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Abstract: This study collected and analyzed dynamic spatial data of eight traditional villages scattered
in different regions of China. A multi-temporal analysis of morphological metrics of spatial patterns
and a regression analysis of the morphological evolution were used to analyze and contrast the
historical spatial processes of different villages. These were then compared using patch texture and
rural macro-morphology perspectives. This led to an assessment of the general laws and trends
associated with rural spatial processes. (1) There has been a significant shift in the stability of rural
spatial development since the founding of the People’s Republic of China (PRC). (2) Most small and
medium-sized villages have maintained a relatively stable spatial texture, while large villages have
changed significantly. (3) The mean and variance of the patch area, and the Euclidean nearest-neighbor
distance, are correlated in some cases. (4) The mode of rural expansion may be relevant to limitations
in the total area of growth. (5) The fractal dimension of the rural macro-morphology may follow
a morphological order of oscillation around the equilibrium level. (6) The common mean value of the
projected area of rural building patches is expected to be 100 m2.

Keywords: traditional rural settlements; dynamic evolution; patch texture; macro-morphology;
multi-temporal analysis; morphological metrics

1. Introduction

The layout of traditional rural residential land constitutes the core framework of the rural cultural
landscape. The evolution of that land is the direct manifestation of the interaction between humans
and their environment [1]. Theoretically, this process is an iterative cycle of “spatial form shaping”
and “environmental feedback”. During the rapid urbanization of modern China, many rounds
of spatial shaping may have occurred before the environmental feedback. This has resulted in
a nonlinear relationship between human activities and environmental constraints [1]. Human activities
sometimes advance more rapidly than environmental feedback. Therefore, planners need to acquire
more knowledge about the spatial laws and reasonable expectations with respect to dynamic trends.
This is needed to integrate natural and cultural rationality into spatial development, in the absence of
immediate environmental feedback (Figure 1).
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The spatial morphology of villages is a geographical phenomenon. It is important to grasp the
spatiotemporal dynamic process of the geographical phenomenon, rather than simply obtaining the
spatial pattern once formed. Combining the two categories of time and space into a unified dynamic
system is needed to truly understand the essential laws of the spatial morphological development [2].

As such, it is important to evolve from considering rural space as a static form to considering
it as a dynamic system. This would more effectively consider the dynamic non-equilibrium process
through which the spatial system reaches the equilibrium state. For a specific village, to guide an
appropriate spatial decision-making before the intervention of spatial planning, analysis, and judgment
are needed to consider the following questions: (1) Did specific laws shape the historical process of
spatial evolution? Did these rules change during the process? (2) Has the current rural spatial form
reached a relatively stable state? If not, how does the existing logic inform development trends? (3)
Has the current trend continued the macro trend seen with historical processes?

There are two methods for analyzing spatiotemporal dynamics:
The first method is spatiotemporal dynamic modeling. This method usually creates a model rooted

in an intelligent algorithm, building a mathematical relationship between the constraint conditions
and the morphological evolution [3,4]. Examples include the cellular automata model and the system
dynamic model. These deduce spatial trends from previous spatial laws.

In general, spatiotemporal dynamic models can be divided into two types, based on the embedded
algorithms. One type is the black box algorithm (e.g., artificial neural network algorithm), which maps
input features to an output target simply based on the data. The second type is a transparent algorithm
(e.g., decision tree algorithm and Bayesian algorithm), which learns the mapping based on assumptions
and data [5]. When applying models for spatial analysis and prediction, it is not enough to determine
the final answer (the “what”). It is also important to generate a reasonable explanation about how
the answer was reached (the “why”) [6]. That means that interpretable transparent models generally
match spatial research needs and perform better than black box models, if there are good assumptions
based on credible experiential knowledge and rules [7,8]. In this case, it is necessary to analyze and
distill experiential knowledge from historical spatial processes.

