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Abstract: Landscape metrics have been of game changing importance in the analysis of ecosystems’
composition and landscape cohesion. With the increasing urban and agricultural expansion, the
natural flora and fauna of many highly diverse areas have been degraded. Fragmentation of
ecosystems and habitats have stressed the biodiversity of Belize. To understand the dynamics of
this change, a study was conducted using three moderately separate years of ecosystem landscape
data. The metrics used for the analysis were area-weighted mean shape index (AWMSI), mean shape
index (MSI), edge density (ED), mean patch size (MPS), number of patches (NUMP), and class area
(CA). These metrics were produced for the years 2001, 2011, and 2017. The classes of agricultural
use, lowland savannas, mangroves and littoral forests, urban, and wetlands were the subjects for
analysis. Using the GIS extension Patch Analyst, parametric runs were performed. From these results,
a one-way ANOVA test of the NUMP, Tukey HSD test, and Scheffé Multiple Comparison test were
performed. The results indicate that there has been significant habitat fragmentation, especially from
the years 2001 to 2011. Agricultural areas increased by 19.37% in just 10 years, with the NUMP
of some habitats increasing by 284%. The results also show fluctuation in ED and a decrease in
overall MPS, all indicating high fragmentation. These changes have been mostly induced due to the
expansion of agricultural activities and urbanization, especially in the northern parts of Belize. It is
imperative that additional policies be implemented to deter the effects of habitat fragmentation upon
the existing ecosystems of Belize and elsewhere.

Keywords: fragmentation; patch Analyst; ANOVA; urbanization; Tukey HSD Test; Scheffé Multiple
Comparison

1. Introduction

1.1. Habitat Fragmentation

When natural habitat is altered, both its composition and configuration change. This change
is called fragmentation [1]. Habitat breakages or the degree of patchiness of a habitat is a result of
anthropogenic activities [2]. These activities can result in higher probabilities of local extinction with
lower probabilities of recolonization [3]. As anthropogenic pressures continuously contract habitual
areas, the ecosystems within these areas become drastically disrupted and degraded. The process of
this degradation can be summarized in four stages: perforation, dissection, dissipation, and shrinkage
(Figure 1). These impacts are mainly influenced by the increment of land use [4]. This use refers to
all components of change in the quantity and quality of land cover types as habitats for organisms
and productive land for humans [5]. Several models developed have indicated that there exists a
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negative effect on species population growth rate, which dictates that decreasing trends in abundance
are more likely to occur in areas with high habitat loss [6,7]. Although there has been considerable
focus on the global status of these species, true importance lies in the longevity and security of these
ecosystems in the changing environments, which depend on local biodiversity [8]. This local diversity
can be assessed and studied with landscape pattern analysis, which measures the arrangement and
composition of habitats and ecosystems [9]. Some studies (such as [10–13]) have conducted studies
about deforestation and diversity in Belize. However, these studies did not employ the use of landscape
metrics to assess habitat fragmentation. This research employed landscape metrics in studying the
habitat fragmentation variations to provide a different perspective on the status of Belize ecosystems.
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Figure 1. Illustration of the process of landscape fragmentation. The process of fragmentation can be
summarized in 4 phases: (a) perforation, which sees initial small openings; (b) dissection, illustrates
larger intrusions of change, often along with physical features; (c) dissipation, which is the spread and
coalescing of alteration, and eventually, (d) shrinkage, which results in the reduction in patch size and
attrition [1].

