Center of China MPS has been collecting annual measurements related
to traffic safety for 36 major cities in China (illustrated in Figure 1, the full list of the cities: 1 Beijing,
2 Tianjin, 3 Shijiazhuang, 4 Taiyuan, 5 Huhehaote, 6 Dalian, 7 Shenyang, 8 Changchun, 9 Haerbin,
10 Shanghai, 11 Nanjing, 12 Hangzhou, 13 Ningbo, 14 Hefei, 15 Fuzhou, 16 Xiamen, 17 Nanchang,
18 Jinan, 19 Qingdao, 20 Zhengzhou, 21 Wuhan, 22 Changsha, 23 Guangzhou, 24 Shenzhen, 25 Nanning,
26 Haikou, 27 Chongqing, 28 Chengdu, 29 Guiyang, 30 Kunming, 31 Lhasa, 32 Xian, 33 Lanzhou, 34
Xining, 35 Yinchuan, 36 Urumqi). Detailed information for each city from the year 2010 to the year 2015
is recorded, including the number of different types of vehicles (e.g., small cars, trucks, motorbikes,
etc.), number of private, public, and rental vehicles, number of drivers, the age distribution of drivers,
driving age (the years of holding a driver’s license) distribution, the gender distribution of drivers,
population, average annual income, GDP and decomposition of GDP (i.e., primary industrial sectors,
secondary industrial sectors, and tertiary industrial sectors), number of fatalities, number of injures,
and property damage. There are 216 records and 36 subpopulations in the dataset. Table 1 provides
the statistics of the predictive variables x and target variables y. Since some of the variables are highly
correlated, we do not include all the aforementioned variables for the analysis to avoid collinearity
issues. For instance, the number of drivers is positively correlated to the number of small cars; therefore,
only one of them is considered in our model. The predictive variables are selected based on collinearity

http://www.stats.gov.cn/
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diagnostics that fit OLS estimators with all the variables in the dataset. The variance inflation factor
(VIF), defined as 1

1−R2
l

(R2
l denotes the R-Squared value for predictive variable l, for l ∈ {1, 2, . . . , m}),

is adopted as the measurement of collinearity. Predictive variables with a VIF higher than 10 are
eliminated due to high collinearity. The primary industrial GDP and the secondary industrial GDP
are combined as one variable because the models with a combined GDP perform better than models
with two separate variables. Note that we are not fitting a panel data model and the annual linear
trend is not included. For all the target variables and the predictive variables, the average values are
greater than the medium variable, indicating that there are metropolitan cities among the 36 major
cities. The large range of socioeconomic variables, such as 59.5 K to 5027.9 K for the number of small
cars and 484.6 K to 33,752 K for population, illustrates the unbalance in urbanization, which largely
depends on the location of the major city and the national economic policy.
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Figure 1. The 36 major cities in mainland China.

Table 1. Variables and the statistics.

Variables Statistics

Min. Med. Max. Avg.

Target Variables
# of fatalities 1 136 667 181.4
# of injures 35 831 3252 954.1
property damage (K RMB) 23.7 2966.6 59,138.9 4157.5

Predictive Variables
# of small cars (K) 59.5 867.7 5027.9 1067.3
# of trucks (K) 7.47 66.3 243.1 76.2
# of motor bikes (K) 0.12 171.2 1805.9 221.3
# of drivers under 25 (K) 2.71 185.5 912.9 229.2
# of drivers over 10 years’ driving (K) 20.4 403.2 3377.7 531.7
population (K) 484.6 6560.6 33,752 7075.6
avg. annual income (K RMB) 31.1 53.6 114.6 55.0
primary and secondary industrial GDP (B RMB) 7.14 258.0 829.2 288.6
tertiary industrial GDP (B RMB) 12.1 226.0 1833.2 333.5

Note: Min., Med., Max., and Avg. denote minimum, median (i.e., the middle quantile), maximum, and
average, respectively.