The second method involves morphological metrics, which quantify, interpret and assess complex
spatial structures. These metrics reveal spatial system properties that are not easy to directly observe,
using a working platform called Fragstats [9,10]. Static morphological metrics are generally referred
to as landscape metrics [11]. These metrics are used in landscape ecology, and are also called spatial
metrics [12]. The group of metrics is an important tool for analyzing mapping products with a plane
configuration. This provides an additional level of quantitative information about the structure and
pattern of the space, and these metrics have dominated studies that apply quantitative analyses to
urban forms for some time [13]. In fact, the application of morphological metrics in spatial analysis
occurred earlier than the application of the spatiotemporal dynamic model. Morphological metrics
can provide an empirical basis of knowledge [14,15] and rules [16] for the creation and evaluation of
spatiotemporal dynamic models.



Sustainability 2020, 12, 3005 3 of 17

However, static morphological metrics merely describe the spatial patches in a single time point.
They do not reflect dynamic information about the spatial evolution. Because of this, previous research
has tried to empower the metrics, with the ability to quantitatively characterize the spatial change
process [17]:

(1) The changes for a specific place were shown using the time-series data of static morphological
metrics [17–20]. (2) The Landscape Expansion Index (LEI) was used to analyze and define the types of
spatial expansion between different phases [21,22], including infilling, edge-expansion, and outlying
modes. However, the LEI index has some problems recognizing expansion patterns when examining
patches with special shapes. Scholars have improved this index, or have proposed alternative indexes,
to strengthen the accuracy of spatial recognition [23–26]. Auxiliary indices have also elaborated
descriptions of the spatial process [27].

For morphological metrics, when studying the spatial evolution of villages, the LEI may be no
better than the time series analysis with multi-temporal metrics. First, the continuous spatial evolution
should be described using the rules of spatial transition between different steps or throughout the
full spatial process. Based on the essential properties of LEI, the metrics describe the "differences"
between different spatial patterns of construction land across different developing phases, not the rules
or trends of those "differences". This suggests there is no essential difference between the LEI and static
morphological metrics. Second, when the spatial scale for research is narrowed to a single village,
building patches are often in a scattered layout, expanding in multiple directions. This makes it easy
to misjudge the types of spatial expansion when measured by LEI. Third, from a research method
perspective, the spatial scale for a particular village is smaller than for a city. Therefore, its evolution
mode is relatively stable, making the spatial expansion discernable by the naked eye.

In addition, due to the difficulty of data acquisition, many previous studies on dynamic spatial
evolutionary morphological metrics have focused on comparing and analyzing data for two time-points.
Many possible results could be extrapolated from such a one-step difference. As such, it is difficult
to infer a reliable trend of changes in the data. It may be possible to hypothesize whether the value
will go up or down, but impossible to deduce the definite value (if there is one) towards which the
index value will trend. Therefore, more spatiotemporal data are needed. Additionally, absolute values
of morphological metrics depend on the spatial resolution and the extent of the study area. In other
words, a change in the extent of the study area or in the spatial resolution will significantly change
the metrics. This limits the ability to relate the results of one region to another [17]. Hence, because it
extends beyond a single datum, trend analyses are less impacted by the problems above, and are
a better fit for this study.

Using eight villages in China as research samples, this study collected and analyzed spatial
evolution data. The study then applied a set of morphological metrics to conduct a multi-temporal
analysis of the spatial evolution characteristics, from the perspective of patch texture and rural
macro-morphology. Based on that, the general characteristics and development trends of traditional
rural spatial dynamics were compared and summarized, providing essential empirical knowledge to
support spatiotemporal dynamic modeling and predictions related to rural evolution.