1.2. Landscape Metrics

Spatial pattern metrics are used to measure the organization of habitats within a landscape. Such
studies as [10] have allowed ecologists to establish tangible relationships between very important
landscape indices, and thus, have become important tools in ecological research [11]. Landscape
metrics are also important in understanding the dynamics of anthropogenic interaction with natural
habitats and urban expansion [12,13]. Their speed of calculation and their simplicity have been some
of the main advantages of landscape metrics [14]. In the process of understanding the dynamics
of landscapes, there have been developments and well-established generalizations concerning the
response of ecosystems to habit fragmentation [15,16]. These responses, as observed in Figure 2, either
represent an increase or a decrease in the magnitude of species loss. Metrics such as class area (CA)
and mean patch size (MPS) describe the area of a patch or fragment within a landscape. Decreases
in the area of patches are synonymous with increases in habitat fragmentation. To describe shape
complexity of patches, there are several indices. Some of these include shape index (SHAPE), mean
shape index (MSI), area-weighted mean shape index (AWMSI), landscape shape index (LSI), just to
name a few. These metrics describe how complex patches are, where an increase in complexity leads to
an increase in fragmentation. Like shape complexity, high numbers in distance from the edge of a
habitat indicate a fragmented ecosystem. Metrics such as edge density (ED) describe the distance of an
ecosystem from its centroid, meaning the center of the patch.
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Figure 2. Widely-held generalizations of how species in ecosystems react to habitat fragmentation. The
five main components of the spatial context of habitat fragments are seen in conjunction with species
loss. The predictions are derived from studies in fragmentation effects [17].

1.3. Study Area and Aim

Anthropogenic activities have plagued most existing ecosystems, and such has been the case
in Central America, particularly Belize. Over 60% of Belize’s land surface is covered by forest [18].
Around 20% of the country’s land is covered by cultivated land (agriculture) and human settlements,
while the savannas, scrublands, and wetlands constitute the remainder of Belize’s land cover [19].
This can be observed in Figure 3. Settlement and agricultural land expansion have caused heavy
pressure to be put upon the ecosystems of Belize [20,21]. A notable change in the forest area can be
seen in Figure 4 which shows the forest cover in Belize in 1986 and in 2018. The images were created
by the authors in [22] and were derived from Landsat data. The figure shows forest cover over the
entire country. The 1984 images were collected by the Thematic Maper (TM) aboard Landsat 5, the
2018 images were by the Enhanced Thematic Mapper (ETM+) Plus aboard Landsat 7. Both images
are at a resolution of 30 m. The figure on the right (Figure 4b) resembles the first and second phases
of fragmentation, perforation, and dissection, respectively. The total protected areas in Belize, both
terrestrial and aquatic, amount to some 47%, including the Belize Barrier Reef [23]. As Belize consists
of habitats that host endangered and threatened species, habitat fragmentation has been especially
challenging to conservation efforts [24]. A few studies have been done that focus on the fragmentation
of ecosystems in Belize, such as [25], but these studies did not employ the use of landscape metrics.
Therefore, the aim of this study is to analyze habitat fragmentation in Belize using different landscape
indices from the years 2001, 2011, and 2017. The results will aid in understanding the transformation of
the Belize landscape throughout the stated years, in addition to exploring what type of transformations
have taken place throughout that time. It is also our aim to determine which factors have led to
the change in the landscapes, and if there has been fragmentation, by how much has it increased or
decreased through the years. It is essential to this study to determine the aforementioned in hope that
it represents a practical assessment of the conditions of the Belize landscape and of the efficacy of the
protection policies previously implemented to stop habitat fragmentation.
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2. Materials and Methods

2.1. Spatial Data

The shapefiles that represented the ecosystems of Belize for the years of 2001, 2011, and 2017
were produced at different times and with different accuracies and resolutions. The map which
represented the ecosystems for the year 2001 was produced by Meerman and Sabido in 2001. The
map was essentially an update of a vegetation map produced in 1995. The map for 2011 was an
update of the map produced in 2001. Some changes made to update the map included using fieldwork
data gathered by the authors from 2001 to 2004, updated Landsat TM images, revised vegetation
classification, climatological data attained from the MET department and a geology map of Belize
produced by Cornec in 2003 [19]. The map that represents ecosystems in Belize for 2017 was basically
an improvement of the maps produced the previous years. This version, however, was based on
February 2017 Landsat 8 imagery augmented with numerous online high-resolution imageries. The
trend has been as previous iterations, to improve the resolution and accuracy [26].

