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Abstract: As China is undergoing economic transformation and facing increasing energy and 

environmental problems, it is essential to pay special attention to sustainable innovation 

governance. This research took industrial waste and total energy consumption into consideration 

and uses a super efficiency slack-based measure (SBM) model to empirically evaluate the regional 

innovation efficiency of Chinese provinces. The results showed that the efficiency of China's 

regional sustainable innovation has not changed significantly over recent years. In addition, the 

results also showed large and varying degrees of innovation efficiency across different provinces. 

Eastern China, in comparison to central and western China, showed higher innovation efficiency. 

In addition, we found a slightly increasing trend in terms of innovation efficiency disparities 

between the three areas. On the basis of these findings, the reasons for the innovation efficiency gap 

between different regions were analyzed. The impacts of influential factors on sustainable 

innovation efficiency were further explored. We found that technology market maturity affected 

sustainable innovation efficiency positively, while government funding had a negative impact on 

sustainable innovation efficiency. Industrial structure and environmental regulations had no 

significant effect on sustainable innovation efficiency. Finally, some implications for improving 

governance performance in terms of sustainable innovation were provided. 

Keywords: sustainable innovation governance; regional innovation; super efficiency slack-based 

measure model 

 

1. Introduction 

Technological innovation, in contemporary times, has had a significant impact on economic and 

productivity growth, and has become the core driver of regional sustainable development and 

economic growth [1,2]. Technological innovation enables a country to achieve economic efficiency in 

terms of knowledge spillover, human capital accumulation, research and development (R&D) 

activities, and the international proliferation of technology. After the global financial crisis, 

sustainable innovation was key for companies to gain a competitive advantage and for countries to 

maintain sustainable development. Due to the critical impact of technological innovation on 

economic growth, the Chinese government attaches great importance to innovation and also sees it 

as a national policy. However, unbalanced development across regions causes differences in 

innovation efficiency, energy efficiency, and emissions efficiency. In addition, the efficiency of 

regional innovation differs greatly between Chinese regions [3,4]. The uneven development of 

regional innovation in China causes imbalances in regional economic development [5]. One region 
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may enhance its innovation efficiency by improving technological development and technological 

commercialization [6]. Meanwhile, technological innovation may impact negatively on energy 

conservation and environmental emissions reductions because of the rebound effects caused by 

efficiency improvements [7]. Moreover, technological innovation processes often produce industrial 

waste and carbon dioxide during the transformation period [8,9]. Such undesirable outputs in the 

innovation process are difficult to dispose of. In addition, these massive emissions of industrial waste 

and carbon dioxide create new challenges for traditional technological innovation. Businesses and 

governments should incorporate economic, social, and environmental sustainability dimensions into 

their decision-making processes to improve sustainable governance. The challenge of sustainable 

development has drawn the attention of academics and policymakers. It is widely believed that 

sustainable technological innovations may be the key to addressing this dilemma, and may include 

effective ways to balance profitability and environmental responsibility while pursuing sustainable 

development. To alleviate global climate change, this requires the development and adoption of 

sustainable technological innovations. Sustainable technological innovations can improve energy 

utilization efficiency, reduce pollution, and produce ecological improvements. In terms of 

technology, economic development, and environmental pollution, improving sustainable innovation 

efficiency is of theoretical and practical significance. 

Research on the efficiency of regional innovation governance has attracted growing attention in 

recent decades [10]. Researchers have attached importance to the social, technical, economic, political, 

and environmental issues of sustainability [11–14]. Rapid development, particularly in cities, has 

brought growing energy consumption and pollution emissions to China[15], which is not sustainable 

[16,17]. Corporate sustainability functions can be analyzed through studying related governance 

characteristics [18–20]. Corporate governance with codified guidance can lead to sustainable value 

creation [21–23]. In addition, some scholars have studied the relationship between sustainable 

performance and innovation efficiency [24–27]. However, to date, very little research has been 

conducted on sustainable innovation efficiency and undesirable outputs [28]. Discussions on the 

effects of undesirable outputs on innovation efficiency have been lacking. Meanwhile, no research 

has analyzed the factors influencing sustainable innovation efficiency from a quantitative 

perspective. Thus far, the factors that affect sustainable innovation efficiency remain unclear. Our 

study aimed to address this topic with a super efficiency slack-based measure (SBM) model and a 

regression model. We took industrial waste and total energy consumption into consideration and 

extended sustainable innovation governance to include undesirable outputs. This research 

comprehensively compared the regional innovation efficiency of Chinese regions and further 

analyzed regional innovation efficiency from a macro level. In addition, this research introduced a 

super efficiency SBM model into the research on innovation efficiency for the first time. We also 

analyzed the factors that influence sustainable innovation governance. Moreover, this paper can 

provide meaningful information on innovation governance, energy conservation, and emissions 

reduction policies. 

The rest of this paper is organized as follows: Section 2 reviews the literature on sustainable 

innovation governance. Section 3 introduces the research methodology, the super efficiency SBM 

model, and the regression model (for empirical analysis). Section 4 displays the evaluation results 

and the factors influencing sustainable innovation efficiency. Section 5 discusses the research results 

and compares them to relevant research results. Contributions to theory and practice, limitations, and 

further research are also discussed. Section 6 draws conclusions and includes policy 

recommendations. 

2. Literature Review 

2.1. Sustainable Innovation Governance 

According to Cooke [29–31], a regional innovation system is a regional organization system that 

consists of production enterprises and research institutions, which are divided but associated with 

each other and which generate and support innovation. Industrial enterprises play a major role in 
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R&D inputs, patent applications, and transformative achievements, and are the main providers of 

technological innovation. Traditionally, innovation mainly refers to new product development, 

process and service innovation, and economic growth [32]. Sustainable innovation expands these 

concepts to broader social, institutional, ethical, and ecological dimensions [33]. As a concept in 

environment-related innovations, sustainable innovation includes new technologies, products, 

services, or business models that have positive impacts on the environment and society [1,34], bridges 

corporate social responsibility and innovation, and plays a crucial role in China’s rapid economic 

growth. Meanwhile, sustainable innovation stresses the environmental effect during innovation 

processes, including the environmental wastes and warm gas emissions [35–37]. It emphasizes not 

only economic benefits but also environmental outputs that improve sustainability performance and 

contribute to solving environmental problems [38]. With increasing concerns about industrial wastes 

and global warming, the undesirable outputs have to be taken into account in innovation governance  

[27,39]. To solve the problems of energy consumption and environmental pollution, the academic 

community has conducted extensive research on the relationship between environmental protection 

and economic growth [9]. 

Given the worldwide attention to sustainable innovation, it is necessary to consider how to 

balance the relationship of innovation governance with pollution mitigation and energy conservation 

[40]. After four decades of economic reforms and opening to the world, China has experienced a high 

economic growth stage at an average annual rate of 9.26% since 1978, which is higher than that of the 

U.S. or Japan. However, this rapid economic growth comes at a huge expense of resource depletion 

and environmental degradation. If anything, the problems with energy security and environmental 

pollution are getting worse. The total energy consumption in China is rising, while the shortage of 

natural resources has gradually become a huge problem that restricts the sustainable development of 

the Chinese economy. Unlike developed countries that use clean energy extensively, economic 

development in China is still driven largely by fossil fuels, even today. The coal-based energy 

structure in China generates a high level of environmental pollutants. This poses a huge challenge to 

the sustainable development of the Chinese economy, which faces the crossroads of change. 