2. Data and Methods

2.1. Data of Rural Evolution

Few historical spatial data related to traditional villages in China are available, and the
corresponding reconstruction of the rural spatial process remains in the initial stage. Therefore, it is
difficult to capture direct data related to rural evolution. Based on our former work of rural data
reconstruction as well as the work of other rural researchers, we selected eight traditional villages
distributed across China as the study sample: ShangZhuang Village (in Shanxi Province) [28],
Doushan Village (in Jiangsu Province) [29], Xidi Village (in Anhui Province) [30], Bailu Village (in
Jiangxi Province) [31], Tanshui Village (Fujian Province), QuanFu Village (in Yunnan Province) [32],
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Qiaoxiang Village (in Guangdong Province) [33], and Kengzi Village (in Guangdong Province) [34]
(Figure 2). The spatial data were then processed into multitemporal maps. There were two main
conditions driving the reconstruction of the spatial evolution. First, for some sample villages, the related
references provided accurate spatiotemporal data for direct use. Second, for others, the database
provided the contemporary spatial patterns of the settlements, supplemented by the historical records
of the buildings. This allowed for the reconstruction of the spatial process. Those sample villages had
clear differences with respect to spatial scale, the temporal scale of historical development, and the
mode of evolution (Table 1). All of the sample villages are natural villages in the same administrative
level, and are listed in the order of their geographical location from north to south. The scale differences
of those villages indicate the increasing degree of clan organization from north to south, which is
consistent with the social reality of China [35].
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Table 1. Characteristics of the sample villages.

Village Scale of Its Smallest
Bounding Rectangle

Year of
Establishment Spatial Expanding Mode

Shangzhuang 516 m × 451 m About 1470s E+I
Doushan 445 m × 300 m About 1890s E

Xidi 681 m × 264 m About 1050s E+I
Bailu 1315 m × 882 m About 1150s E

Tanshui 1322 m × 676 m About 1500s O+I
Quanfu 1565 m × 567 m About 1010s O+E

Qiaoxiang 2527 m × 804 m About 1500s O+I
Kengzi 5949 m × 4311 m About 1690s O

Note: I: infilling; E: edge-expansion; O: outlying mode of expansion.

The selection of sample villages was random with respect to location and history, but strict
with respect to village data reliability. The preliminary analysis did not reveal clear rules in the
difference of the founding time of those sample villages from northern China to southern China.
However, in the gradually growing rural area, there was a clear change in the spatial expansion mode
from edge-expansion to outlying expansion.
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2.2. Data Processing

Data processing was completed in four steps (Figure 3):Sustainability 2019, 11, x FOR PEER REVIEW 5 of 18 
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(1) Village map registration was completed by referring to satellite remote sensing images. Most of
the sample village maps were highly accurate with small deviations, because of achievements in
field surveying and mapping.

(2) The data for residential land patches in each map were extracted.
(3) The multi-temporal layouts of the residential land patches in each village were reconstructed,

using records in the corresponding village studies.
(4) The boundaries for the village layout in each development phase were generated using data

management tools and cartography tools in ArcMap. To avoid the influence of the specific form
of those buildings on the boundary generation, for a certain village, the gravity center of each
building plaque was extracted. This constituted the point cluster of the village. Then, the outer
boundary of the point cluster was generated using ArcMap; this was guided by the principle that
any line segment connecting two points on the boundary should be shorter than the threshold
value (which is accurate to the meter). The threshold value was the minimum value needed to have
the boundary enclose all points. Finally, the boundary, expressed by a polyline, was softened using
the smoothing algorithm of Bezier Interpolation, embedded in the Smooth Line Tool of ArcMap.
When the fitting curve intersected, the threshold value was reduced, and multi-boundaries were
regenerated to enclose a multi-cluster of points (Figure 4).
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2.3. Methods for Spatial Analysis

This study analyzed the rural spatial evolution using the patch texture and rural macro-morphology.
We introduced mean and standard deviation of patch area and Euclidean nearest-neighbor, as well
as distance and patch density at the patch texture level, and area and fractal dimension index at the
macro-morphology level. These served as qualitative metrics to compare the morphological evolutional
difference and explore the common rules of different villages.

Based on information redundancy in existing morphological metrics [36,37], the options of metrics
for each study level, covering the size, shape, and arrangement of patches, were narrowed to be as
concise as possible. Prerequisites for use included a relatively direct guidance for spatial practice,
and qualitative indicators that are not easy to obtain through observation. The presence of a weak
correlation among different groups was considered while screening out the metrics (Table 2).