Without clustering analysis, we pooled fit different models (SL and ML) with λ2 = 0 (lasso) and
λ1 ∈ {0.0, 1.0, 2.0, 5.0}, and a l2−1-norm is used as the cross-task regularization term for ML models
(i.e., Equation (4)). Lasso is selected because it is capable to identify key factors when the number of
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predictive variables is large, and it has been utilized in transportation planning problems such as metro
ridership prediction [46]. The parameters are selected after trying different combinations of λ1 and λ2.
We find that models with λ2 > 0 provide low R-Squared values and are not capable of key variable
identification. This is mainly because we have a large number of coefficients to estimate compared
with the sample size. In other words, λ2 = 0 is more suitable for the analysis of the city-level dataset in
this paper. Readers may try other datasets to find their optimal combination of λ1 and λ2. Readers are
welcomed to contact us for requesting the results of the models with λ2 > 0, which are not presented
in this paper. The results are presented in Table 2, in which the label of each model is followed by a
number indicating the value of λ1 (i.e., model SL 2.0 means the SL model is fitted with λ1 = 2.0 and
λ2 = 0.0). Note that model SL or model ML fitted with λ1 = λ2 = 0.0 are identical to the ordinary
least squares (OLS) regression model, and it is referred to as model SL 0.0 in Table 2. Besides, symbol
+ indicates a positive coefficient, symbol—indicates a negative coefficient, and 0 represents a zero
coefficient (i.e., no effect on the target variable). The three columns of symbols below each model label
represent the effect of the predictor variables on the number of fatalities, the number of injures, and
monetary property damage, respectively. Since the objective function of model SL 0.0 is identical to
the formulation of R-Squared, model SL 0.0 has the highest R-Squared (also lowest RMSE) values for
all the three target variables. However, without regularization terms, model SL 0.0 does not have zero
coefficients and can be weak in model interpretability. Models SL 5.0, SL 2.0 and SL 1.0 result in a
balance between R-Squared (also RMSE) value and model simplicity. Once a multi-target learning
objective function is adopted, the R-Squared value significantly increases (comparing ML 5.0 with SL
5.0, ML 2.0 with SL 2.0, and ML 1.0 with SL 1.0 in Table 2). We note that the l2−1-norm in model ML
will draw the coefficient of unimportant factors to zero for the three target variables simultaneously.
Besides, the signs of the predictive variables may change as λ1 varies. Concerning both the estimation
errors (i.e., R-Squared and RMSE values) and model simplicity (i.e., a simple model is less likely to
have collinearity issues), we select model ML 2.0 for the comparison with clustering-based models.

Table 2. Signs of predictive variables of multi-output models without clustering.

Models SL 0.0 SL 5.0 SL 2.0 SL 1.0 ML 5.0 ML 2.0 ML 1.0

Intercept + + + + + + + + + + + + + + + + + + + + +
# of small cars − + + 0 0 + 0 0 + 0 0 + + + + + + + − + +
# of trucks + + + 0 + + 0 + + 0 + + − + + − + + − + +
# of motor bikes + − − 0 0 − 0 0 − 0 0 − − − − + + + + + −

# of drivers under 25 + + − 0 + 0 + + 0 + + 0 0 0 0 + + + + + −

# of drivers over 10 years’ driving − − + 0 0 0 0 0 + 0 0 + 0 0 0 0 0 0 − − +
population − + + 0 + + 0 + + 0 + + + + + + + + − + +
avg. annual income − − − 0 0 − 0 − − 0 − − + − − − − − − − −

primary and secondary industrial GDP + + + 0 + + + + + + + + + + + + + + + + +
tertiary industrial GDP + + − + 0 0 + 0 − + 0 − 0 0 0 + − − + + −

R-Squared for # of fatalities 0.671 0.213 0.549 0.611 0.553 0.639 0.663
RMSE for # of fatalities 69.0 106.6 80.7 74.9 80.4 72.1 69.7
R-Squared for # of injures 0.384 0.333 0.368 0.378 0.356 0.370 0.381
RMSE for # of injures 516.1 537.2 523.0 518.9 527.7 522.1 517.6
R-Squared for property damage 0.164 0.158 0.161 0.163 0.158 0.161 0.163
RMSE for property damage 4953 4971 4962 4956 4970 4962 4956

The pooled estimated (i.e., SL and ML) models with homogenous effect among different
subpopulations may be biased in capturing the sensitivities of the target variables towards the
predictive variables. After subpopulation-based K-means clustering, we identify two city classes that
have distinctive features in socioeconomic and traffic safety patterns. We have tried different K in
Equations (5)–(7). When K = 3, there are three classes with number of cities to be 30, 5, and 1 in
each class; when K ≥ 4, only 3 classed can be identified. Thereby, we select K = 2 in this analysis.
The two classes are marked with different colors in Figure 1, where class 0 contains 6 large and highly
urbanized cities (e.g., Beijing and Shanghai), and class 1 contains the other 30 major cities. We refer to
city class 0 as a metropolitan class and city class 1 as a non-metropolitan city class. Table 3 summarizes
the statistical patterns of the two city classes. We note that the number of vehicles, the number of
drivers, and traffic accident measurements of class 0 are significantly larger than class 1, indicating



Sustainability 2020, 12, 3098 9 of 13

that metropolitans in China are with high travel demand and are suffering from heavy accident losses.
Moreover, the average personal annual income of class 0 is higher than class 1, and it means that the
metropolitan class is not only superior in the mass of area but also offers more economic payoffs for
the residents. Given that income level is positively related to travel activities and the purchase of
luxurious vehicles and other properties, this finding somehow explains why the property damage of
city class 0 is much higher than that of city class 1.