Industrial pollutions and CO2 emissions negatively impacted the sustainable growth of China [6]. As 

economic development enters the new normal stage, the economic growth rate of China decreases to 

medium from high speed. This means that China urgently needs economic transformation and 

industrial upgrading to sustain its economic growth. For long-term sustainable development, China 

has to find innovative solutions to realize sustainability performance. 

China has been devoted to energy savings and emissions reduction to achieve sustainable 

economic growth. The technological innovation of new energy companies is strongly supported by 

the government. China has also adopted a series of laws and regulations on environmental and 

resource management. In the Five-Year Plans, technological innovation, market-oriented reform, 

industrial structure adjustment, and regional balance development have been adopted for 

sustainable economic growth [41]. International cooperation mechanisms are developed to promote 

the achievement of sustainable development goals. In line with the Paris Climate Agreement in 2016, 

China’s CO2 emissions would peak around 2030, and carbon emissions intensity would reduce by 

60–65% compared to the 2005 levels. To achieve this goal, the Chinese central government has put 

significant efforts into the design and improvement of low-carbon governance to deal with climate 

change [42]. Due to the limited innovation resources and harsh environmental regulations in China, 

it is necessary to enhance regional innovation capability by using as few innovation inputs as possible 

to get more innovation outputs while reducing the undesirable outputs. In the long run, improving 

the efficiency of regional sustainable innovation provides an effective way to overcome the natural 

resource constraints faced by current economic development. However, due to the difficulties in 

implementing policies and the information asymmetry between the local and the central 

governments, many policies have not been well expressed at the provincial level. Sustainable 

innovation governance in China faces many difficulties, and the governance effect may not be 

obvious in the short term. At the same time, China's regional economic development is unbalanced. 

Regional industrial enterprises have different performances in the process of innovation input–
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output transformation. China is at the beginning of its sustainable governance with regard to 

lowering its innovation processes’ undesirable outputs, but it is still difficult to judge the effectiveness 

of sustainable governance in the short term. Therefore, the following hypothesis was formulated. 

Hypothesis 1 (H1). Sustainable innovation efficiencies in Chinese provinces do not vary in recent 

years. 

2.2. Research on Innovation Efficiency 

Farrell [43] defined the efficiency measurement method of multi-input and multi-output, which 

could be divided into technical efficiency and allocative efficiency. Technical efficiency reflects the 

ability to reduce inputs under established conditions of outputs, or to increase outputs under 

established conditions of inputs. Allocative efficiency reflects the ability to invest optimally at a given 

technology and factor prices. Since it is difficult to obtain the prices of innovation inputs, it is difficult 

to calculate the allocation efficiency of innovation resources. The innovation efficiency in this paper 

mainly refers to the technical innovation efficiency. Innovation is the whole process of new products 

from the conception, research, and development to commercial applications. Previous research had 

found a strong correlation between innovation inputs and outputs [44,45]. Innovation efficiency 

focuses on innovation performance mainly concerning the output efficiency of innovation inputs [46]. 

The regional innovation process is also an input–output process which is represented by a regional 

technical system with input–output functions. 

In the recent two decades, researchers all over the world have already evaluated innovation 

efficiency at length at both the regional and country levels. Lee and Park [47] compared the R&D 

efficiency of Asian countries through data envelopment analysis (DEA). Sharma and Thomas [48] 

evaluated the R&D efficiency of 22 developed and developing countries with the DEA model. Guan 

and Chen [49] measured the regional R&D efficiency in China using a non-radial DEA model. 

Karadayi and Ekinci [50] evaluated the R&D performance of EU countries using categorical DEA 

models and examined the relationship between R&D performance and political–regulatory–

economic situation of the countries. Wang et al. [51]evaluated the industrial eco-efficiency of Fujian 

province in China with an SBM-DEA model. He et al. [52]analyzed the impact of government 

competition on regional R&D efficiency through the DEA model. Dai et al. [53]studied the spatial 

evolution of technological innovation efficiency and talents’ sticky wages. Chen et al. [54]proposed a 

dynamic analytical framework on R&D efficiency considering the dynamic interdependence between 

regional R&D activities over different periods. Anderson and Stejskal [55] evaluated the diffusion 

efficiency of innovation through the DEA model, and found the different innovation performances 

among EU member states. Belgin [56] analyzed the regional R&D efficiency of 12 Turkish regions and 

effective variables. Cao et al. [57]studied the effect of market competition on innovation efficiency in 

China’s high-tech industries. We can see that the regional differences in innovation efficiency are 

widespread, not only in China, but also in other countries. In view of the huge imbalance in economic 

development, governance capabilities, scientific and technological resources investments, and 

sustainable development policies among Chinese regions, we proposed the following hypothesis. 

Hypothesis 2 (H2). There exist obvious differences in innovation efficiency among regions in 

China. 

The efficiency of sustainable innovation is affected by many factors. Previous research has found 

that government funding (GOV) [58–61], technology market maturity (TEC) [3,62–64], industrial 

structure (IND) [65–67], and environmental regulations (ER) [68–70]could affect sustainable 

innovation efficiency (IE). Enterprises are facing high risk in R&D innovation, and need very large 

R&D funds. It is difficult to meet the demand only by the company's own funds. The local 

government’s R&D funding could reduce the R&D expenditures of enterprises and help increase the 

enthusiasm for R&D activities. This may help companies to increase the innovation efficiency. We 

used the ratio of government R&D funding in total R&D expenditure to characterize the impact of 
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government funding. Technology market maturity reflects the commercialization level of innovation 

outputs. A developed technology market is conducive to constructing a good innovation atmosphere, 

which is very helpful to promote the innovation outputs of enterprises. We used the ratio of 

technology market turnover to regional gross domestic product (GDP) as the technology market 

maturity variable. Industrial structure is closely linked to innovation. The emerging strategic 

industries in the secondary industry, such as high-end equipment manufacturing, new materials, and 

new energy industries, have high technology, economic benefits, and low pollution and have become 

the important pillar industry in regional development. The secondary industry is believed to help 

improve the regional capacity for sustainable innovation. We used the ratio of the secondary 

industry's outputs to regional GDP to represent industrial structure. Environmental regulation has 

an important impact on sustainable innovation. At present, China's environmental pollution problem 

is getting more serious. The government has formulated relevant policies to regulate enterprises' 

economic activities, and urged them to reduce pollution emissions and energy consumption to 

achieve sustainable governance. At the same time, external pressures on environmental regulation 

have prompted companies to upgrade their technological innovation capabilities and improve the 

efficiency of sustainable innovation. We used the ratio of completed investment in the treatment of 

industrial pollution to regional GDP to represent environmental regulations. This led to the following 

hypotheses. 

Hypothesis 3a (H3a). Government funding has a positive impact on sustainable innovation 

efficiency. 

Hypothesis 3b (H3b). Technology market maturity positively impacts sustainable 

innovation efficiency. 

Hypothesis 3c (H3c). Industrial structure has a positive impact on sustainable innovation 

efficiency. 

Hypothesis 3d (H3d). Environmental regulations positively impact sustainable innovation 

efficiency. 

Existing research in relation to innovation efficiency mainly measures the innovation efficiency 

and influence factors, neglecting the important aspect of sustainability performance of regional 

innovation, and lacking empirical research on sustainable innovation efficiency. In the new era of 

achieving sustainable development in China, it is particularly important to carry out sustainable 

innovation governance and evaluate its innovation efficiency. 

3. Methods 

3.1. Super Efficiency DEA-SBM Model 

There are mainly parametric and nonparametric methods in efficiency evaluation. Compared 

with the parametric methods, nonparametric methods do not need to establish a functional 

relationship between the explanatory variables and the dependent variables in advance, which 

avoids the errors of subjectivity in parameter setting. As the representative of the nonparametric 

methods, the DEA method can deal with multi-output analysis, and is the most frequently used 

method in efficiency research on energy, environment, ecology, and technological innovation [71,72]. 