Table 2. Spatial metrics selected in this study.

Metrics Abbreviation Description Unit

Spatial texture

Patch Area
Mean AREA_MN The average area of all patches in

the same category
Hectares

Standard
Deviation AREA_SD Standard deviation of the area of

all patches of the same class
Hectares

Euclidean
Nearest-Neighbor
Distance

Mean ENN_MN The average minimum distance
between the individual patches.

Meters

Standard
Deviation

ENN_SD Standard deviation of the
minimum distance between each
individual patches of the same
class

Meters

Patch density PD The number of patches of the
corresponding patch type divided
by total landscape area, which
facilitates comparisons among
landscapes of varying size

Number per
100 hectares

Integral shape

Area AREA The patch area, which is the basis
for many other indices

Hectares

Fractal Dimension Index

FRAC The fractal dimension describes
the complexity and the
fragmentation of a patch using
a perimeter–area proportion.
Fractal dimension values range
between 1 and 2. Low values
were derived when a patch had
a compact rectangular form with
a relatively small perimeter
relative to the area. More complex
and fragmented patches were
associated with an increased
perimeter and yielded a higher
fractal dimension.

—–
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Finally, we isolated any abnormal values in the multi-temporal morphological metrics of each
sample village, and analyzed the causes for appropriate data filtering. Then, we completed a regression
analysis on the changes in the data related to morphological metrics, to delineate similarities and
differences among different types of villages.

3. Results and Analysis

3.1. The Morphological Evolution of the Sample Villages

Figure 5 shows the morphological evolution of the sample villages, with different scales for
different villages. Rural settlements are expressed as black patches enclosed within a red-colored
boundary marking the village. This allowed a comparison of the sample villages with similar
identifiability within the same timeline.
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The spatial process reconstruction of the sample villages illustrates some differences between
Northern and Southern China. First, the earliest traceable spatial records for Southern China are
from an earlier time period than for Northern China. By contrast, the Chinese population historically
migrated from north to south. The discrepancy may relate to the differences between the two macro
zones with respect to the size and power of clan groups. The clans in southern China had a very large
population and economy [38]. Therefore, their village chronicles and clan history were recorded and
preserved in good condition in oral or written form. Second, compared with the northern villages,
the southern villages experienced a lower degree of spatial compactness and concentricity. This may
be related to the topography and natural resource distribution [38]. Third, the speed of rural spatial
aggregation tended to gradually decrease from north to south. Specifics were then further analyzed
using morphological metrics.

3.2. The Metric Data Changes in the Spatial Sprawl

The morphological metrics were individually computed for each of the eight sample villages and
for the year, using corresponding spatial records.

3.2.1. The Data Changes of the Metrics about Patch Texture

(1) Patch Area Mean (AREA_MN).
This metric reflects the size of the rural family unit. Figure 6a shows the quantitative historical

change in the metrics for the eight villages. Qiaoxiang, Shangzhuang, and Kengzi were associated with
a large range of data; as such, the data for the other five villages are shown more clearly in Figure 6b.
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Figure 6. Variation diagram of Patch Area Mean.

The data for the average patch area of most villages, with the exception of Kengzi, Qiaoxiang,
and Shangzhuang, fluctuated within a 50–150 m2 range, with a concentration around 100 m2. The data
changes in the spatial process of the five villages were relatively subtle and essentially remained stable,
with the exception of Bailu village, which experienced an upward trend.

For Kengzi, Qiaoxiang, and Shangzhuang, the average patch area occurred at a higher order
of magnitude. The data for Qiaoxiang show a downward trend. By contrast, the data of Kengzi
and Shangzhuang showed an initial increase, with a subsequent decrease. There was no significant
difference between the values at the rising start and the falling end.