Table 3. Statistics of the two city classes.

Variables City Class 0 City Class 1

Min. Max. Avg. Min. Max. Avg.

Target Variables
# of fatalities 64.0 677.0 295.3 1.0 451.0 158.6
# of injures 243.0 2656.0 1395.5 35.0 3252.0 865.8
property damage (K RMB) 1541.8 59,138.9 11,345.0 23.7 10,934.5 2720.0

Predictive Variables
# of small cars (K) 438.2 5027.9 1731.6 59.5 3544.6 934.4
# of trucks (K) 17.8 243.1 101.3 7.5 224.0 71.2
# of motor bikes (K) 25.7 1805.9 347.2 0.1 726.0 196.1
# of drivers under 25 (K) 142.6 912.9 425.6 2.7 714.4 189.9
# of drivers over 10 years’ driving (K) 300.3 3377.7 1126.5 20.4 1601.8 412.8
population (K) 7526.7 33,752.0 14,712.7 484.6 12,280.5 5548.1
avg. annual income (K RMB) 32.4 113.1 64.4 31.1 114.6 53.1
primary and secondary industrial GDP (B RMB) 179.7 829.2 513.8 7.14 721.5 243.5
tertiary industrial GDP (B RMB) 135.6 1833.2 730.4 12.1 1214.7 254.1

We fit multi-task models for both of the city classes with λ2 = 0 and λ1 = 2.0, which is referred to
as model CML 2.0, for comparison with non-clustering-based multi-output models (i.e., model ML
2.0). Similar to the pooled estimated case, the goodness-of-fit of model CML 2.0 is notably better than
model CSL 2.0. Therefore, we only illustrate the comparison between model ML 2.0 and model CML
2.0 in this paper. The coefficients of model ML 2.0 and model CML 2.0 (for class 0 and class 1) are
shown in Table 4. After clustering, the overall R-Squared values for the three task variables significantly
improve from 0.639/0.370/0.161 to 0.747/0.458/0.558, and the RMSE reduces from 72.1/522.1/4962 to
60.5/484.24/3604, respectively. Note that the R-Squared value for overall property damage is 0.558,
higher than both city class 0 (0.281) and city class 1 (0.470). This is possible because the mean property
damage values used in the calculation of R-Squared are different. The RMSE of city class 0 is 8142,
much higher than the overall RMSE 3604. This indicates the property damage of city class 0 is less
significant than city class 1. The results show the superiority of the clustering-based models over
the pooled estimated models in terms of estimation errors. Thereby, we can conclude that there is
significant heterogeneity between cities and clustering is necessary for city-level traffic safety analysis.

Table 4. Coefficients of the MG model and the CMG model.

ML 2.0 CML 2.0 Class 0 CML 2.0 Class 1

# fat. # inj. p.d. # fat. # inj. p.d. # fat. # inj. p.d.

intercept 110.8 654.2 1434.8 127.8 745.7 22401.2 79.4 632.1 724.0
# of small cars 0.013 0.137 0.632 −0.058 0.638 10.17 −0.003 −0.039 0.388
# of trucks −0.132 0.784 10.12 −0.166 −0.293 −22.51 −0.038 −2.063 11.23
# of motor bikes 0.018 −0.112 −4.97 −0.052 −1.022 0.827 0.001 0.030 −0.039
# of drivers under 25 0.035 0.231 0.03 0.709 2.224 13.37 0.136 0.917 1.387
# of drivers over 10 years’ driving - - - −0.398 −0.962 −29.34 0.039 0.106 −2.515
population 0.001 0.029 0.254 0.003 0.046 −0.251 - - -
avg. annual income −1.043 −7.102 −11.77 3.858 −16.24 92.96 −0.883 −4.464 −6.378
primary and secondary industrial GDP 0.174 0.934 4.599 −0.525 0.914 −30.44 0.126 1.226 6.650
tertiary industrial GDP 0.145 −0.015 −0.793 0.582 −0.053 19.27 0.233 0.520 1.320
R-Squared 0.639 0.370 0.161 0.711 0.750 0.281 0.685 0.309 0.470
RMSE 72.1 522.1 4962 71.0 356.5 8142 58.1 506.1 1525
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In model CML 2.0, the intercepts for city class 0 are universally higher than city class 1 (also higher
than the intercepts in model ML 2.0). This may reflect two phenomena: metropolitan cities in China
tend to face more serious traffic safety issues; safety factors, especially property damage, of metropolitan
cities might not be fully explained by the predictor variables in this study. The relationships between
the number of young drivers (i.e., under 25 years old) and the safety measurements are positive for all
the three estimations (ML 2.0, CML 2.0 class 0, and CML 2.0 class 1), and the results indicate that young
drivers may not formulate good driving habits. Under model CML 2.0, the number of experienced
drivers (who have been driving over 10 years) is found negatively related to the number of fatalities
and the number of injures in city class 0, while the relationship is positive in city class 1. A possible
explanation of this phenomenon is that the roadway enforcement is strict in metropolitan cities and can
improve the driving habits, while in the other regular size major cities, loose enforcement may foster
bad habits for experienced drivers. In other words, driving experience may not be universally positive
related to driving skills, which is a critically important factor in China [47]. Another interesting finding
is that there is no population effect on traffic safety in non-metropolitan major cities. The population
effect in the metropolitan city class reflects an over-concentrated urban pattern in these cities. Besides,
average annual income has negative impacts on all three safety measurements for city class 1, while it
has a strong positive effect (i.e., a coefficient of 92.96) on property damage for city class 0. This is partially
due to the high property value (e.g., infrastructure and luxurious vehicles) in metropolitan cities.