The shapefiles are in reference to the Universal Transverse Mercator (UTM) with the geodetic
datum being the North American Datum of 1927 (NAD27) Zone 16 North [26]. The Digital Elevation
Model (DEM) data for Belize was attained from the Caribbean Handbook on Risk Information
Management (CHARIM) GeoNode [27]. The spatial resolution of the DEM was 90 m. To determine
the extent of breakage in the biological corridor, the Patch Analyst 5.2 was used. The Patch Analyst
is a program extension in the ArcGIS®software system that is a part of the Spatial Ecology section
developed by the Centre for Northern Forest Ecosystem Research (CNRER) in Canada. It facilitates the
spatial analysis of landscape patches and the modeling of attributes associated with patches [28]. To
initiate the process, the BERDS shapefiles were loaded into ArcGIS 10.1 [29] and prepared for patch
analysis. After the analysis type was defined, the program was executed. Individual fragmentation
analysis were done for the years 2001, 2011 and 2017 in the Patch Analyst 5.2 [28]. All runs were
done at the ‘class level’, which serves to quantify the landscape composition and configuration of
landscapes [30]. The fragmentation metrics that were of particular interest were chosen based upon
their correspondence to the evaluation of ecosystem fragmentation and their use by authors in studies
briefly mentioned in Section 1.2. These metrics are further explained in Section 2.2.

2.2. Fragmentation Metrics and Landscape Classes Used in the Study

The classes or patch types that were selected from the shapefiles with the ecosystem polygons
were agricultural uses (AU), lowland savanna (LS), mangrove and littoral forests (MLF), urban (URB),
and wetlands (WL). Although the BERDS data bank contains several shapefiles with extensive spatial
data, there was a slight hiccup with the representation of the classes across the years. Some classes
were present in some years which were not present in the other years. LS, MLF, and WL were
chosen as the biotic landscape classes because they were present in all 3 shapefiles for the respective
years. The remaining 2 classes, AU and URB, were selected specifically for their independence. Since
these 2 classes expanded and were expected to do so dramatically with time, it is possible that they
marginalized and edged the surrounding ecosystems. This can be particularly so for LS since its terrain
and fertility facilitate good farming.

As previously stated, the most important categorical landscape metrics for determining habitat
fragmentation are habitat area, edge effects, and shape complexity [31]. It was imperative to select
metrics that fit these categories. For habitat or fragment area, the CA and the MPS were selected.
The CA and MPS are measured in hectares. For shape complexity, the AWMSI and MSI were used.
Both metrics are similar in that they are equal to 1 when the patches of corresponding patch type are
circular or square, but the AWMSI is weighted by patch area so the larger patches will weigh more
than smaller ones [32]. To determine the edge effects, the ED metric was used. The ED indicates
the amount of edge relative to the landscape area. The final metric selected was number of patches
(NUMP). This was perhaps one of the most important metrics since its determination is clear and
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straightforward. An increase or decrease in the NUMP would indicate an increase or decrease in
habitat fragmentation, respectfully.

The following subsection discusses each metric, presents its formula and provides a brief
description as to their relation to landscape metric analysis. The metrics are presented here as they
were originally presented by McGarigal et al. in 1995 for the development of FRAGSTATS (Spatial
Pattern Analysis for Program for Quantifying Landscape Structure) [32].

2.2.1. ED (Edge Density)

The formula for ED is shown below as Equation (1). The ED equals the sum of the lengths (m) of
all edge segments that correspond the particular patch type, divided by the total landscape area (m2),
and by 10,000 (to convert to hectares).

ED =

∑m
k=1 eik

A

( 1
10000

)
(1)

where eik is the total length (m) of the edge in the landscape involving patch type (class) i which includes
landscape boundary and background segments involving patch type i, and A is the total landscape
area (m2). The value of ED can be 0, which signifies that there is no edge in the landscape class. The
value is non-zero when there is change in class edge. ED is measured in meters/hectare (m/ha).

2.2.2. MPS (Mean Patch Size)

The mean patch size is equal to the sum of all patches of the corresponding patch type, of the
particular patch metric values, divided by the number of patches of the same type, divided by 10,000
(to convert to hectares),

MPS =

∑n
j=1 ai j

ni

( 1
10000

)
(2)

where ni is the number of patches in the landscape of patch type (class) i, and ai j is the area of patch ai.
The mean patch size has a unit of hectares and is a non-zero value with no limit.

