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Abstract: Seventeen organochlorine pesticides (OCPs) were examined in surface sediments from
Zhang River Estuary Mangrove National Natural Reserve, which is situated in the Fujian province
in southeast China. The range of

∑
OCPs concentration was 0.29–25.41 ng/g dry weight (average

4.53 ng/g),
∑

HCHs was 0.008–0.906 ng/g dry weight (average 0.240 ng/g), and
∑

DDTs was ND–4.743
(average 0.664 ng/g). The concentrations of the HCH isomers were observed in the following
decreasing order: α-HCH > β-HCH > δ-HCH > γ-HCH, and that of the DDT isomers were as in the
following order: p,p’-DDT > p,p’-DDE > p,p’-DDD. According to the analysis of the isomer ratios,
γ-HCH (lindane) and endosulfan were rarely used recently around this mangrove forest. Instead,
the ratios of (DDD+DDE)/DDT showed that DDTs were still illegally used. Compared with other
mangroves in China, the residue level and ecological risk of the OCPs in surface sediment from
ZREMNNR are both at a low level. Based on stepwise regression analysis, current fruit planting, as
well as mariculture in developed areas and vegetable planting in developing areas, had a positive
relation with DDT residues in mangrove sediment in China. Oppositely, HCH residues in mangrove
sediment were derived from historical consumption, and generally the higher levels occurred in
the developed areas. Through this study, we help to close the knowledge gap of OCPs in China’s
mangroves and provide a possible management implication for sustainable development in the future.
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1. Introduction

Mangroves are characteristic plants growing in the tropical and subtropical intertidal zones
around the world. Mangroves provide many ecological services, such as flood protection, biological
habitat, carbon fixation, and water purification [1,2]. It is commonly known that mangroves have
become one of the most threatened and vulnerable ecosystems with increasing ecological pressure
from intensive human activities. Especially, mangroves forests act as an important buffer that absorb
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anthropogenic chemicals because of a high primary productivity, abundant organic matter scrap, fine
grain soil, and anoxic environment [3]. Under the actions of tidal flush and food chain transport,
those stored pollutants can be transferred from the mangroves to the adjacent ecosystems, and even
threaten human health [4,5]. Therefore, to achieve sustainable development of ecological aspects and
socio-economic aspects, it is necessary to understand the situation and source of the pollutants in
mangrove ecosystems for future effective management [6,7].

Around the world, mangrove forests have covered over 200,000 km2 of tropical and subtropical
coastal areas [8]. Disappearing of mangrove forests have occurred in almost every country that
has mangroves, especially in developing countries, such as Brazil, China, Indonesia, Nigeria,
and Philippines [9–12]. For China, mangrove forests are mainly distributed from 18◦ N to 27◦ N along
the southern coast (including Zhejiang, Fujian, Guangdong, Guangxi, Hainan, Hong Kong, Macao,
and Taiwan), with a total area of 22,419 ha in 2015 but which was 48,801 ha in 1973 [13]. Since these
mangrove forests are mostly adjacent to agricultural areas or urban areas [14,15], they are vulnerable
to surrounding human interference and alien biological invasion [16]. However, mangrove protection
has long been ignored by the public until the early 1990s. Since rapid industrialization and agricultural
modernization, mangrove forests had suffered significant pollution and degradation, which caused
widespread negative effects [13,17,18]. Previous studies pointed out that the levels of regional
development and environmental management could shape the status of the coastal ecosystem [19,20].
To protect the mangrove ecosystems in China, the central government has established 42 mangrove
natural reserves and has formulated a lot of laws and regulations in the past 30 years [13].

Previous studies about mangroves of China have investigated many pollutants, including heavy
metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls, but that is relatively lacking
in organochlorine pesticides (OCPs) [14,15,18]. Organochlorine pesticides are a series of synthetic
chemicals that are recognized as persistent organic pollutants under the Aarhus Protocol and the UNEP
Stockholm Convention, and have been extensively used in past decades and have highly contaminated
the soil and sediment [21]. Organochlorine pesticides can escape from different sinks and redistribute
at the global scale because of its semi-volatility [22]. Given their relatively high lipophilicity, OCPs
can be easily absorbed by organisms and transported through the food chain [23]. Besides its toxicity,
bioaccumulation, and persistence in nature, several OCPs (e.g., HCH, DDT, and lindane) have been
regarded as endocrine-disrupting chemicals [24]. In China, approximately 4.5 million tons of HCHs
and 0.27 million tons of DDTs were produced during the 1950s–1980s [25]. Though OCPs were banned
from being applied in agriculture by China’s central government in 1983, they still existed in a variety
of environmental media and agricultural crops [26]. Thus, the distribution and fate of OCPs in different
media should be investigated to respond to public health concerns [27–29].