The data for Qiaoxiang and Shangzhuang showed a rapid excessive downward trend after 1949.
Using the Qiaoxiang data as an example, a logistic regression model was used to fit the change in
the data, without including the abnormal sampling point of 1980 (Figure 7). The projected trend
indicated it would take approximately 380 years from the fifth time point if the average patch area
decreases to the value equal to that of the sixth time point in reality. However, this process required
just 30 years, demonstrating that the size of the family unit in some villages inhabited by large clans
shrank abnormally since the founding of the People’s Republic of China (PRC).
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Figure 7. Trend analysis of AREA_MN for Qiaoxiang Village.

(2) Patch Area Standard Deviation (AREA_SD).
This metric reflects the degree of uniformity in patch size.
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The data changes shown in Figure 8 indicate that AREA_SD experienced a slight upward trend
when the corresponding AREA_MN was small (less than 500 m2). The AREA_SD experienced
a significant downward trend when the corresponding AREA_MN was large (greater than 500 m2).
In other words, villages with small dwelling units had a more stable uniform patch size. The patch-size
difference in villages with large dwelling units significantly weakened as time passed.
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Figure 8. Variation diagram of Patch Area Standard Deviation.

Consistent with the changes in the AREA_MN values, the values associated with the last few
points for Shangzhuang and Qiaoxiang with respect to these metrics experienced either an abrupt rise
or a decline.

For AREA_MN and AREA_SD, Table 3 provides the correlation evaluation of the two metrics in
each village. These two metrics show a highly significant correlation in Xidi, Qiaoxiang, and Kengzi,
where the value of AREA_SD was proportionately related with AREA_MN (Figure 9). In other words,
the coefficient of the standard deviation of AREA (patch) was stable. Both Qiaoxiang and Kengzi are
Hakka villages in Guangdong Province. “Hakka” means “guest families” in Chinese, and it represents
a subclass of the Han majority in China. The Hakka’s ancestors may have arrived from central China
centuries ago. In a series of migrations, they settled in their current locations in south China, and have
since lived with four generations or more in a large enclosed house. The stability of the coefficient of
the standard deviation of AREA (patch) may be related to rural family size.

Table 3. Test of the significance of correlation between AREA_MN and AREA_SD.

Shangzhuang Doushan Xidi Bailu Tanshui Quanfu Qiaoxiang Kengzi

Significance level-P
(Valid: P < 0.05) 0.881 0.912 0.007 0.153 0.757 0.081 0.007 0.037

AREA_SD/AREA_MN – – 0.93 – – – 0.97 0.86
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Figure 9. Linear regression for AREA_MN and AREA_SD.

(3) Euclidean Nearest-Neighbor Distance Mean (ENN_MN).
These metrics can effectively reflect the degree of patch aggregation [39]. The scatter diagram

(Figure 10) shows that the changes in the distances between buildings were relatively slight in most
villages, remaining between 2.5 m and 5.5 m. However, the changes in the values were evident in Xidi,
Qiaoxiang, and Kengzi, which all showed a consistently decreasing trend. The starting ENN_MN
values for Xidi and Qiaoxiang were very high and their steady values were not significantly different
from the value in other agglomerating villages. From this perspective, the most distinctive village was
Kengzi, because there was an apparently high threshold value in the reduction of ENN_MN.
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Figure 10. Variation diagram of ENN_MN.

The developing trend of Kengzi-ENN_MN was best represented as an inverse S-Curve,
omitting one abnormal sampling point (1830) (Figure 11). The value stabilized at 230 m.
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Figure 11. Trend analysis of ENN_MN for Kengzi Village.

In addition, villages with a large AREA_MN value also had a large ENN_MN VALUE in the early
development stage. This feature became less pronounced as time passed.

(4) Euclidean Nearest-Neighbor Distance Standard Deviation (ENN_SD).
This index reflects the degree of uniformity in the distance between patches (Figure 12). The change

in the ENN_SD data indicated a similar trend as with the ENN_MN data. There was a particularly
significant correlation between the two metrics in Shangzhuang, Xidi, and Quanfu. For these three
villages, the value of ENN_SD was proportionally related to the ENN_MN value. In other words,
the coefficient of the standard deviation of ENN was stable (Table 4) (Figure 13).Sustainability 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 12. Variation diagram of ENN_SD.