2.2.3. NUMP (Number of Patches)

The NUMP simply equals the number of patches of the corresponding patch type (class) and is
represented as Equation (3). The number of patches of a particular patch type is a simple measure
of the extent of subdivision or fragmentation of the patch type. The NUMP = 1 when the landscape
contains only 1 patch. This number has no units and no limits.

NUMP = ni (3)

2.2.4. AWMSI (Area-Weighted Mean Shape Index)

The AWMSI is equivalent to the sum, across all patches of the corresponding patch type, of each
patch perimeter (m) divided by the square root of patch area (m2), adjusted by a constant to adjust
for a circular standard (vector) multiplied by the patch area (m2) divided by total class area (sum of
patch area for each patch of the corresponding patch type). The AWMSI, in other words, is the average
shape index of the corresponding patch type, weighted by size so that larger patches weigh more than
smaller ones. This is represented as Equation (4).

AWMSI =
n∑

j=1

( pi j

2 √π·ai j

) ai j∑n
j=1 ai j


 (4)
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where pi j is the perimeter (m) of patch i j. The AWMSI is 1 when all the patches of the corresponding
patch type are circular (when vector, as in our study) or square (when raster). The AWMSI has no unit
and no limit. Equation (4) differs slightly if the spatial data are represented as raster.

2.2.5. MSI (Mean Shape Index)

The MSI is equal to the sum of the patch perimeter (m) divided by the square root of patch area
(m2) for each patch of the corresponding patch type, adjusted the same way as the AWMSI described
in Section 2.2.4. The MSI is represented as:

MSI =

∑n
j=1

(
pi j

2 √π·ai j

)
ni

(5)

where known variables are the same as those stated in Section 2.2.4. The MSI is equal to 1 when all of
the patches of the corresponding patch are circular (when vector, as in our study) or square (when
raster). The same applies as in Section 2.2.4, where Equation (5) would differ slightly were the data
are represented as raster. The MSI = 1 when all patches of the corresponding patch type are circular
(vector, in our study), and has no limit or unit.

2.2.6. CA (Class Area)

The class area equals the sum of the areas (m2) of all patches of the corresponding patch type,
divided by 10,000; that is, the total class area. The formula of the CA is represented as Equation (6),

CA =
n∑

j=0

ai j

( 1
10000

)
(6)

where ai j is the area (m2) of patch i j. The CA approaches zero as the patch type becomes increasingly
rare in the landscape. The larger the CA, the more unified the patch type. The CA has the unit of
hectares (ha) and no limit.

2.3. Data Analysis

A one-way analysis of variance (ANOVA) test was done with the NUMP [33]. This method of
analysis was chosen following a study of similar direction [33]. The NUMP was chosen as the primary
source of data for the ANOVA since it is the most indicative metric relative to fragmentation. The
NUMP also has the quality of simplicity. Either it increases or decreases as the other metrics do, but
its direction provides a prelude to the condition of the habitat. The ANOVA was ‘between groups’
across the 3 years of metrics data gathered from the Patch Analyst evaluation. The analysis of the
NUMP ‘between groups’ indicates that the source of the variation in the ANOVA was obtained from
the comparison of the values by years, not individual landscape type or class. Therefore, values from
2001, 2004, and 2017 were compared as groups. Although change is visible (as previously observed in
Figure 4) and there was a high expectation that there was change, a comparison of the variance of these
groups was necessary to consolidate this expectation. It was necessary to determine which pairing
expressed the most significant difference.

A post-hoc test is usually used to uncover specific differences between three or more group means
when the ANOVA test proves to be significant. There are several types of post-hoc tests. A few are
used with more regularity than others. Some post-hoc tests are Tukey’s honest significance test (Tukey
HSD), Duncan, Student-Newman-Keuls (SNK), least significant difference (LSD), and Scheffé Multiple
Comparison. The Scheffé Multiple Comparison test is the most protective against Type 1 error [34].
For this, this test was deemed appropriated. A Tukey HSD test was also done to have high confidence
in the results.
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3. Results