Zhang River Estuary Mangrove National Natural Reserve (ZREMNNR) is the largest natural
mangrove forest at the Tropic of Cancer in China [30] and is located in the winter migration path of
migratory birds in East Asia [31]. Zhang River Estuary mangrove forests are characterized by the
dominant species Kandelia obovata, Avicennia marina, and Aegiceras corniculatum, mixed with other
mangrove species (Bruguiera gymnorrhiza and Acanthus ilicifolius) [32,33]. This mangrove is considered
to have important social, economic, and ecological value for the local community. Along with intensive
agriculture and mariculture practice, varieties of anthropogenic pollutants have been introduced to
this area, which causes increased pressure on regional sustainable development [34,35]. It is necessary
to understand the distributions and levels of these human-made pollutants, and evaluate the ecological
risk of pollutants on the mangrove ecosystem. In this study, we surveyed the distribution of OCPs
in surface sediment from ZREMNNR, assessed the ecological risk, and analyzed the possible source
of OCPs in this area. Moreover, this study also compared the OCPs levels in ZREMNNR with that
in other mangroves of China, and discussed the potential relationship between OCP occurrence and
human activity. We hope this study could contribute to the future management of OCPs in mangroves
to regulate human activities for source control.



Sustainability 2020, 12, 3016 3 of 18

2. Materials and Methods

2.1. Study Area

Zhang River Estuary Mangrove National Natural Reserve (23◦23′45”–23◦56′00” N, 117◦24′27”–
117◦30′00” E) cover approximately an area of 2360 ha. This national reserve was established in 1997,
to promote the natural mangrove forests to recover from serious human disturbances in the past.
Zhang River, located in southeastern China, covers an area of approximately 855 km2 (mostly rural)
and eventually flowed into the East China Sea and Taiwan Strait via Dongshan Bay. The Zhang
River watershed is a typical agricultural zone, and has been reported as one of the higher pesticide
(e.g., lindane and DDT) consumption areas of south China [36,37]. The Zhang River irrigate vast
stretches of farmland along its course, and play an extremely important role in the region’s economic
development and ecological health. This area is affected by a subtropical monsoonal climate with a
monthly average temperature ranging from 28.9 ◦C (in August) to 13.5 ◦C (in January). The annual
average precipitation over the last ten years was about 1871.2 mm, and the monsoon is accompanied
by heavy rainfall during the rainy season from April to September. The tides of the study area ranged
from 0.43 m to 4.67 m, with a mean of 2.32 m [32].

2.2. Sampling

Eighteen surface sediment samples (0–5 cm depth) were collected from the Zhang River Estuary
mangrove zone during the low-tide period on April 20, 2007 (Figure 1). Twelve stations located inside
the mangrove area, three (#4, #5, #18) at the edge between the mangrove forest and river channel,
and three (#15–17) at the edge between the mangrove and inland. Sediment samples were collected
by a stainless-steel dipper and large objects (e.g., leaves, rubbish, and rocks) were removed. Two
parallel samples from each station were separately packed by precleaned aluminum foil, and once
samples were packed, they were immediately stored at −20 ◦C before future treatment and analysis in
the laboratory.
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2.3. Extraction and Instrument Analysis

After being freeze-dried, homogenized, and sieved through a stainless-steel 80 mesh sieve,
approximately 20 g of sediment was Soxhlet-extracted with a mixed solvent of acetone and hexane
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(160 mL, 1:1 v/v) for 24 h. Before extraction, surrogate standard (polychlorinated biphenyl-209) and
activated copper flake (for removing sulfur) were added. The extractions were then concentrated to
1 mL with a rotary evaporator and cleaned up with a multi-layer silica–aluminum column (10 mm
inner diameter, from bottom to top filled with 6 cm of neutral alumina, 2 cm of neutral silica gel, 5 cm
of 25% sodium hydroxide silica, 2 cm of neutral silica gel, 8 cm of 50% sulfuric acid silica, and 2 g
of Na2SO4) by eluting with 80 mL of hexane and dichloromethane (7:3 v/v). The clean extract was
concentrated to approximately 0.5 mL after the solvent exchange with hexane using a rotary evaporator,
and the residue was further reduced in volume to 200 µL with a gentle nitrogen stream.

An Agilent-6890N gas chromatograph (GC) equipped with a 63Ni electron capture detector
(ECD) was used for the experiments to determine the OCP compounds. Manual injection of the
1 µL sample was conducted in the high-pressure splitless mode with a purge time of 1.0 min. High
purity nitrogen was used as the carrier gas at a flow rate of 2 mL/min. The GC was equipped with an
Agilent HP-5 capillary column (30 m × 0.32 mm inner diameter, 0.25 µm film thickness) for separating
OCP congeners. Injector and detector temperatures were set as 250 ◦C and 330 ◦C, respectively. The
temperature program was that oven-heated started at 80 ◦C with a 2 min hold, ramped to 190 ◦C at a
rate of 25 ◦C/min, then 5 ◦C/min to 280 ◦C, and finally 25 ◦C/min to 300 ◦C with a 5 min hold. Internal
standard calibration (2,4,5,6-tetrachloro-m-xylene and decachlorobiphenyl) with 9 concentrations was
employed for the quantification analysis.