Table 4. Test of the significance of correlation between ENN_MN and ENN_SD.

Shangzhuang Doushan Xidi Bailu Tanshui Quanfu Qiaoxiang Kengzi

Significance level-P
(Valid: P < 0.05) 0.002 0.442 0.000 0.195 0.157 0.013 0.067 0.423

ENN_SD/ENN_MN 1.18 – 1.18 – – 1.83 – –
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Figure 13. Linear regression for ENN_MN and ENN_SD.

(5) Patch density (PD).
This metric reflects the number of building patches distributed within a specific area (Figure 14).Sustainability 2019, 11, x FOR PEER REVIEW 13 of 18 
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Figure 14. Variation diagram of patch density (PD).

There are three major kinds of cases:
For the first case, the growth value remained almost stable, fluctuating only slightly around

a specific value. This situation occurred in Qiaoxiang, Kengzi, Shang Zhuang, and Tanshui, where spatial
development was rarely interfered with by urban expansion and construction.

For the second case, there was an evident drop in decreased value. This situation occurred in
Quanfu, Doushan, and Bailu. Of these, the patch density in Quanfu village remained relatively stable
before the 18th century, and declined slowly after that. In Doushan and Bailu, the value began to
decline in the late 19th century and the early 20th century.

Only Xidi village experienced the rare trend of a rapid increase in the PD value. That means
an increasing number of people are located on a limited amount of land. This result indicated the
restriction in the population flow in the valley region of Anhui province where Xidi was located.

3.2.2. The Data Changes of the Metrics at the Macro-Morphology Level

(1) Area within the boundary of village layout (AREA).
Figure 15 shows the changes in the data for all eight villages.
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Figure 15. Variation diagram of AREA.

There were three main conditions associated with the development trends:
The first condition was a rapid increase in a straight line, represented by the data for Kengzi,

Bailu, and Doushan (Figure 16a). Of these, Bailu and Doushan mainly experienced an edge-expansion
mode, with a slower growth rate than Kengzi, which grew in the outlying mode.
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Figure 16. Trend analysis of AREA.

The second condition was an exponential increase at a slow speed, represented by the data
for Quanfu, Xidi, Shangzhuang, and Qiaoxiang (Figure 16b). These villages did not have a large
scale, and their spatial expansion was relatively comprehensive, either in a combined outlying and
edge-expansion mode, or in an edge-expansion and infilling mode. In addition, those villages shared
a common feature: they grew slowly in the early stage and rather rapidly in the latter. The turning
point occurred around the time of the opium war and the early period after the founding of the PRC.

The third condition was when growth occurred in the shape of an S-curve. An example was
seen in the data from Tanshui. This village expanded using both the infilling and outlying expansion
modes. There may have been a threshold for spatial expansion established at the early stage of rural
development (Figure 17).
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Figure 17. Condition 3: growth following an S-shaped curve.

(2) Fractal Dimension Index (FRAC)
The metrics established in this study, based on fractal theory, may reflect the complexity in village

shapes when generated by self-organization [40].
Figure 18 shows that the value of each village experienced a complex trend of oscillation, with the

amplitude of most changes in values attenuating with time. Regardless of the initial datum, the
subsequent values consistently oscillated and approached the value of 1.12. This value of 1.12 is
the average (calculated to two decimal places) of the fractal dimension index of the sample villages.
Some samples were excluded in the calculation for the following reasons. First, the initial stage of the
settlements was relatively unstable; therefore, the samples in this stage should be excluded. After that,
for a certain village, if the retained samples in other stage were less than 5, the data were not suitable
for the mean estimation; therefore, villages with a total sample size of less than 6 were not considered.
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Figure 18. Variation diagram of FRAC.