All results were from the Patch Analyst runs for the years 2001, 2011, and 2017. The results can be
seen in Figure 5. Since the runs were done year by year, the results were grouped as such. A value was
generated for each metric under every class for each year. Were the landscape static, these numbers
would remain roughly the same throughout the years. The hyper-change of the values of almost all
metrics indicate that there has been habitat modification. Although some of the metric values that
are indicative of habitat cohesion are close to 1, any slight variation in their numbers indicates a large
difference. The most numerically significant is the CA, as expected, since it represents area. A change
in CA, as can has been explained in Section 2.2, is synonymous with changes in landscape composure.
To have a more visual understanding of this, the results from the runs in the Patch Analyst were
summarized graphically in Figure 5. The exact values of the key metrics can be seen in Table A1 in the
Appendix A. The results are shown as such that for every metric, the results are for every year of every
class. This was done so that the increase or decrease in each metric is easily decipherable.

The results of the ANOVA are presented in Table 1. For a p-value of 0.0120, the results indicate
that there is a significant difference between the number of patches of the classes through the years
between 2001, 2011, and 2017. To determine where the difference was most drastic or statistically
significant, it is necessary to look at the post-how results summarized in Table 2. Both the Tukey HSD
test and Scheffé multiple comparison generated the same results, which indicate that the most drastic
change was between the years 2001 and 2011. The year-pairs 2011 vs. 2017, however, showed that the
change was insignificant. This was also the result for both post-hoc tests, as is observed in Table 2.

Table 1. One-way ANOVA of the NUMP for each land scape metric class for the years 2001, 2011,
and 2017.

Ecosystem/Class Patch Number (NUMP) Source of
Variation p-Value Inference

Groups

Between
years/Groups 0.0120 Significant

2001 2011 2017

Wetlands (WL) 95 716 565

Urban (URB) 39 298 335

Mangroves and
Littoral Forests (MLF) 370 922 1052

Lowland savanna (LS) 102 1080 1151

Agricultural use (AU) 208 415 684

Note: The result is significant at p ≤ 0.05.

Table 2. Post-hoc tests of number of patches (NUMP) for all 3 years.

Group Pair Inference

Tukey HSD Test

2001 vs. 2011 significant

2001 vs. 2017 significant

2011 vs. 2017 insignificant

Scheffé Multiple Comparison

2001 vs. 2011 significant

2001 vs. 2017 significant

2011 vs. 2017 insignificant

Note: The result is significant at p ≤ 0.05.
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Figure 5. Landscape metrics variability in number of patches (a), area-weighted mean shape index (b),
mean shape index (c), edge density (d), mean patch size (e), and class area (f) in the years 2001, 2011,
2017. The classes are AU—agricultural use, LS—lowland savanna, MLF—mangrove and littoral forest,
URB—urban, and WL—wetlands.

4. Discussion and Conclusions

The results show that there was a significant change for all the biotic classes from the years 2001
to 2017. They indicate overall fragmentation in all classes. The ANOVA results attained from the
test between groups of years showed that the populations from datasets of years 2001 and 2011 were
significantly uneven. This result coincides with the variation that is seen in CA and NUMP from these
respective years. Notably, the CA. The total area of agricultural uses increased by 19.37% in 10 years.
This accounts for a yearly expansion of 1.94%. The urban areas also increased double-fold since 2001,
clearly showing an increase in population and settlements. However, changes in the mangrove and the
littoral forest in respect to CA were not too notable, depicting some level of consistency with a slight
decrease of about a few hundred meters squared. The NUMP of the mangroves and littoral forest,
however, increased by 682 patches, which is equivalent to an increase of 284%. Again, despite the
steady total area, the number of patches has increased dramatically. This is due to the breakage in the
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habitat. Although some mangrove forests located in the coastal areas may be unreachable, the NUMP
of the MLF indicate that there was habitat fragmentation. This is possibly due to urban development
and tourism-related accommodation in areas such as Placencia, San Pedro, Caye Caulker, and other
smaller atolls in the reef.