2.4. Quality Assurance and Quality Control

In this study, procedural blanks, matrix-spiked samples, and parallel samples were processed
after the extraction of every 4 samples to check for interference, accuracy, and precision. The recovery
rate was measured by spiking with the surrogate standards (17 OCPs in mixture) before extraction.
Besides, daily calibration was made for every 12 samples on a GC–ECD to calibrate the instrumental
deviation. The mean concentration plus three standard deviations in the blank samples was used as
the method detection limits. No background signals were found to be strong enough to interrupt the
integration of the target chromatographic peaks, indicating a sample processing procedure free of
severe systematic disturbance. The external calibration gave an R2 value of more than 0.99 and the
method performed well in terms of repeatability. The recovery rates of the matrix-spiked samples and
procedural blanks were 70%–109% and 77%–114% (Table S1), respectively.

2.5. Data Collection

To discuss the influences of human activities on OCP residues in mangroves of China, 15 kinds
of socio-economic variables were collected and seriously checked, including population, population
density, urbanization rate, gross domestic product (GDP), per capita GDP, agricultural output value,
industrial output value, and value-added service (Table S2); as well as the yields of major agricultural
products, including grain, oilseed, sugarcane, vegetable, fruit, and seafood (both mariculture and catch)
(Table S3). All the above data were derived from the Statistical Bureau of Fujian Province, Statistical
Bureau of Guangdong Province, Statistical Bureau of Guangxi Zhuang Autonomous Region, Statistical
Bureau of Hainan Province, Census and Statistics Department of Hong Kong, and Agriculture, Fisheries
and Conservation Department of Hong Kong (as seen in the Supplementary Information).

2.6. Data Analysis

In this study, Pearson correlation analysis was employed to evaluate the relationship between
regional socio-economic levels and OCP concentrations in mangrove sediment. Cluster analysis was
used to classify selected Chinese mangroves into different groups based on regional development
levels. To identify the key human factor that affects OCP residues in mangrove sediment of China,
we used stepwise regression analysis to examine the significance of the selected variables. All the
statistical analyses were done using IBM SPSS Statistics 22.0 software (IBM Corporation).
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3. Results and Discussion

3.1. OCPs in the Surface Sediment

3.1.1. Concentration of OCPs

Surface sediment quality can reflect the contaminant situation at the sampling period [38].
Concentrations of organochlorine pesticides in mangrove surface sediments from ZREMNNR are
shown in Table 1. OCP compounds that were identified included HCHs (α-HCH, β-HCH, γ-HCH,
δ-HCH), DDTs (p,p’-DDE, p,p’-DDD, p,p’-DDT), and others (aldrin, dieldrin, endrin, endrin aldehyde,
heptachlor, heptachlor epoxide, α-endosulfan, β-endosulfan, endosulfan sulfate, and methoxychlor) in
this mangrove. Among the sampling stations, the concentrations of

∑
OCPs (dry weight) were in the

range of 0.292 to 22.412 ng/g with an average of 4.503 ng/g, which indicated the conspicuous spatial
variation of OCPs. The highest

∑
OCPs concentrations were detected at the stations (#8 and #9) that

where located at the edge of the mangroves facing the sedimentary zone, and the stations that faced
the river channel followed. The lower concentrations of OCPs mostly detected at the stations located
in the supratidal zone. It showed that transport by river and tidal effect were the OCPs’ main sources
in this area.

The
∑

HCHs ranged from 0.008 to 0.906 ng/g with an average of 0.240 ng/g. β-HCH was only
detected in five stations, but the levels were higher than other HCH isomers. Concentrations of
HCH isomers in most stations followed a decreasing order: δ-HCH (average of 0.055 ng/g)> α-HCH
(average of 0.047 ng/g) > γ-HCH (average of 0.033 ng/g). The

∑
DDTs ranged from not detected (ND)

to 4.743 ng/g with a mean of 0.664 ng/g. Concentrations of DDT and its degradation products in most
stations followed: p,p’-DDT (0.511 ng/g) > p,p’-DDE (0.149 ng/g) > p,p’-DDD (0.004 ng/g).