The DEA provides an ordinal ranking of relative efficiency within a set of comparable decision-

making units (DMUs), and identifies the best practices leading to the identification of an efficient 

frontier. In addition, in the DEA model, the weights of inputs and outputs do not need to be set in 

advance. 

Data envelopment analysis method was first put forward by Charnes et al. [73]to determine the 

relative efficiency and productivity of the DMUs by comparing multiple inputs and multiple outputs. 
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All the traditional DEA models, including the CCR (Charnes, Cooper, and Rhodes) model and the 

BCC (Banker, Charnes, and Cooper) model, are either input-oriented or output-oriented, without 

considering input and output slacks. Undesirable outputs are inevitably produced along with 

desirable outputs, which have a negative impact on the efficiency of decision-making units[74]. 

Several methods are used to deal with slacks in undesirable outputs. Some research treated 

undesirable outputs as inputs indicators. Scheel [75] proposed the reciprocal transformation method 

which transforms the value of undesirable outputs into desirable outputs. Seiford and Zhu [76] 

converted all negative undesired outputs into positive values through a transformation vector. Färe 

and Grosskopf [77] proposed an approach by distinguishing between weak and strong disposability 

to treat the undesirable outputs. All these methods are radial and oriented, and do not consider the 

slacks of inputs and outputs, which are contrary to the real production process. In ranking and 

comparing DMUs, each input or output factor must be adjusted proportionally to efficient targets. 

The efficiency value of traditional DEA models is between 0 and 1. If the DMUs are of the same 

efficiency value 1, the relative quality cannot be compared further. In order to overcome the 

shortcomings of the traditional models, Tone [78] proposed a super efficiency slack-based measure 

model, which solved the slack problems of inputs and outputs by directly putting the slack variables 

into the objective function. The super efficiency SBM model could perfectly deal with undesirable 

outputs, and further compare the effective DMUs. The super efficiency SBM model has been widely 

used in research on energy efficiency and environmental efficiency[79]. 

This research used a super efficiency SBM model for efficiency evaluation. The super efficiency 

SBM model with undesirable outputs can be expressed as follows. The vectors s-, sg, and sb

 
refer to 

slack variables of input, desirable output, and undesirable output, respectively. λ is the weight vector. 
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3.2. Indicators Selection and Data Sources 

In mainland China, there are 31 provincial administrative regions overall, including 22 

provinces, 5 autonomous regions, and 4 province-level municipalities. Tibet is excluded in our 

research due to the lack of data availability. Our data contained 30 provinces in eastern, central and 

western areas. The eastern area comprises 11 provinces: Beijing, Tianjin, Shanghai, Liaoning, Hebei, 

Shandong, Jiangsu, Zhejiang, Fujian, Guangdong, and Hainan, most of which are in the coastal 

regions with developed economies. The central area is China's traditional agricultural base, 

consisting of 10 provinces: Heilongjiang, Jilin, Inner Mongolia, Henan, Shanxi, Anhui, Hubei, Hunan, 

Jiangxi, and Guangxi. The western area is the most underdeveloped area, consisting of nine 

provinces: Chongqing, Sichuan, Shaanxi, Yunnan, Gansu, Xinjiang, Guizhou, Qinghai, and Ningxia. 

The technological innovation process mainly encompasses the R&D process and the 

achievements transformation process, including the production process. In recent years, Chinese 

industrial enterprises have rapidly increased R&D expenditures. The various indicators were used 

based on literature analysis and data availability. In terms of input indicators, labor and capital were 

used. The R&D personnel full-time equivalent, R&D expenditure, and new product development 

project [80–82] were used to represent the input indicators. The R&D personnel full-time equivalent 

is the sum of the workload of R&D full-time personnel and the workload of part-time personnel 
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converted according to actual working hours. R&D expenditure represents the annual actual 

expenditures for internal R&D activities. New product development project is the annual number of 

new product development projects. For the selection of output indicators, invention applications and 

new product sale revenue [58,64] were used to represent the desirable outputs. Invention applications 

is the number of invention applications per year. New product sales revenue is the annual sales 

revenue from new products. Industrial pollutants were the main undesirable outputs, including 

effluent, the exhaust gas, and solid waste. We chose annual industrial SO2 emissions to represent the 

industrial pollutants [83]. Meanwhile, with the rising concern of global warming, carbon emission 

abatement is of major national importance [84,85]. As the largest contributor of CO2 emissions in the 

world, China plays an important role in controlling global CO2 emissions [86]. We chose annual CO2 

emissions as another undesirable output. 

However, there are no official statistics on the regional CO2 emissions in China. Hence, this study 

estimates the CO2 emissions based on energy consumption and carbon emission coefficients [87]. 

Considering the data availability of our indicators, we focused our research on the latest two years of 

2015 and 2016, which could reflect the current status of China's regional sustainable innovation 

efficiency. Since we set the time lag from inputs to outputs as one year, we used inputs data in 2015 

and 2016 and outputs data in 2016 and 2017. All data were from China Statistical Yearbook, China 

Statistical Yearbook on Environment, and China Energy Statistical Yearbook. 

3.3. Regression Model 

In our study, we use the super efficiency SBM model with undesirable outputs to calculate the 

sustainable innovation efficiency of China’s provinces and areas. Ordinary least squares (OLS) 

regression and Tobit regression model are the most frequently used models in the research of 

influence factors of innovation efficiency [88]. Even under mild assumptions about the scores, OLS 

will provide the best, unbiased linear estimates for the independent variables [89]. In the empirical 

context of multiple independent variables, the OLS estimator has high reliability if no serious 

multicollinearity observed. In line with relevant research [90–93], we used the OLS regression model 

to analyze relevant variables’ influence on sustainable innovation efficiency. According to the 

existing research and data availability, this paper tested the impacts of government funding, 

technology market maturity, industrial structure, and environmental regulations on sustainable 

innovation efficiency. Considering influence factors’ variables and the OLS regression model, the 

final form of the analysis model of the factors affecting innovation efficiency is: 

it 0 1 2 3 4 itIE GOV TEC IND ER            (2) 

In this formula, the subscripts i and t mean the i th province’s innovation efficiency in the t th 

year. β0, β1, β2, β3, β4 are the unknown coefficients, and εit is the random error. "IE" is innovation 

efficiency. "GOV" "TEC" "IND" "ER " represent the government funding, technology market maturity, 

industrial structure, environmental regulations. Data on influencing factors’ variables are all obtained 

from China Statistical Yearbook, China Statistical Yearbook on Science and Technology, and China 

Statistical Yearbook on Environment. Table 1 presents the definitions and sources of the variables. 

Table 1. Definitions and sources of the variables. 

Variable 

name 

Variable 

symbol 
Explanation Data sources 

Government 

funding 
GOV 

The share of government funding in 

intramural R&D expenditure of 

industrial enterprises  

China Statistical Yearbook 

on Science and Technology 

Technology 

market 

maturity 

TEC 

The ratio of technology market 

turnover to regional GDP (gross 

domestic product)  

China Statistical Yearbook 
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Industrial 

structure 
IND 

The ratio of secondary industry's 

outputs to regional GDP  
China Statistical Yearbook 

Environmenta

l regulations 
ER 

The ratio of completed investment in 

treatment of industrial pollution to 

regional GDP 

China Statistical Yearbook 

on Environment 

4. Empirical Results 

4.1. Efficiency Evaluation Results 

The descriptive statistics for the data of all the variables in China are shown in Table 2. From 

Table 2, the medians of different indicators are smaller than the mean values. The large standard 

deviation shows an unbalanced status of indicators. The maximum is more than 30 times the 

minimum for undesirable outputs. 