As it pertains to the size of the patches, the MPS for the different patch types across the study
period decreased dramatically. The smallest decrease in the average patch size was for wetlands from
the years 2011 to 2017. The average size of the patches decreased 4.23%. The largest decrease in the size
of the average patch was for lowland savannas from 2001 to 2011. The average patch sizes were 1912.9
hectares in 2001 and decreased to 161.8 hectares in 2011. The mean patch size decreased by more than
10-fold. The average decrease in MPS from 2001 to 2011 was more than four times the original patch
size value. Transitioning from 2011 to 2017, however, indicated that this almost exponential decrease
halted to indicate an average decrease of about 18.4% across patch types. It is important to also note
that the MPS for the LS patch type increased by 54.8% from 2011 to 2017. The results from a study of
urbanization in Bangalore, India observe that there was a large-scale conversion of small patches to a
large single patch, which is evidence of urbanization [35]. In this study, the case is that despite general
social improvement, urbanization is still expanding in an unplanned and dispersed manner. If this
was not the case, the patches of URB would aggregate as observed by the recently mentioned study. It
is important to also note that the MPS for the LS patch type increased by 54.8% from 2011 to 2017. This
was the only case which showed an increase in patch size. Despite this increase, the NUMP of the LS
still increased.

The fluctuation of ED, as emphasized by McGarigal, et al. [36], incur a major reduction in the
spatial heterogeneity of the landscape. This has been the case for the class LS in the northern part of
Belize (1.22 in 2001, and 1.66 in 2017). The high ED indicates that for this particular landscape, there is
little to no presence of central tendency in the ecosystem. Daye and Healey (2015) [37] also found that
the increase in ED from the six forests they analyzed was a result from incursions and disturbances.
The forests were also isolated within an isolated agricultural matrix. The increasing complexity in
the shape of the patches can be observed in Figure 5c. As they indicate the degree of irregularity of
patches, these values are especially descriptive for ecosystems that are close to pastures or agricultural
lands. The NUMP values were also correspondingly higher for these savannas, showing an increase
by more than 10-fold.

The AWMSI, which indicates the perimeter–area relationship of the patches, shows distinct
differences in all classes. For wetlands, savannahs, and littoral forests, this value increased by 40%,
28.9%, and, 18.6%, respectively. Usually, a higher perimeter–area relationship characterizes the rapid
rate of fragmentation underlying the landforms. The drastic increase in AWSMI in AU throughout the
study period indicates that the expansion of agricultural lands may be unplanned and informal. A
similar conclusion was derived by [38] in their analysis of changes in the urban landscape composition
in Turkey. This also explains the high ED values. Although the AU is not a biotic class, its high ED
indicates that the polygons that represent land-use for agriculture are irregular.

The data generally indicate that fragmentation has affected the ecosystems, especially those in the
Orange Walk and Corozal Districts. The expansion of agricultural land use and urbanization has likely
led to deforestation. In Figure 6a, the land degradation level shows the highest value in the central
portion of Belize, which is the largest forest reserve in the country. This high degradation is likely
due to illegal logging, slash and burn, and riparian farms [39]. This degradation (Figure 6a), can also
be seen as a bio-economic map, of some sort. The decrease in lowland savannas accommodates for
agricultural land use expansion. It is also in this area that the country has seen a drastic increase in
population and settlement size [35]. Figure 6b depicts the agricultural expansion (red) in the most
significant years, 2001 to 2017. AU increased by more than 800 km2, which is quite large considering
the small size of Belize. The most expansion has been in the northern districts, where we have so noted
the most drastic decrease in lowland savannah.
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Figure 6. (a) A map of land degradation coupled with settlements and population size as they
are drivers to fragmentation. Larger circles indicate larger population sizes, and the coloration of
degradation is from green to red-green (0–1) being least degraded and red (7) meaning most degraded;
(b) agricultural land expansion from 2001 up to 2017. The total area of the expansion was approximately
858.54 km2 [26].

A countermeasure of the government has been to concentrate on the protected areas in central
Belize. It is possible that this countermeasure is responsible for the fall in fragmentation metric rates
from the year 2011 to 2017, (insignificant variance which the post hoc tests and the ANOVA indicate).
Whether or not the pace of the countermeasure can ensure the sustainability of the natural flora
and fauna is another matter. However, based upon the results, it is highly recommended that some
extra measures need to be put in place in addition to the existing, to mitigate the current effects of
urbanization and population expansion. There is a need to optimize the mitigation measures that can
deter further fragmentation of ecosystems in Belize.