Besides, endrin was only detected (ND–0.233 ng/g) in four stations, while heptachlor epoxide
(ND–0.019 ng/g) and α-endosulfan (ND–0.056 ng/g) were both detected with low concentrations. The
concentrations of endrin aldehyde and endosulfan sulfate ranged from ND to 3.412 ng/g and from
ND to 12.71 ng/g, respectively, with huge fluctuation among sampling station. The concentrations of
dieldrin (0.026–1.030 ng/g), methoxychlor (ND–0.976 ng/g), and β-endosulfan (ND–0.387 ng/g) highly
fluctuated, while the first two compounds had the peak values at Station #9. The concentrations of
aldrin (ND–0.079 ng/g) and heptachlor (ND–0.280 ng/g) were relatively stable among the 18 sampling
stations. Among the OCP compounds, HCHs, dieldrin, β-endosulfan, endrin aldehyde, DDTs,
and endosulfan sulfate accounted for the greatest abundance with approximately 61%–99% of

∑
OCPs

in this mangrove forest.
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Table 1. Concentrations of organochlorine pesticides in mangrove surface sediments collected from Zhang River Estuary Mangrove National Natural Reserve
(ZREMNNR), China (ng/g sediment dry weight).

Site α-HCH β-HCH γ-HCH δ-HCH p,p’-DDD p,p’-DDE p,p’-DDT Methoxychlor Aldrin Dieldrin Endrin Endrin
Aldehyde Hept. Hept.

Epoxide α-endo β-endo Endo
Sulfate

∑
OCPs

1 0.083 0.133 0.009 ND 0.003 0.030 0.043 ND 0.007 0.087 ND ND 0.280 0.003 0.004 0.077 ND 0.759
2 0.040 ND 0.033 0.067 0.007 ND 0.081 ND 0.007 0.154 ND ND 0.020 ND 0.004 0.170 ND 0.583
3 0.025 ND 0.016 ND 0.005 ND 0.108 ND 0.033 0.118 ND ND 0.038 ND 0.010 0.114 ND 0.467
4 0.044 0.816 0.013 0.033 0.008 0.110 0.234 0.099 0.019 0.239 0.047 0.294 0.028 ND 0.013 0.187 1.034 3.218
5 0.124 ND 0.118 0.168 0.007 0.228 0.051 0.098 0.029 0.165 0.017 0.322 0.008 ND 0.010 0.162 0.478 1.985
6 0.026 ND 0.024 0.051 0.012 0.304 0.232 0.076 0.024 0.372 ND 0.763 0.009 ND 0.021 0.279 3.025 5.218
7 ND 0.596 0.023 ND ND 0.897 0.076 0.279 0.079 0.536 ND 0.629 0.013 0.010 0.048 ND 1.407 4.593
8 0.009 0.203 0.041 0.030 0.002 0.368 4.373 0.223 0.046 0.934 ND 0.566 0.078 0.004 0.056 0.043 1.924 8.900
9 0.233 ND 0.102 0.043 ND 0.466 3.255 0.976 0.035 1.030 0.233 3.412 0.046 ND 0.017 ND 12.71 22.56
10 0.040 ND 0.023 ND ND ND ND ND 0.036 0.180 ND 0.524 0.007 ND 0.012 ND ND 0.822
11 0.011 ND 0.005 ND 0.002 ND 0.135 0.018 0.072 0.070 0.007 0.337 0.012 ND 0.004 0.043 1.093 1.809
12 0.021 ND 0.031 0.021 ND 0.073 0.048 0.025 0.004 0.091 ND 0.274 0.015 0.002 0.017 ND 0.628 1.250
13 0.028 ND 0.029 0.033 0.001 0.068 0.096 0.012 0.005 0.180 ND 0.165 0.013 0.007 0.023 0.032 ND 0.692
14 0.011 ND 0.040 ND ND 0.121 ND ND 0.028 0.138 ND 0.621 0.006 ND 0.009 ND ND 0.974
15 0.023 ND 0.027 0.516 0.016 ND 0.472 0.020 0.031 0.026 ND 0.976 0.043 0.019 0.012 0.387 1.627 4.195
16 ND ND 0.008 ND ND ND ND ND 0.007 0.134 ND 0.134 0.003 ND 0.006 ND ND 0.292
17 0.077 ND 0.034 ND ND ND ND ND 0.010 0.103 ND 0.126 ND ND ND ND ND 0.350
18 0.042 0.171 0.015 0.028 ND 0.024 ND ND ND 0.153 ND 0.220 0.033 0.002 0.034 ND 0.759 1.481

Hept.: heptachlor; Hept. epoxide: heptachlor epoxide; α-endo: α-endosulfan; β-endo: β-endosulfan; Endo Sulfate: endosulfan sulfate. ND: not detected.
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3.1.2. Ecological Risk Assessment

The potential ecological risk of OCPs in ZREMNNR was assessed by comparing the individual
compound concentration with some sediment quality guidelines (SQGs). These SQGs included the
effects-range low (ERL) and the effects-range median (ERM) [39], as well as the threshold effects level
(TEL), probable effects level (PEL) [40], and marine sediment threshold effect level (M-TEL), specified
by the National Oceanic and Atmospheric Administration [41] as well as China Marine Sediment
Quality (GB 18668-2002) first-class standard criteria (CMSQ I) by the China State Bureau of Quality
and Technical Supervision [42]. The thresholds of the above sediment quality guidelines for OCPs are
listed in Table 2.