Table 2. Descriptive statistics of input and output variables. 

Inputs 

and 

outputs 

Variable Unit Year Mean Median 
Std. 

dev. 
Min Max 

Inputs 

Research and 

development 

(R&D) 

personnel full-

time 

equivalent 

man-

year 
2015 

87,941.5

67 

47,113.0

00 

114,658.

077 

1285.0

00 

441,304.

000 

   2016 
90,076.0

67 

48,323.0

00 

117,232.

908 

1750.0

00 

451,885.

000 

 
R&D 

expenditure 

10,000 

yuan 
2015 

3,337,89

0.933 

2,117,33

0.000 

4,165,90

5.936 

65,029.

000 

15,205,4

97.000 

   2016 
3,606,67

7.419 

2,370,53

1.630 

4,528,63

6.543 

77,055.

318 

16,572,4

78.303 

 

New product 

development 

projects 

item 2015 
10,875.6

67 
5948.000 

15,242.4

23 

121.00

0 

57,204.0

00 

   2016 
13,061.6

00 
8001.500 

18,761.8

58 

126.00

0 

66,843.0

00 

Desirabl

e 

outputs 

Inventions 

application 
piece 2015 9565.733 4251.000 

14,935.1

62 

285.00

0 

68,168.0

00 

   2016 
10,687.1

33 
4896.000 

17,532.1

30 

267.00

0 

86,724.0

00 

 
New product 

sales 

10,000 

yuan 
2015 

57,538,1

58.768  

32,249,9

44.849 

76,875,7

98.012 

375,09

7.459 

283,459,

673.033 

   2016 
61,104,6

58.339 

36,141,2

88.993 

81,672,6

98.842 

982,83

7.842 

333,624,

190.504 

Undesir

able 

outputs 

SO2 emissions 
10,000 

tons 
2015 36.744 30.315 24.646 1.700 113.450 

   2016 29.169 25.610 19.210 1.430 73.910 

 CO2 emissions 
10,000 

tons 
2015 

41,983.9

06 

33,290.5

80 

31,106.7

95 

4243.4

83 

131,314.

896 

   2016 
43,086.7

15 

34,832.1

06 

32,158.0

29 

3435.5

57 

126,571.

486 
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The super efficiency method distinguishes the effective DMUs. Based on our evaluation using 

the super efficiency SBM model with undesirable outputs, the innovation efficiency of China’s 30 

provinces is shown in Table 3. Figure 1 shows the efficiency level distribution of China’s regions in 

2015 and 2016. From Table 3, we can see that the innovation efficiency value could be more than 1. 

4.2. Analysis of Innovation Efficiency Changes 

The regional innovation efficiencies in 2015 and 2016 were compared. Seen from Table 3 and 

Figure 1, it is obvious that in these two years the innovation efficiency values were more than 1 in 

nine provinces, including Beijing, Guangdong, Anhui, Hunan, Zhejiang, Shanghai, Jilin, Chongqing, 

and Guangxi. Most of the nine provinces are located in eastern and central China. The average values 

of innovation efficiency for the remaining provinces were 0.656 and 0.672 in these two years, with a 

small rise. It is worth noting that among all the provinces with low efficiency values, Heilongjiang 

had the lowest efficiency values, which were lower than 0.5 in the two years. 

Table 3. Innovation efficiency of 30 regions. 

DMU 2015 2016 DMU 2015 2016 

Beijing 2.007 2.460 Anhui 1.149 1.096 

Tianjin 0.827 0.629 Jiangxi 0.782 0.882 

Hebei 0.516 0.566 Henan 0.572 0.676 

Liaoning 0.613 0.619 Hubei 0.761 0.783 

Shanghai 1.057 1.273 Hunan 1.110 1.131 

Jiangsu 0.779 0.707 Guangxi 1.015 1.023 

Zhejiang 1.060 1.017 Chongqing 1.045 1.020 

Fujian 0.643 0.653 Sichuan 0.679 0.704 

Shandong 0.624 0.669 Guizhou 0.634 0.595 

Guangdong 1.261 1.320 Yunnan 0.570 0.559 

Hainan 1.000 1.000 Shaanxi 0.493 0.569 

Shanxi 0.536 0.593 Gansu 0.466 0.516 

Inner Mongolia 0.591 0.638 Qinghai 1.000 1.000 

Jilin 1.053 1.059 Ningxia 0.632 0.667 

Heilongjiang 0.443 0.487 Xinjiang 0.617 0.591 

 

Figure 1. Innovation efficiency of the 30 provinces in 2015 and 2016. 
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We used the Mann–Whitney test to compare the efficiencies in the years 2015 and 2016. The P-

value is 0.745, showing no significant efficiency changes in the two years. The probability that the 

efficiency in the year 2015 is higher than the efficiency in 2016 is 0.476. From 2015 to 2016, the standard 

deviation values are 0.327 to 0.386, showing the slight efficiency change between the regions. Many 

of the provinces have improved innovation efficiencies. Among them, Beijing and Shanghai increased 

most significantly, with increases in values of 0.452 and 0.215, respectively. Eight provinces had 

reduced efficiencies: Yunnan, Chongqing, Xinjiang, Guizhou, Zhejiang, Anhui, Jiangsu, and Tianjin. 

The efficiency value of Tianjin reduced the most, with a decrease in value of 0.1979. Beijing stayed at 

the highest efficiency level among provinces with efficiency values of 2.007 and 2.460 for 2015 and 

2016, respectively. Heilongjiang province stayed at the lowest level with efficiency values of 0.443 in 

2015 and 0.487 in 2016. 

The efficiency rankings of all the 30 DMUs were obtained, as shown in Table 4. Seven provinces 

had reduced efficiency rankings, i.e., Anhui, Fujian, Yunnan, Zhejiang, Xinjiang, Guizhou, and 

Tianjin. Tianjin's ranking decreased the most, from twelfth to twenty-first. Eleven provinces rankings 

remained unchanged, Beijing, Guangdong, Hunan, Chongqing, Hainan, Qinghai, Jiangsu, Liaoning, 

Hebei, Gansu, and Heilongjiang. Twelve provinces showed progression in the efficiency rankings, 

including Henan, Shanghai, Shandong, Inner Mongolia, Guangxi, Hubei, Shanxi, Shaanxi, Jilin, 

Jiangxi, Sichuan, and Ningxia. Among them, Henan's ranking increased the most, from twenty-fourth 

to sixteenth. Beijing tops the efficiency rankings followed by Guangdong. Gansu and Heilongjiang 

are at the bottom of the list. 

Table 4. Innovation efficiency rankings of China’s 30 provinces in 2015 and 2016. 

DMU 2015 2016 DMU 2015 2016 

Beijing 1 1 Anhui 3 5 

Tianjin 12 21 Jiangxi 13 12 

Hebei 27 27 Henan 24 16 

Liaoning 22 22 Hubei 15 13 

Shanghai 6 3 Hunan 4 4 

Jiangsu 14 14 Guangxi 9 7 

Zhejiang 5 9 Chongqing 8 8 

Fujian 17 19 Sichuan 16 15 

Shandong 20 17 Guizhou 18 23 

Guangdong 2 2 Yunnan 25 28 

Hainan 10 10 Shaanxi 28 26 

Shanxi 26 24 Gansu 29 29 

Inner Mongolia 23 20 Qinghai 10 10 

Jilin 7 6 Ningxia 19 18 

Heilongjiang 30 30 Xinjiang 21 25 

4.3. Regional Comparative Analysis 

The innovation efficiencies of China’s 30 provinces in 2015 and 2016 were evaluated based on a 

super efficiency SBM model. In order to make a comparative analysis of regional innovation 

efficiency from the sub-country level, we compared innovation efficiencies in eastern, central, and 

western areas. 