The effect of decomposed GDP on traffic safety is of particular interest. The primary and secondary
industrial GDP is found to be positively related to the number of injures for both city class 0 and city class
1. This is because the secondary industry involves a high load of transportation activities and increases
the risk of traffic accidents [28]. The effect of primary and secondary industrial GDP is opposite to
that of tertiary industrial GDP in the metropolitan city class; however, in the non-metropolitan city
class, the effects of the two decomposed GDP are consistent. The results somehow supply the previous
findings of the U-curve [8,22,23], such that after the urbanization and GDP reach a high level, the
economy will contribute to traffic safety by improving medical aspects, transportation infrastructure,
traffic monitoring, etc. With a successive of 6 year’s panel data, the conclusion may not reflect the
relationship between economic growth speed and traffic safety, but it is insightful to note the differences,
among city classes, in magnitude (and sometimes in sign) of the predictive factors’ effects on traffic
safety measurements.

5. Conclusions

This study provides a novel application of clustering-based multi-output regression models on
macroscopic traffic safety analysis. Based on annual traffic safety data and socioeconomic data of
36 major cities in mainland China, we first pooled estimate single-output models and multi-output
models and find that the consideration of correlation between target variables in multi-output models
can reduce the estimation errors. Second, we apply the subpopulation-based K-means algorithm
to cluster cities into two classes and estimate multi-output models for each class. The class-specific
models help us identify the heterogeneous relationships between traffic safety and predictor variables
in a metropolitan city class and a non-metropolitan city class.

Based on a detailed examination of the regression coefficients in the clustering-based models,
we obtain several interesting conclusions. We note that in both the two city classes, the primary
and secondary industrial GDP is positively related to the number of injuries. In the metropolitan
city class, the primary and secondary industrial GDP and the tertiary industrial GDP have opposite
effects (i.e., one positive and one negative) on traffic safety, while their effects are consistent in the
non-metropolitan city class. The results support the existing literature in two ways: socioeconomic
factors are significantly related to traffic safety; after the economy reaches a high level, it can help to
improve traffic safety situations. We also find that some predictive variables can have opposite effects
on traffic safety in the two city classes. For instance, the number of experienced drivers is negatively
related to the number of fatalities in the metropolitan class, but the relationship becomes positive
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in the non-metropolitan city class. The opposite behavior may come from several reasons, such as
the scale (population) effect in metropolitan cities, the heterogeneity of traffic enforcement, and the
heterogeneity of people’s driving habits in the two city classes. Another finding is that the average
annual income in metropolitan cities has a significantly positive effect on property damage, partially
due to the high value of properties.

Future research can be directed to fuse more data to the existing dataset, which only covers
6 years and some of the socioeconomic variables. We are willing to conduct further analysis once
more recent data (e.g., 2016 to 2019) is collected and released. Since drivers in China break traffic
law more often than those in developed countries [2], we are interested in factors related to traffic
enforcement, such as traffic police numbers and the number of road cameras. The relation between traffic
safety and a lot more factors, such as roadway infrastructure [48,49], advanced control schemes [50],
vehicle mileage traveled [51], and vehicle market predictions [52] are also worthy of being explored.
Without a city-level dataset on the aforementioned variables, we may adopt statistical data fusion
approaches, such as density ratio fusion [53], to obtain a comprehensive traffic safety dataset with the
aforementioned factors.
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