Table 2. The thresholds of some sediment quality guidelines for organochlorine pesticides (OCPs)
(ng/g, dry weight).

Compound ERL a ERM a TEL b PEL b M-TEL c CMSQ I d

γ-HCH - - 0.94 1.38 0.32 -∑
HCHs - - - - - 500

p,p’-DDD 2 20 3.54 8.51 1.22 -
p,p’-DDE 2.2 27 1.42 6.75 2.07 -
p,p’-DDT 1 7 1.79 - 1.19 -∑

DDTs 1.58 46.1 7 4450 3.89 20
Dieldrin 0.02 8 2.85 2.85 0.72 -
Endrin 0.02 45 2.67 62.4 - -

Heptachlor epoxide - - 0.6 2.74 - -

ERL: effects-range low; ERM: effects-range median; TEL: threshold effects level; PEL: probable effects level; M-TEL:
marine sediment threshold effects level; CMSQ I: China Marine Sediment Quality first-class; “-”: no data. a [39];
b [40]; c [41]; d [42].

Under the guidelines of ERL, the concentrations of p,p’-DDT and
∑

DDTs in only Station #8
and Station #9 were detected to exceed the threshold values. Furthermore, the exceeded values of
endrin were detected in Station #4 and Station #9, and that of dieldrin were observed in all stations.
The concentrations of p,p’-DDT and dieldrin in Station #8 and Station #9 also exceeded under the
guideline of M-TEL. None of the OCP compounds was detected to exceed the threshold of ERM,
TEL, and PEL, meaning that their biological risk was negligible under the above sediment quality
guidelines. According to CMSQ I, the natural reserve applies to the first-class quality standard that∑

DDTs should be less than 20 ng/g, and
∑

HCHs should be less than 500 ng/g [42]. In terms of DDTs
and HCHs in Zhang River Estuary mangrove, both qualities met the first-class requirements under the
guideline value.

Compared with the thresholds of the above sediment quality guidelines, we concluded that the
ecological risk of OCPs in ZREMNNR is still at a low level.

3.1.3. Source of OCPs

The typical technical HCHs contain 60%–70% of α-HCH, 5%–12% of β-HCH, 10%–12% of γ-HCH,
and 6%–10 % of δ-HCH [43], which means the mixing ratio of α-HCH/γ-HCH lies between 4 and 7 [44].
Agricultural HCHs (lindane) commonly contains 99% γ-HCH [45]. Moreover, the degradation rate
of HCH isomers follow α-HCH > γ-HCH > δ-HCH > β-HCH [46], and γ-HCH can be converted to
α-HCH and even β-HCH in a given environment [47,48]. As such, the composition proportion of HCH
isomers can be used to identify the potential source. As shown in Figure 2, the ratios of α-HCH/γ-HCH
varied from ND to 9.22, with most being less than 4 (except in Station #1). It is inferred that γ-HCH
was almost not used for agricultural purposes in the Zhang River basin. β-HCH was detected in a
few stations and the average ratio of α-HCH/β-HCH was 0.24. As β-HCH was the most stable and
relatively resistant to microbial degradation, the ratio and the relatively high concentration indicated
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that no extra industrial HCHs input was recently received in the study area. According to the above,
HCHs residues in surface sediment were mainly from the soil erosion [49,50].
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DDT can be degraded into DDD and DDE in anaerobic and aerobic conditions, respectively.
The relative concentration of DDD compared to DDE can show the main degradation pathway of
DDT [51], so the ratio of parent to metabolites can reveal the recent DDT source [52,53]. At most
stations of the study area, the values of DDD/DDE were far less than 1 and there were five sites where
DDD was not detectable (Figure 3). It is indicated that most of the historical input DDT degraded
under aerobic conditions before deposition. In the stations where DDT was detected, most ratios of
DDT/(DDD+DDE) were more than 1, which inferred that DDT had been recently used around the study
area. DDT was banned from agricultural use in China since 1983, but it was still legally used for malaria
prevention and dicofol production until 2009 [54]. As a previous survey reported, approximately
8770 t DDT was put into the environment from dicofol use in China during 1988~2002 [55]. Another
possible source was DDT-containing antifouling paints, which was the primary choice for motorboat
maintenance and accounted for 4% DDT consumption in China [56]. Since Zhang River Estuary and
the sequential bay was a highly productive mariculture area with a large number of motorboats, part
of the DDT-containing antifouling paint can move into the mangrove with the tidal effect.
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The typical commercial endosulfan consists of 70% α-endosulfan and 30% β-endosulfan [57],
and both can be degraded into the more toxic substance, endosulfan sulfate. The concentration
of endosulfan sulfate (average 1.371 ng/g) was much higher than α-endosulfan (0.017 ng/g) and
β-endosulfan (0.083 ng/g), which indicated most of the endosulfan isomers degraded. The ratios
of the two isomers of endosulfan ranged from 0.02 to 1.30 (Figure S1), except Station 10, 14, and 16
(β-endosulfan was undetected). Given thatβ-endosulfan was more conservative thanα-endosulfan [58]
and the degradation product endosulfan sulfate was dominant in surface sediments, there was no
reason for endosulfan use recently.