We used the Kruskal–Wallis test to compare the efficiencies in the three areas and found that the 

P-value is 0.034, which means remarkable differences exist at the 5% significance level. The 

significance level obtained is the precise unilateral significance level. As can be seen from Figure 2, 

from 2015 to 2016, the efficiency values of eastern, central, and western China increased. 

Correspondingly, the innovation efficiency of the whole country also increased from 0.82 to 0.85, but 

there is still potential to be improved. All the above results show that there are still obvious efficiency 

gaps among different regions in China with an upward trend. 
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Figure 3. Regional innovation efficiency gaps. 
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Table 5. Regression results. 
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Our results indicated that GOV has a negative impact on innovation efficiency at a significance 

level of 10%. The reason may be that the government's excessive investment in the R&D activities led 

to inefficient utilization of innovation resources. Over the past several decades, China’s government 

has invested numerous resources in R&D activities. This means that excessive investment in R&D 

activities likely does not improve innovation efficiency. Consequently, it is essential to strengthen the 

management of innovation resource utilization. 

The maturity of the technology market is conducive to improving the efficiency of China's 

sustainable innovation. TEC has a significant effect on innovation efficiency at a significance level of 

1%. It shows that a mature technology market can promote innovation outputs. The mature 

technology market is conducive to the realization of the market value of scientific and technological 

achievements and the promotion of innovation efficiency. With the continuous development of the 

technology market, the technology trading platform is getting more active, which promotes 

technology dissemination and development. Our results indicate that technology transfer is 

becoming an important way to enhance China's innovation ability. 

There is no significant correlation between industrial structure and sustainable innovation 

efficiency. The possible reason is that China's secondary industry has a phenomenon of non-

sustainable development, which makes the development of the second industry unhelpful to the 

improvement of sustainable innovation efficiency. Meanwhile, with the rapid development of 

China's economy, the industrial structure of various regions has also been continuously upgraded in 

recent years, while the regional development is unbalanced. Improving innovation capability and 

development quality is the key to industrial policies. 

The impact of environmental regulation on sustainable innovation efficiency is not significant. 

Appropriate environmental regulation can promote technological innovation, thereby increasing 

business productivity and gaining competitive advantage. At the same time, increasing investment 

in environmental pollution control funds will crowd out innovative investment funds, reduce 

innovation capacity, and have a certain negative impact on sustainable innovation efficiency. 

5. Discussions 

5.1. Hypotheses 

Three hypotheses were proposed based on the literature review. We then tested our hypotheses 

through the DEA model and statistical methods. From Table 3 and Figure 1 we can see that there 

were no obvious efficiency changes in the two years. Our Mann–Whitney test also confirmed these 

results. Therefore Hypothesis 1 is accepted. One reason for the finding could be due to differences in 

the implementation of the central government’s policies in each province, resulting in varying 

innovation performance in the provinces. At the same time, it is difficult to achieve significant 

improvements in innovation efficiency in a short period of time due to the complexity of innovation 

activities. From Figures 2,3, significant differences in innovation efficiency among eastern, central, 

and western China are observed. The Kruskal–Wallis test confirmed these results. Hypothesis 2 is 

strongly supported. This is in line with previous research on China’s regional innovation efficiency 

[53,54]. This is due to the imbalances in economic development and investment differences in 

innovation resources among regions. Consistent with the results of other studies, the eastern area had 

the highest innovation efficiency in the three areas. As we all know, eastern China has a relatively 

more developed economy, higher government governance capability, and higher innovation 

capacity. In addition, we found the regional disparities of the three areas increased slightly. 

Innovation resources were increasingly concentrated in the eastern area, exacerbating the 

development gap between regions. What is more, we analyzed the influencing factors of sustainable 

innovation efficiency from a quantitative perspective. From our regression results, technology market 

maturity affects sustainable innovation efficiency significantly, while government funding has a 

negative impact on sustainable innovation efficiency. H3a, H3c, and H3d are rejected while H3b is 

strongly supported. This is consistent with most research results [3,52]. Excessive government 
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subsidies have reduced the incentive for enterprises to innovate while mature technology markets 

are conducive to increasing innovation outputs. 

5.2. Contribution to Theory 

This study confirmed the correlation between innovation inputs and outputs, and verified that 

regional innovation systems are important components of national innovation systems. Not only do 

regional innovation systems differ from each other in their characteristics and efficiencies, but they 

also differ significantly from national innovation systems. This research confirmed the influencing 

factors of sustainable innovation efficiency, which complements the sustainable innovation theory. 

In addition, this study highlighted the impact of undesirable outputs on sustainable innovation 

efficiency. Sustainable governance may help companies contribute to a more sustainable 

environment, improve competitive advantage, and enhance their business sustainability. Companies 

should value the importance of business sustainability in their governance and take measures to 

reduce undesirable outputs to improve innovation efficiency. 

This empirical research also compared the regional innovation efficiency from a macro level, 

which is a good research perspective to explore the regional gaps. In addition, this research applied 

the super efficiency SBM model in innovation efficiency research. No other studies have used this 

model in innovation efficiency. The super efficiency SBM model can deal with undesirable outputs 

effectively. 

5.3. Contribution to Practice 

The results demonstrated China's constant efforts in innovation investment, environmental 

protection, energy conservation, and reduction of carbon emissions. Efficiency values of 

economically developed eastern China were always higher than the national level, while the less-

developed central and western areas of China had lower efficiencies values in comparison to the 

national level. Sustainable innovation governance still needs to be valued, since innovation efficiency 

in China should be improved further, especially in the central and western areas. Regional 

coordinated development could be strengthened to narrow the regional differences. At the same time, 

different regions have their own advantages, including geographical and economic advantages. Each 

region should make full use of these unique characteristics to promote sustainable development. 

Companies should not only pursue patent output and economic income, but should pay more 

and more attention to issues of energy consumption and environmental pollution. Clean energies 

could be implemented to alleviate excessive dependence on fossil fuels and meet growing energy 

demands. Environmentally friendly technologies may be used for firms’ sustainable innovation 

gains. High pollution industries should be controlled, while new energy-saving technologies need to 

be improved. Moreover, the government should not blindly increase funding, but vigorously develop 

the technology market to promote more innovation outputs. 

5.4. Limitations 

Our research had its limitations. First of all, this research lacked broader considerations covering 

social, economic, and political sustainability, since environmental sustainability is the central issue in 

this study. Secondly, although the DEA method can deal with multi-output analysis, it cannot 

measure the influence of random errors on efficiency, which attributes the uncontrollable factors and 

statistical errors to inefficiency, and results in relatively low efficiency values. Thirdly, there was the 

limitation that the number of DMUs should be more than three times the number of indicators in the 

DEA method, we were able to use only three input indicators and four output indicators. Other 

indicators could also represent the undesirable outputs. Considering the data availability, we selected 

SO2 and CO2 emissions as the undesirable outputs. Fourthly, we only analyzed the influencing factors 

of sustainable innovation efficiency by regression model, but did not further study the mechanisms 

of these factors. 
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5.5. Future Research 

Our research found significant differences in sustainable innovation efficiency at the provincial 

and regional levels. Since there are always huge gaps in economic and technological development 

between cities in one province, future research could consider applying this research approach at the 

city level which would better explain the regional differences. This is because the agglomerations of 

cities and industries could affect regional innovation greatly. Currently, many urban clusters and 

industrial belts are emerging within China. It is also meaningful for future research to focus on urban 

clusters and industrial belts. In addition, innovation research with undesirable outputs can be applied 

to the field of industrial innovation, focusing on the analysis of heavily polluting industries. Future 

research can analyze in detail the specific mechanisms of influencing factors of sustainable innovation 

efficiency, such as how government R&D funding reduces the innovation efficiency, and how the 

technology market promotes innovation outputs. Technological innovation and environmental 

regulations are closely related to regional economic growth. The relation between environmental 

sustainability and economic growth is well worth studying. Future research can also be carried out 

from this perspective. 