Habitat fragmentation has been a global problem that has been of imperative focus for the
conservation and preservation of flora and fauna. As population, urbanization, and agricultural
farming increase, they cause biological stress on existing ecosystems, as has been the case in Belize.
Landscape metrics were developed to understand and analyze the interaction and response of natural
habitats to environmental stress. These metrics offer quick and easy markers that are descriptive of the
conditions of a habitat and its biological composition. This study aimed to explain the changes of three
Belizean ecosystems using landscape metrics as they are pressed by anthropogenic expansion. These
were some of the findings of the study:

1. The total area of agricultural uses increased by 14.37% in just 10 years. Overall, there has been an
increase of more than 800 km2 in agricultural lands between the study years 2001 and 2011.

2. The total area of mangrove and the littoral forest seemed unaffected, as is indicated by the constant
CA value. However, the number of patches increased by 284%, which shows that fragmentation
can occur irrespective of the total landscape area.

3. The changes in ED between years showed a reduction in the heterogeneity of the landscapes,
especially for lowland savannahs in the northern part of Belize, which coincides with the
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agricultural expansion in that area for the cultivation of sugar cane. The MSI also displayed
similar behavior, showing that the increasing ED also increased the complexity of the patch
shapes, which is indicative of habitat fragmentation.

4. The AWMSI values of the AU decreased during the study period. This indicates that although
agriculture has been expanding, it is possible that a dominating percentage of this expansion
maybe unplanned and informal. This result coincided with the results of ED from AU.

5. The MPS for all biotic landscapes decreased, showing that the biota has been fragmented and
degraded. The decrease in average patch size ranged from 4.3% to 1182% indicating a massive
increase in fragmentation in just 10 years. This was also observed graphically in the land
degradation map overlapped with population size and dispersion.

There were also several limitations in this study that could have improved the quality of the
results. These limitations also reflect areas where future studies can be improved. Only five landscape
classes were used, which limited the analysis of the response of ecosystems to habitat fragmentation in
Belize. Moreover, only six landscape metrics were used. These metrics mainly focused on patch shape,
area, and distance from edge. However, there are several other types of landscape metric that can
provide additional information such as variability, diversity, contagion and interspersion metrics such
as those in [40]. Another limitation is that due to the available data, the study period was quite short.
As the study stands, there is only a gap of 16 years from the first ecosystem study to the most recent,
2017. It is advisable that a larger time span is used in the future study for analyzing and revealing the
habitat variation over times in Belize.
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Appendix A

Table A1. Patch Analyst simulation results for wetlands (WL), urban (URB), mangrove and littoral
forest (MLF), lowland savanna (LS), and agricultural use (AU) for the year 2001, 2011, and 2017 in
classes AWMSI, MSI, ED, MPS, NUMP, and CA.

Class 2001

WL URB MLF LS AU
AWMSI 2.67 1.78 2.50 2.68 4.54

MSI 1.86 1.68 1.93 1.81 1.87
ED 0.54 0.14 1.59 1.22 2.35

MPS 443.34 259.81 253.96 1912.90 1,718
NUMP 95.00 39.00 370.00 102.00 208

CA 42,117 10,132 93,965 195,116.00 357,463

Class 2011

AWMSI 4.07 1.88 2.64 3.98 7.39
MSI 1.82 1.54 1.84 2.16 1.82
ED 0.84 0.24 0.87 1.67 1.50

MPS 143.18 92.53 101.21 161.80 1,068
NUMP 716.00 298.00 922.00 1080.00 415

CA 102,518 27,574 93,312 174,746 443,317
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Table A1. Cont.

Class 2017

AWMSI 4.45 2.35 3.07 3.77 8.45
MSI 1.93 1.79 2.03 2.11 1.81
ED 0.62 0.30 0.53 1.66 1.92

MPS 137.32 78.86 81.17 295.26 683.37
NUMP 565 335 1052 1151 684

CA 77,588 26,420 85,394 339,846 467,422
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