3.2. OCPs Concentration in Mangrove Sediment of China

In this section, we compared the residue levels of OCPs in China’s mangrove sediments based
on published articles, analyzed their distribution pattern, and discussed the potential anthropogenic
factors for OCP distribution.

3.2.1. The Distribution of OCPs

Based on the data collection from the previous studies, the OCP residue levels in different
mangrove sediments were from 0.29 to 105.63 ng/g during the past 20 years (Table 3). The highest
detected values of OCPs were in Mai Po Marshes [5,59] and Jiulong River Estuary [23,60], followed by
Leizhou Peninsula [61] and Deep Bay [62]. The sediment OCP concentrations in Dongzhai Harbor [4,63],
Sanya coast [4], Nansha Wetland [64,65], and Zhang River Estuary (this study) were significantly lower
than those above areas. Conspicuously, OCP concentrations in estuarial sediments were higher than
that in non-estuarial sediments (Figure 4a,b), especially those watersheds of the upper river with
existing high-intensive agricultural activities [49].
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Table 3. Comparison of OCP residue levels in surface sediments from different mangrove zones, China (ng/g dry weight).

Area Abbr. Province Sampling Time
∑

HCHs
∑

DDTs
∑

OCPs
SourceRange Mean Range Mean Range Mean

Deep Bay a DPB Guangdong/Hong Kong Feb. 2004 0.22–1.07 0.50 2.92–82.3 20.2 3.91–84.5 23.2 [62]
Dongzhai Harbor b DZH Hainan Sep. 2005 0.06–2.30 0.53 0.09–2.13 0.57 0.31–7.36 1.96 [63]
Dongzhai Harbor c DZH

Hainan Aug. 2014 0.01–0.09 0.05 1.15–2.90 2.10 1.07–3.97 2.90 [4]
Sanya coast SYC 0.01–0.14 0.07 2.17–7.67 3.02 2.32–9.48 4.21

Jiulong River Estuary d JRE Fujian May and Jun. 2009 0.31–1.85 1.05 1.28–91.2 37.7 13.6–106 50.7 [60]
Jiulong River Estuary JRE Fujian Oct. 2013 – – 21–84 52 – – [23]
Leizhou Peninsula b LZP Guangdong Jul. and Nov. 2005 – 0.07 0.75–112 27.8 – 28.9 [61]

Mai Po Marshes e MPM Guangdong/Hong Kong 1997 9.7–28.5 16.2 3.4–14.2 8.2 29.1–73.9 45.0 [59]

Mai Po Marshes f MPM Guangdong/Hong Kong Jun. 2002 0.44–8.96 4.35 2.0–31 16.2 6.89–73.7 39.5 [5]
Jan. 2003 0.20–8.58 3.12 1.4–19 17.5 10.6–95.7 58.8

Nanliu Estuary NLE Guangxi Dec. 2011 – – 2.9–3.7 ~3 – – [66]
Nansha Wetland b NSW Guangdong Dec. 2011 0.36–0.62 0.51 5.61–7.50 6.5 – ~7 [64]
Nansha Wetland b NSW Guangdong Mar. 2015 0.67–7.29 3.35 2.37–9.40 5.23 3.1–16.0 8.58 [65]

Zhang River Estuary g ZRE Fujian Apr. 2007 0.01–0.91 0.24 ND–4.74 0.66 0.29–25.4 4.50 This study
a 10 OCP compounds were reported. b 8 OCP compounds were reported. c 22 OCP compounds were reported. d 24 OCP compounds were reported. e 13 OCP compounds were reported.
f 22 OCP compounds were reported. g 17 OCP compounds were reported. ND: not detected. “-”: no data.
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For HCHs, the residue values ranged from 0.01 to 28.5 ng/g among the different mangrove
sediments. It is worth noting that HCHs residues in the mangroves near the Pearl River Estuary were
higher than that in other regions; the relatively higher level could be linked to higher consumption
per unit area of technical HCHs and lindane of Guangdong during the 1960s–1980s [36]. The HCH
residue levels of Mai Po Marsh gradually decreased during 1997–2003, indicating that HCH application
had been effectively cut down. HCH residues of Nansha Wetland in 2015 was higher than that in
2011, meaning this area may still be affected by illegal use of HCHs [67]. Compared with the HCH
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concentration of Taihu Lake (average of 0.3–5.3 ng/g), an inland lake affected by surrounding intensive
agricultural activities [68], the residue levels of China’s mangrove sediment indicate that they were
still affected by past HCH usage.