6. Conclusions and Implications 

This study gave insight into regional sustainable innovation efficiency with undesirable outputs, 

and evaluated the efficiency from 2015 to 2016 through a super efficiency SBM model. This research 

took industrial waste and total energy consumption into consideration. The evaluation results 

indicated that 12 provinces in China have increased efficiency values from 2015 to 2016, with Beijing 

and Guangdong taking the two top spots. Meanwhile, it is noteworthy that the innovation efficiency 

among provinces was quite different. Innovation efficiency differed widely across regions. The 

eastern area still led the technological innovation and efficiency in China, in comparison to the central 

and western areas. Moreover, regional disparities between the three areas are subtly increasing.  

Given the increasing differences in regional innovation efficiency across the whole country, the 

Chinese central government should pay special attention to regional disparities. More scientific and 

technological resources should be invested in the vast central and western areas. Based on our results, 

technology market maturity affected sustainable innovation efficiency significantly, while 

government funding had a negative impact on sustainable innovation efficiency. Industrial structure 

and environmental regulations showed no significant effect on sustainable innovation efficiency. 

From the above conclusion, several policy implications are obtained. Firstly, policymakers 

should pay more attention to the overall development of the economy and the environment, instead 

of focusing only on economic development. The improvement of innovation efficiency requires good 

governance of sustainability measures and practices. Since pollution mitigation and energy 

conservation affect sustainable innovation efficiency greatly, it is urgent to increase sustainable 

technology investment in order to reduce energy consumption and industrial pollutant emissions. 

Secondly, the central government needs to address environmental issues from a long-term 

perspective, since local governments are more likely to pursue short-term benefits and ignore long-

term environmental issues. Both command-and-control measures and market-based policy 

instruments should be employed to address the environmental problems caused by rapid, 

unsustainable development. Thirdly, it is unwise for the government to blindly increase investment 

in scientific and technological resources as before. On the contrary, it should apply more 

consideration to vigorously adopt strict governance measures in the technology market to promote 

innovation. Lastly, regional disparities should be taken into account. The government should 

strengthen cooperation in regional innovation governance to narrow the regional disparities. As 

China is a huge country with varying regional social–economic development levels, policymakers in 

each province could formulate targeted policies on energy saving and carbon emissions reduction in 

light of their provincial features. Specifically, the eastern provinces should enact policies to guide 

technological innovation. Central and western provinces should optimize the industrial structure, 

accelerate industrial upgrading, and reduce energy consumption and environmental pollution. 



Sustainability 2020, 12, 3008 16 of 19 

Author Contributions: Conceptualization, K.X., L.L., and Q.C.; Data curation, K.X.; Formal analysis, K.X. and 

L.L.; Funding acquisition, L.L. and Q.C.; Methodology, K.X.; Project administration, L.L. and Q.C.; Resources, 

L.L. and Q.C.; Supervision, L.L. and Q.C.; Validation, K.X., L.L., and Q.C.; Visualization, K.X. and L.L.; Writing 

– original draft, K.X. and L.L.; Writing – review & editing, L.L. and Q.C. All authors have read and agreed to the 

published version of the manuscript. 

Funding:  This research received no external funding. 

Acknowledgments: The authors would like to thank the editor and anonymous reviewers for their insightful 

comments and suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Nill, J.; Kemp, R., Evolutionary approaches for sustainable innovation policies: From niche to paradigm? 

Res. Policy 2009, 38, 668–680. 

2. Yam, R. C. M.; Guan, J. C.; Pun, K. F.; Tang, E. P. Y., An audit of technological innovation capabilities in 

chinese firms: some empirical findings in Beijing, China. Res. Policy 2004, 33, 1123–1140. 

3. Li, Z.; Li, J.; He, B., Does foreign direct investment enhance or inhibit regional innovation efficiency? Chin. 

Manag. Stud. 2018, 12, 35–55. 

4. Bai, J., On Regional Innovation Efficiency: Evidence from Panel Data of China's Different Provinces. Reg. 

Stud. 2013, 47, 773–788. 

5. Tian, X.; Wang, J., Research on Spatial Correlation in Regional Innovation Spillover in China Based on 

Patents. Sustainability 2018, 10, 3090. 

6. Chen, K.; Guan, J., Measuring the Efficiency of China's Regional Innovation Systems: Application of 

Network Data Envelopment Analysis (DEA). Reg. Stud. 2012, 46, 355-377. 

7. Feng, C.; Wang, M., The heterogeneity of China's pathways to economic growth, energy conservation and 

climate mitigation. J. Clean. Prod. 2019, 228, 594–605. 

8. Yu, Y.; Qian, T.; Du, L., Carbon productivity growth, technological innovation, and technology gap change 

of coal-fired power plants in China. Energy Policy 2017, 109, 479–487. 

9. Zhang, W.; Pan, X.; Yan, Y.; Pan, X., Convergence analysis of regional energy efficiency in china based on 

large-dimensional panel data model. J. Clean. Prod. 2017, 142, 801–808. 

10. Broekel, T., Collaboration Intensity and Regional Innovation Efficiency in Germany—A Conditional 

Efficiency Approach. Ind. Innov. 2012, 19, 155–179. 

11. Holley, C.; Lecavalier, E., Energy governance, energy security and environmental sustainability: A case 

study from Hong Kong. Energy Policy 2017, 108, 379–389. 

12. Salvioni, D.; Gennari, F.; Bosetti, L., Sustainability and Convergence: The Future of Corporate Governance 

Systems? Sustainability 2016, 8, 1203. 

13. Husted, B. W.; Sousa-Filho, J. M. d., The impact of sustainability governance, country stakeholder 

orientation, and country risk on environmental, social, and governance performance. J. Clean. Prod. 2017, 

155, 93–102. 

14. Rajesh, R., Exploring the sustainability performances of firms using environmental, social, and governance 

scores. J. Clean. Prod. 2020, 247, 119600. 

15. Zhao, Z.-Q.; He, B.-J.; Li, L.-G.; Wang, H.-B.; Darko, A., Profile and concentric zonal analysis of 

relationships between land use/land cover and land surface temperature: Case study of Shenyang, China. 

Energ Buildings 2017, 155, 282–295. 

16. He, B.-J.; Zhao, D.-X.; Zhu, J.; Darko, A.; Gou, Z.-H., Promoting and implementing urban sustainability in 

China: An integration of sustainable initiatives at different urban scales. Habitat. Int. 2018, 82, 83–93. 

17. De Guimarães, J. C. F.; Severo, E. A.; Felix Júnior, L. A.; Da Costa, W. P. L. B.; Salmoria, F. T., Governance 

and quality of life in smart cities: Towards sustainable development goals. J. Clean. Prod. 2020, 253, 119926. 

18. Hussain, N.; Rigoni, U.; Orij, R. P., Corporate Governance and Sustainability Performance: Analysis of 

Triple Bottom Line Performance. J. Bus. Ethics. 2016, 149, 411–432. 

