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Abstract: This paper focuses on the freeze-thaw cycles (F-T cycles) resistance of porous asphalt
mixture (PAM) with different air voids in order to explore the gradation of the PAM suitable for
seasonal freezing regions. Three sets of PAMs with 18%, 21%, and 25% air voids were designed.
After 0–20 F-T cycles, the effects of F-T cycles on the performance degradation of three groups of
PAMs were studied by performing a low-temperature splitting test with acoustic emission technology,
a normal temperature splitting test, a compression test, a Cantabro particle loss test, and a dynamic
creep test. The results show that the damage process of PAM caused by multiple F-T cycles could be
more clearly defined by acoustic emission parameters. In addition, the larger the air void, the smaller
its indirect tensile strength and compression strength, and the worse its particle loss resistance and
high-temperature stability, which made the adverse effect of F-T cycles more significant. Therefore,
the air void of PAM used in seasonal freezing regions is suggested to be less than 21%.
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1. Introduction

Green, ecological, and sustainable development methods are gradually being respected by people
all over the world [1–3]. In the field of pavement engineering, functional pavement has been widely
studied in recent years [4–6], and permeable asphalt pavement has become the focus of scholars.
Permeable asphalt pavement has a large void structure, which can improve the safety of driving on
rainy days, accelerate the natural water cycle, and reduce the adverse impact of road engineering on
the natural environment. At the same time, it can reduce driving noise and improve driving comfort.
Permeable pavement is more sustainable compared with traditional dense pavement. Therefore, the
preparation technology and performance evaluation of permeable asphalt have become the focus of
scholars all over the world.

Tang [7] applied a finite element model to analyze the skid resistance of vehicles under different
precipitation intensities and considering the pavement’s geometric design, tire tread design, and
tire operating conditions. The results showed that under heavy rainfall conditions, skid resistance
decreases rapidly with increasing vehicle speed. Therefore, the application of porous asphalt mixture
(PAM) is conducive to driving safety in rainy weather. Liu et al. [8] studied the effect of different grades
of porous ultra-thin overlay on skid resistance. The results showed that coarse-graded porous ultra-thin
overlay is more conducive to improving the skid resistance of pavement. Khaki et al. [9] compared the
noise reduction performance of porous asphalt pavement and densely graded pavement. It was found
that PAM has better noise reduction performance, and the application of PAM can effectively reduce
noise pollution. Although a large number of studies have shown the superiority of PAM, few studies
have been conducted on the applicability of PAM in seasonal freezing regions.
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In China, with the vigorous implementation of road construction, natural aggregate resources are
exploited, and the problems caused by aggregate shortages become more and more prominent [10,11].
Therefore, how to use industrial wastes (steel slag, fly ash, waste oil shale, and so on) for pavement
materials has become a research hotspot. Zarrinkamar et al. [12] studied the effects of coal combustion
ash (CCA) and lime-activated coal waste ash (LA-CWA) on the performance of cold recycled asphalt
pavement on-site. According to the results, CCA can replace cement as a stabilizer for asphalt
pavement. Yan et al. [13] discussed the effect of municipal solid waste incineration (MSWI) fly ash on
the properties of asphalt mortar. The results of a series of viscoelastic experiments showed that the
addition of MSWI significantly improves the high-temperature performance of asphalt, and can reduce
energy consumption and environmental pollution. Cheng et al. [14] studied the effect of recycling
waste oil shale on the performance of asphalt pavement. The results showed that the addition of oil
shale can significantly improve high-temperature stability and also enable sufficient low-temperature
performance. Liu et al. [15] studied the properties of PAM with steel slag as aggregate and the
experiments showed that it has good permeability, water stability, and high-temperature stability. The
above research shows that the use of some industrial waste residues in road construction can save
resources and reduce the extraction of natural resources.