For DDTs, the reported values among different mangrove sediments ranged from ND to 112 ng/g,
which was one or two orders of magnitude higher than that of HCHs. Given the total usage of
DDTs was far less than that of HCHs, the residue level meant that DDTs was still widely used in
China [69]. Unlike HCHs, the higher residues of DDTs appeared at the Jiulong River Estuary, followed
by Leizhou Peninsula, Deep Bay, and Mai Po Marsh. Despite the runoff transportation, another possible
explanation for DDTs distribution is the precipitation from DDT-containing antifouling paint, since the
above areas are all important fishery and mariculture areas. Similar to HCHs, the DDT residue level in
Zhang River Estuary was also lower than that in other areas (Figure 4b).

3.2.2. The Potential Human Influences for HCH and DDT Residues

Before data analysis, (1) we premised that HCH and DDT residues in mangrove sediment were
mainly from the human activities of the surrounding area, in which case that of the upper river was
neglected; this is because mangroves have higher primary productivity and poorer hydrodynamic
conditions [1], resulting in buried organic matters in mangrove that are mainly from the surrounding
environment. (2) Given the accessibility and integrity of the data, meanwhile, the surrounding area
only refers to the prefecture-level administrative region adjacent to the mangroves (Tables S2 and S3).
Since the different surveyed areas had different statistical periods and items, we could not collect the
available data under the county-level administrative region or below. (3) Given the disturbance of
price changes, all economic data have been adjusted according to the consumer price index and with
the year 2005 as the base period.

Based on collected socio-economic data, hierarchical cluster analysis was used to classify the
above mangroves. Cluster analysis rendered a dendrogram where the areas were divided into two
clusters, and each cluster could be further divided into two sub-clusters at Dlink/Dmax < 40% and 20%,
respectively (Figure S2). Cluster 1 included Mai Po Marsh, Deep Bay, Nansha Wetland, and Jiulong
River Estuary (in 2013), representing the areas with a higher GDP, more densely populated, and with
a higher urbanization rate, namely the developed area. The sub-cluster, including Mai Po Marsh
and Deep bay, was more developed than that of Nansha Wetland and Jiulong River Estuary. Nanliu
River Estuary, Dongzhai Harbor, Sanya coast, Leizhou Peninsula, Zhang River Estuary, and Jiulong
River Estuary (in 2009) were classified into Cluster 2, which represented the areas with a lower GDP,
smaller populations, a lower urbanization rate, and where agriculture was still important, namely the
developing areas.

Pearson correlation analysis was used to evaluate the relationship between socio-economic levels
and OCP (e.g., HCHs and DDTs) concentrations in surface sediment of mangroves (Table S4). The
results showed that HCH concentration had a significant positive correlation with value-added service
(p = 0.043) and per capita GDP (p = 0.033). Interestingly, HCH concentration had nothing to do
with any agricultural crop at the surveyed time, although the source was known as technical HCH
and lindane used for agriculture practice [4,64]. The differences in HCH residues among the areas
may be attributed to the different economic levels of the surrounding areas. It has been proved that
pesticide consumption was proportional to the local socio-economic level [70]. Among the surveyed
mangroves, those along the developed surrounding areas are commonly located in estuaries with
large watersheds, such as Pearl River and Jiulong River (Figure 4a and Table 1). On the one hand, the
character of the location means mangroves can receive and bury more HCHs due to more pesticide
consumption [69,71]. On the other hand, the farmers in the developed area could afford more pesticides
than those in developing areas. As a consequence, considerably higher HCHs were applied and thus
were residual in the developed areas (Cluster 1), more so than in the developing areas (Cluster 2).

Different from HCHs, the correlation coefficient (Table S4) indicated that DDT concentration
had a significant positive correlation with local agricultural output value (p = 0.019), fruit output
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(p = 0.008), and mariculture output (p = 0.034). This result indirectly shows that the pesticides and
antifouling paints containing DDT were still widely consumed in the south of China for fruit planting
and mariculture operation [72,73]. A stepwise regression was used to identify the key agricultural
production that affected DDT residues in mangrove sediment. The result of the stepwise regression
was an ordinary least-squares estimation of a linear multivariate model, including only variables
significant at or above the 5% level.