19. Lombardi, R.; Cano-Rubio, M.; Trequattrini, R.; Fuentes-Lombardo, G., Exploratory evidence on 

anticorruption activities in the Spanish context: A sustainable governance approach. J. Clean. Prod. 2020, 

249, 119424. 

20. Ioppolo, G.; Cucurachi, S.; Salomone, R.; Saija, G.; Shi, L., Sustainable Local Development and 

Environmental Governance: A Strategic Planning Experience. Sustainability 2016, 8, 180. 

21. Blendinger, G.; Michalski, G., Long-Term Competitiveness Based on Value Added Measures as Part of 

Highly Professionalized Corporate Governance Management of German Dax 30 Corporations. Journal of 



Sustainability 2020, 12, 3008 17 of 19 

Competitiveness 2018, 10, 5–20. 

22. Mahmood, M.; Orazalin, N., Green governance and sustainability reporting in Kazakhstan's oil, gas, and 

mining sector: Evidence from a former USSR emerging economy. J. Clean. Prod. 2017, 164, 389–397. 

23. Schrobback, P.; Meath, C., Corporate sustainability governance: Insight from the Australian and New 

Zealand port industry. J. Clean. Prod. 2020, 255, 120280. 

24. Shin, J.; Kim, C.; Yang, H., The Effect of Sustainability as Innovation Objectives on Innovation Efficiency. 

Sustainability 2018, 10, 1966. 

25. Lupova-Henry, E.; Dotti, N. F., Governance of sustainable innovation: Moving beyond the hierarchy-

market-network trichotomy? A systematic literature review using the ‘who-how-what’ framework. J. 

Clean. Prod. 2019, 210, 738–748. 

26. Naciti, V., Corporate governance and board of directors: The effect of a board composition on firm 

sustainability performance. J. Clean. Prod. 2019, 237, 117727. 

27. Wang, W.; Yu, B.; Yan, X.; Yao, X.; Liu, Y., Estimation of innovation’s green performance: A range-adjusted 

measure approach to assess the unified efficiency of China’s manufacturing industry. J. Clean. Prod. 2017, 

149, 919–924. 

28. Chen, C.; Han, J.; Fan, P., Measuring the Level of Industrial Green Development and Exploring Its 

Influencing Factors: Empirical Evidence from China’s 30 Provinces. Sustainability 2016, 8, 153. 

29. Cooke, P., Regional innovation systems: Competitive regulation in the new Europe. Geoforum 1992, 23, 

365–382. 

30. Cooke, P.; Boekholt, P.; Schall, N.; Schienstock, G. In Regional innovation systems: concepts, analysis and 

typology, EU-RESTPOR Conference" Global Comparison of Regional RTD and Innovation Strategies for 

Development and Cohesion". Brussels, Belgium, 19 September 1996; pp 19–21. 

31. Cooke, P.; Gomez Uranga, M.; Etxebarria, G., Regional innovation systems: Institutional and 

organisational dimensions. Res. Policy 1997, 26, 475–491. 

32. Baregheh, A.; Rowley, J.; Sambrook, S., Towards a multidisciplinary definition of innovation. Manage. 

Decis. 2009, 47, 1323–1339. 

33. Saunila, M.; Ukko, J.; Rantala, T., Sustainability as a driver of green innovation investment and exploitation. 

J. Clean. Prod. 2018, 179, 631–641. 

34. Hellström, T., Dimensions of environmentally sustainable innovation: the structure of eco-innovation 

concepts. Sust. Dev. 2007, 15, 148–159. 

35. Yuan, B.; Xiang, Q., Environmental regulation, industrial innovation and green development of Chinese 

manufacturing: Based on an extended CDM model. J. Clean. Prod. 2018, 176, 895–908. 

36. Fernández Fernández, Y.; Fernández López, M. A.; Olmedillas Blanco, B., Innovation for sustainability: 

The impact of R&D spending on CO2 emissions. J. Clean. Prod. 2018, 172, 3459–3467. 

37. Ramanathan, R.; He, Q.; Black, A.; Ghobadian, A.; Gallear, D., Environmental regulations, innovation and 

firm performance: A revisit of the Porter hypothesis. J. Clean. Prod. 2017, 155, 79–92. 

38. Hansen, E. G.; Grosse-Dunker, F.; Reichwald, R., Sustainability Innovation Cube — a Framework to 

Evaluate Sustainability-Oriented Innovations. Int. J. Innov. Manag. 2011, 13, 683–713. 

39. Liu, X.; Guo, P.; Guo, S., Assessing the eco-efficiency of a circular economy system in China's coal mining 

areas: Emergy and data envelopment analysis. J. Clean. Prod. 2019, 206, 1101–1109. 

40. Li, K.; Song, M., Green Development Performance in China: A Metafrontier Non-Radial Approach. 

Sustainability 2016, 8, 219. 

41. Wei, Y.-M.; Chen, H.; Chyong, C. K.; Kang, J.-N.; Liao, H.; Tang, B.-J., Economic dispatch savings in the 

coal-fired power sector: An empirical study of China. Energy Econ. 2018, 74, 330–342. 

42. Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q., Energy technological progress, energy consumption, and CO2 

emissions: Empirical evidence from China. J. Clean. Prod. 2019, 236, 117666. 

43. Farrell, M. J., The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–290. 

44. Hall, B. H.; Griliches, Z.; Hausman, J. A., Patents and R and D: Is There a Lag? Int. Econ. Rev. 1986, 27, 265. 

45. Acs, Z. J.; Anselin, L.; Varga, A., Patents and innovation counts as measures of regional production of new 

knowledge. Res. Policy 2002, 31, 1069–1085. 

46. Chen, C.-M.; Delmas, M. A.; Lieberman, M. B., Production frontier methodologies and efficiency as a 

performance measure in strategic management research. Strateg. Manag. 2015, 36, 19–36. 

47. Lee, H. Y.; Park, Y. T., An international comparison of R&D efficiency: DEA approach. Asian J. Technol. 

Inno. 2005, 13, 207–222. 

48. Sharma, S.; Thomas, V. J., Inter-country R&D efficiency analysis: An application of data envelopment 

analysis. Scientometrics 2008, 76, 483–501. 

49. Guan, J.; Chen, K., Modeling macro-R&D production frontier performance: an application to Chinese 

province-level R&D. Scientometrics 2009, 82, 165–173. 



Sustainability 2020, 12, 3008 18 of 19 

50. Karadayi, M. A.; Ekinci, Y., Evaluating R&D performance of EU countries using categorical DEA. Technol. 

Anal. Strateg. 2018, 31, 227–238. 

51. Wang, X.; Wu, Q.; Majeed, S.; Sun, D., Fujian’s Industrial Eco-Efficiency: Evaluation Based on SBM and 

the Empirical Analysis of lnfluencing Factors. Sustainability 2018, 10, 3333. 

52. He, B.; Wang, J.; Wang, J.; Wang, K., The Impact of Government Competition on Regional R&D Efficiency: 

Does Legal Environment Matter in China’s Innovation System? Sustainability 2018, 10, 4401. 

53. Dai, X.; Wu, J.; Yan, L., A Spatial Evolutionary Study of Technological Innovation Talents’ Sticky Wages 

and Technological Innovation Efficiency Based on the Perspective of Sustainable Development. 

Sustainability 2018, 10, 4201. 

54. Chen, K.; Kou, M.; Fu, X., Evaluation of multi-period regional R&D efficiency: An application of dynamic 

DEA to China's regional R&D systems. Omega 2018, 74, 103–114. 