The sample villages experienced some differences in the developing trend of metrics at the patch
texture level. However, they demonstrated a common character with respect to the fractal feature of the
village boundary. Villages may develop towards an approximately regular form, with a certain degree
of complexity. The dimension of 1.12 may characterize a state of equilibrium, ultimately approached
by many villages during their development.

4. Discussions and Conclusions

This study explored the spatial evolution characteristics of residential land in traditional villages
in China, using multi-temporal morphological metrics covering the aspects of patch texture and
macro-morphology. There was significant variability in the spatial patterns of different villages due to
the unique natural and cultural environments in China [39]. The old rural social structure in China has
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gradually disintegrated in the past 70 years; however, traditional settlements still somewhat reflect the
spatial mapping of the historical social organization. All the study villages had been in place since the
era of the peasant economy. Villages in different regions were under different governance modes.

In traditional China, the agricultural mode gradually transitioned from dry farming to irrigated
agriculture from the north to the south; the importance of water conservancy cooperation and public
defense also grew. Therefore, the basic cooperative unit of agriculture gradually changed from the
family to the small kindred, and then to the large clan. Correspondingly, the population composition of
a single village gradually changed from small families with multiple surnames to several family groups
with several surnames, and then to a large family group with a single surname. When the large family
group reached a certain size, it dispersed into several branches that became economically independent
from each other. In other words, from Northern China to Southern China, villages gradually transitioned
from mononuclear geographical settlements to polynuclear consanguineous settlements. This led to
an increasing scale of the building patch area, the patch spacing, and the overall scale of a village.

Despite these differences, some common rules and trends were identified using the multi-temporal
data of sample villages.

First, in respect to the continuity of spatial logic, spatial evolution characteristics have turned into
a new direction since 1949, sometimes significantly fluctuating when faced with abnormal situations.
Under the new social situation, the rural spatial development has occurred as a result of trial and error,
without fully achieving a new balance.

Second, in respect to the stability of spatial texture, based on the change in the data for AREA_MN
and ENN_MN, most small and medium-sized villages (with an area less than 30 ha) have maintained
a relatively stable spatial texture during their development. In contrast, the spatial texture of large
villages has significantly changed in a monotonic development trend, characterized by a decrease in
building scale and an increase in the spatial distribution density. The correlation between the mean and
the variance of patch area (AREA) and Euclidean nearest-neighbor distance (ENN) has not always been
clear. No more than 40% of the sample villages had a stable coefficient of standard deviation (degree
of variation) with respect to the separation distance and the building patch area during their spatial
processes. The common mean value of the projected area of rural building patches was estimated at
100 m2, with a value-float range of approximately 50–150 m2. This can serve as a reference to establish
the patch growth threshold in spatial simulations.

Third, in respect of the boundary of spatial expansion, when linking the expansion mode and
the area growth of sample villages, villages with a single expansion mode generally appear out of
control with respect to boundary development. By contrast, the blurred developable boundary may
singularize the spatial expansion mode. If the developable boundary is determined, a village may
combine outlying and infilling expansion modes. In addition, the fractal dimension of the overall
spatial form enclosed by the boundary fluctuated and approached 1.12, which indicates an equilibrium
level with respect to morphological evolution.

This study led to the following conclusions, which can serve as indispensable reference when
simulating rural spatial dynamics and plans at the village scale:

(1) In modern China, especially since the founding of the PRC, there has been a significant break in
the stability of rural spatial development.

(2) In comparison with large villages, most small and medium-sized villages have maintained
a relatively stable spatial texture during their development.

(3) The mean and variance of the patch area, and the Euclidean nearest-neighbor distance,
are correlated in some cases.

(4) The mode of rural expansion may be relevant to limitations in the total area of growth.
(5) The complexity of the village boundary fluctuated and approached the equilibrium level in the

process of village development.
(6) The growth threshold of a single building patch may be about 100 m2 and not more than 150 m2

in general.
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This study described some dynamic characteristics of the essential elements in settlement
morphology in China. We believe these analysis and conclusions can inform future dynamic simulations
and predictions for rural development.
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