As shown in Table 4, DDT residues in mangrove sediment was more likely from fruit planting,
which matched the fact of high usage of DDT for fruit growing in the south of China [37,55]. The
determinate coefficient (R2 = 0.452) was relatively low; however, it meant existing additional factors
affected DDT residues. Further, developed areas and developing areas were respectively analyzed
to further identify the key factor for DDT residues in mangrove sediment. For the developed areas,
mariculture was more significant than fruit planting, with a high accumulated R2 value (0.944) of
the regression model (Table S5). For the developing areas, vegetable production was the significant
factor affecting DDT residues, with a moderate R2 value (0.578) of the regression model (Table S6).
Obviously, rising incomes, urbanization, and export trade have boosted the demands for seafood,
fruits, and other non-staple foods, and have had a defining effect on the crop-growing structure in
the developed areas, where farmers have shifted between plant species to meet demands [74,75]. To
achieve higher yields, it is inevitable to use more pesticides and antifouling paints in agricultural
practice, resulting in more DDTs entering into the coastal environment [56,73]. On the contrary, absent
capital input and market demand could drive farmers to plant the crop of higher labor input in the
developing areas, like vegetables [76,77]. A study conducted in Guangdong found that the detection
rates of DDT residues in vegetables were up to 93%, showing that DDTs were ubiquitous contaminants
in vegetable production [78]. Several studies also confirmed that DDTs were recently used illegally in
southern coastal regions, despite these chemicals having been banned decades ago [67,71,79].

Table 4. The stepwise regression result of
∑

DDTs and agricultural production yield.

Model β t-Value p-Value Accumulated
R R2

Constant 6.349 1.551 0.147

Variables entered

Fruit 0.102 3.145 0.008 0.672 0.452

Variables removed

Grain −0.539 −1.258 0.234
Oilseed 0.124 0.451 0.661

Sugarcane 0.055 0.244 0.812
Vegetable −0.167 −0.561 0.586

Aquaculture −0.463 −0.762 0.462
Catch yield 0.141 0.482 0.639

In conclusion, HCH concentrations in mangrove sediment had a positive correlation with the
socio-economic level of the surrounding areas. The reason was that the developed areas have consumed
more pesticides (including HCHs) through agricultural activities than the developing areas. Based
on the statistical analysis, there was a highly positive correlation between fruit production of the
surrounding area and DDT residues in mangrove sediment. Antifouling paint contributed more DDT
residues than DDTs-containing pesticides in the developed areas, whereas pesticide use for vegetable
planting was a significant source of DDTs in the developing areas.

4. Conclusions

Zhang River Estuary Mangrove National Natural Reserve is the largest and best protected natural
mangrove forest at the Tropic of Cancer in China, with the highest abundance in species. In this
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study, 17 organochlorine pesticides in surface sediment from ZREMNNR were detected, and HCHs,
dieldrin, β-endosulfan, endrin aldehyde, DDTs, and endosulfan sulfate accounted for approximately
61%–99% of the

∑
OCPs. The highest detected value of OCPs occurred in the subtidal zone, meaning

that river transport and tidal effects were their main distribution sources. It was observed that the
concentrations of HCH isomers were in the following decreasing order: α-HCH > β-HCH > δ-HCH >

γ-HCH, and that of the DDT isomers followed p,p’-DDT > p,p’-DDE > p,p’-DDD. According to the
analysis of isomer ratios, γ-HCH (lindane) and endosulfan were rarely used around this mangrove in
recent times, but DDTs was still illegally used. Compared with other mangrove forests in China, the
OCP residue levels in mangrove sediment of ZREMNNR is at a much lower level.

Among the mangroves of China, OCP residue levels in estuarial mangroves were higher than that
in non-estuarial mangroves, especially those watersheds among high-intensity agricultural activities.
Although China’s central government banned OCP usage for agricultural practice in 1983, the higher
residue levels suggest that DDT was still illegally used. The results of the statistical analysis shown
that fruit planting, as well as mariculture operation in the developed areas and vegetable planting in
the developing areas, had a positive relation with DDT residue levels in mangrove sediments of China.
Oppositely, HCH residues in mangrove sediments mainly were derived from historical rather than
current consumption, and generally, the higher levels appeared in the developed areas. We appeal to
the local administrator to strengthen the control of illegal DDT use in agricultural practices to avoid
potential ecological risks.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/7/3016/s1,
Figure S1. The compositions of endosulfan and endosulfan sulfate in mangrove surface sediments from Zhang
River Estuary. Figure S2. Dendrogram of the socio-economic levels of the areas around surveyed mangroves at
OCPs sampling time (the numbers in brackets represent the survey year). Table S1. Recovery rates of individual
OCP in samples and procedural blanks, and detection limit. Table S2. The socio-economic development levels of
the areas around surveyed mangrove, China. Table S3. The yields of major agricultural products of the areas
around surveyed mangrove, China. Table S4. The Pearson correlation coefficient of HCHs, DDTs and human
activities. Table S5. The stepwise regression result of

∑
DDTs and agricultural yield of Cluster 1. Table S6. The

stepwise regression result of
∑

DDTs and agricultural yield of Cluster 2.
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