55. Anderson; Stejskal, Diffusion Efficiency of Innovation among EU Member States: A Data Envelopment 

Analysis. Economies 2019, 7, 34. 

56. Belgin, O., Analysing R&D efficiency of Turkish regions using data envelopment analysis. Technol. Anal. 

Strateg. 2019, 31, 1341–1352. 

57. Cao, S.; Feng, F.; Chen, W.; Zhou, C., Does market competition promote innovation efficiency in China’s 

high-tech industries? Technol. Anal. Strateg. 2019, 32, 429–442. 

58. Hong, J.; Hong, S.; Wang, L.; Xu, Y.; Zhao, D., Government grants, private R&D funding and innovation 

efficiency in transition economy. Technol. Anal. Strateg. 2015, 27, 1068–1096. 

59. Hou, B.; Hong, J.; Wang, H.; Zhou, C., Academia-industry collaboration, government funding and 

innovation efficiency in Chinese industrial enterprises. Technol. Anal. Strateg. 2018, 31, 692–706. 

60. Qin, X.; Du, D., Measuring universities’ R&D performance in China’s provinces: a multistage efficiency 

and effectiveness perspective. Technol. Anal. Strateg. 2018, 30, 1392–1408. 

61. Yang, F.; Cheng, Y.; Yao, X., Influencing factors of energy technical innovation in China: Evidence from 

fossil energy and renewable energy. J. Clean. Prod. 2019, 232, 57–66. 

62. Wicki, S.; Hansen, E. G., Green technology innovation: Anatomy of exploration processes from a learning 

perspective. Bus. Strategy. Environ. 2019, 28, 970–988. 

63. Luo, Q.; Miao, C.; Sun, L.; Meng, X.; Duan, M., Efficiency evaluation of green technology innovation of 

China's strategic emerging industries: An empirical analysis based on Malmquist-data envelopment 

analysis index. J. Clean. Prod. 2019, 238, 117782. 

64. Li, X., China's regional innovation capacity in transition: An empirical approach. Res. Policy 2009, 38, 338–

357. 

65. Lin, S.; Sun, J.; Marinova, D.; Zhao, D., Evaluation of the green technology innovation efficiency of China's 

manufacturing industries: DEA window analysis with ideal window width. Technol. Anal. Strateg. 2018, 

30, 1166–1181. 

66. Broekel, T.; Rogge, N.; Brenner, T., The innovation efficiency of German regions – a shared-input DEA 

approach. Rev. Reg. Res. 2017, 38, 77–109. 

67. Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L., Industrial eco-efficiency in China: A provincial quantification using 

three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. 

68. Chakraborty, P.; Chatterjee, C., Does environmental regulation indirectly induce upstream innovation? 

New evidence from India. Res. Policy 2017, 46, 939–955. 

69. Ambec, S.; Cohen, M. A.; Elgie, S.; Lanoie, P., The Porter Hypothesis at 20: Can Environmental Regulation 

Enhance Innovation and Competitiveness? Rew. Env. Econ. Policy 2013, 7, 2–22. 

70. Rennings, K.; Rammer, C., The Impact of Regulation-Driven Environmental Innovation on Innovation 

Success and Firm Performance. Ind. Innov. 2011, 18, 255–283. 

71. Sueyoshi, T.; Yuan, Y.; Goto, M., A literature study for DEA applied to energy and environment. Energy 

Econ. 2017, 62, 104–124. 

72. Emrouznejad, A.; Yang, G.-l., A survey and analysis of the first 40 years of scholarly literature in DEA: 

1978–2016. Socioecon. Plann. Sci. 2018, 61, 4–8. 

73. Charnes, A.; Cooper, W. W.; Rhodes, E., Measuring the efficiency of decision making units. Eur. J. Oper. 

Res. 1978, 2, 429–444. 

74. Seiford, L. M.; Zhu, J., Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 

16–20. 

75. Scheel, H., Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 2001, 132, 400–410. 

76. Seiford, L. M.; Zhu, J., A response to comments on modeling undesirable factors in efficiency evaluation. 

Eur. J. Oper. Res. 2005, 161, 579–581. 

77. Färe, R.; Grosskopf, S., Modeling undesirable factors in efficiency evaluation: Comment. Eur. J. Oper. Res. 

2004, 157, 242–245. 



Sustainability 2020, 12, 3008 19 of 19 

78. Tone, K., A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 

143, 32–41. 

79. Yang, T.; Chen, W.; Zhou, K.; Ren, M., Regional energy efficiency evaluation in China: A super efficiency 

slack-based measure model with undesirable outputs. J. Clean. Prod. 2018, 198, 859–866. 

80. Guan, J.; Chen, K., Measuring the innovation production process: A cross-region empirical study of 

China’s high-tech innovations. Technovation 2010, 30, 348–358. 

81. Liu, Z.; Chen, X.; Chu, J.; Zhu, Q., Industrial development environment and innovation efficiency of high-

tech industry: analysis based on the framework of innovation systems. Technol. Anal. Strateg. 2017, 30, 434–

446. 

82. Chen, X.; Liu, Z.; Zhu, Q., Performance evaluation of China's high-tech innovation process: Analysis based 

on the innovation value chain. Technovation 2018, 74–75, 42–53. 

83. Wang, K.; Wei, Y.-M.; Zhang, X., A comparative analysis of China’s regional energy and emission 

performance: Which is the better way to deal with undesirable outputs? Energy Policy 2012, 46, 574–584. 

84. Jiang, J.; Ye, B.; Xie, D.; Li, J.; Miao, L.; Yang, P., Sector decomposition of China’s national economic carbon 

emissions and its policy implication for national ETS development. Renew. Sust. Energ. Rev. 2017, 75, 855–

867. 

85. Zhang, Y.-J.; Peng, Y.-L.; Ma, C.-Q.; Shen, B., Can environmental innovation facilitate carbon emissions 

reduction? Evidence from China. Energy Policy 2017, 100, 18–28. 

86. Wang, K.; Wei, Y.-M.; Zhang, X., Energy and emissions efficiency patterns of Chinese regions: A multi-

directional efficiency analysis. Appl. Energy 2013, 104, 105–116. 

87. Li, H.; Mu, H.; Zhang, M.; Gui, S., Analysis of regional difference on impact factors of China’s energy – 

Related CO2 emissions. Energy 2012, 39, 319–326. 

88. McDonald, J., Using least squares and tobit in second stage DEA efficiency analyses. Eur. J. Oper. Res. 2009, 

197, 792–798. 

89. Nahra, T. A.; Mendez, D.; Alexander, J. A., Employing super-efficiency analysis as an alternative to DEA: 

An application in outpatient substance abuse treatment. Eur. J. Oper. Res. 2009, 196, 1097–1106. 

90. Bai, Y.; Song, S.; Jiao, J.; Yang, R., The impacts of government R&D subsidies on green innovation: Evidence 

from Chinese energy-intensive firms. J. Clean. Prod. 2019, 233, 819–829. 

91. Song, M.; Wang, S.; Sun, J., Environmental regulations, staff quality, green technology, R&D efficiency, 

and profit in manufacturing. Technol. Forecast. Soc. 2018, 133, 1–14. 

92. Wang, K.; Miao, N.-N.; Xue, K.-K., Does the technology background of the Party Committee Secretary 

affect firm’s innovation efficiency? Evidence from listed state-owned enterprises in China. Technol. Anal. 

Strateg. 2019, 1–14. 

93. Howell, A., ‘Indigenous’ innovation with heterogeneous risk and new firm survival in a transitioning 

Chinese economy. Res. Policy 2015, 44, 1866–1876. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