Northeast of China is a typical seasonal frozen region. For example, it is hot and rainy in summer
in Changchun city, Jilin province, and the daily average maximum temperature in June and July can
reach 28 and 29 ◦C respectively. However, it is cold and dry in winter, and the daily average minimum
temperature in December and January can reach −16 and −19 ◦C respectively. In the context of global
climate change, Changchun city experienced continuous heavy rain in the summer of 2017–2019, which
led to urban flooding. This brings serious inconvenience to the normal operation of transportation,
and even threatens the safety of pedestrians. Therefore, it is necessary and urgent to use permeable
pavement in this area. In addition, during the transition between winter and spring, the pavement
structure in the northeast of China is often subjected to the effects of freeze-thaw cycles (F-T cycles) due
to the large temperature difference between day and night [16–18]. Some studies have shown that the
freeze-thaw cycle is an important factor affecting the long-term performance of asphalt mixture [19–21].
Furthermore, it has been shown that air voids have a great influence on the freeze-thaw resistance
of asphalt mixture [22–24]. However, in the technical specifications for permeable asphalt pavement
(CJJ/T 190-2012) [25], only the general range of air voids of PAM is specified. For northeast regions
of China with special climatic conditions, how to determine the appropriate gradation of PAM is an
urgent problem. So far, few such studies have been published.

Therefore, based on the previous research of the research group [26,27], the following tests have
been carried out for this paper: with steel slag as aggregate, three groups of PAMs with air voids of
18%, 21%, and 25% were designed and manufactured. The F-T cycles of three groups of mixtures were
carried out 0–20 times in a laboratory using a low-temperature tank and constant-temperature water
tank. After corresponding F-T cycles, three groups of PAMs were subjected to a low-temperature
splitting test, a normal temperature indirect tensile and compression test, a Cantabro particle loss test,
and a dynamic creep test. The purpose was to study the effect of F-T cycles on three groups of PAMs
with different air voids through the above tests, and to study the PAMs suitable for seasonal freezing
regions from the perspective of frost resistance.

2. Materials and Methods

2.1. Materials and Gradation Design

The coarse and fine aggregates used in this study were steel slag, produced in Jilin City, Jilin
Province. The binder used was SBS (styrene-butadiene-styrene) modified asphalt, in which the SBS
content was 4%, and it was produced in Liaoning Province. In addition, in order to increase the
viscosity of the binder, a 10% waste rubber powder was added to the PAM using a dry process, and
it was produced in Jilin Province. The filler used in this study was limestone powder, which is also
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produced in Jilin Province. The specific performance indicators of all materials refer to a previous
study [27].

In this study, three kinds of PAM gradation were designed. According to the technical specifications
for permeable asphalt pavement (CJJ/T 190–2012) [25], the upper limit, median gradation, and lower
limit were selected. Their air voids were 18%, 21%, and 25%, respectively, and they are expressed as
PAM-18, PAM-21, and PAM-25. The gradation curve is shown in Figure 1.

Sustainability 2020, 12, x FOR PEER REVIEW 3 of 14 

produced in Jilin Province. The filler used in this study was limestone powder, which is also produced 
in Jilin Province. The specific performance indicators of all materials refer to a previous study [27].  

In this study, three kinds of PAM gradation were designed. According to the technical 
specifications for permeable asphalt pavement (CJJ/T 190–2012) [25], the upper limit, median 
gradation, and lower limit were selected. Their air voids were 18%, 21%, and 25%, respectively, and 
they are expressed as PAM-18, PAM-21, and PAM-25. The gradation curve is shown in Figure 1. 

 
Figure 1. Gradation curves of three porous asphalt mixtures (PAMs). 

2.2. Experimental Methods 

2.2.1. Freeze-Thaw Cycle 

Three groups of Marshall specimens with air voids of 18%, 21%, and 25% were prepared with 
reference to the standard test methods of bitumen and bituminous mixtures for highway engineering 
(JTG E20-2011) [28]. Each group had 75 specimens in total. Then, each group of specimens was subjected 
to 0, 5, 10, 15, 20 F-T cycles respectively. Each time before a test piece was frozen, it was sealed separately 
with a plastic bag, and then 15ml of water was poured into the bag. Then we immediately put the test 
piece into the refrigerator. Each freeze-thaw cycle included freezing the test piece in a −18 °C refrigerator 
for 16 hours and then thawing it in 25 °C water for 8 hours. 

2.2.2. Low-Temperature Splitting Test 

A low-temperature splitting test was used to characterize the changing low-temperature 
performance of PAM with different air void under F-T cycles. In order to further understand the 
damage effects of F-T cycles on specimens, acoustic emission technology was also used during the 
splitting test. Acoustic emission technology, as a damage detection technology, has been gradually 
applied to the field of asphalt mixtures in recent years [29,30]. During the experiment, the surface of 
the acoustic emission sensor was evenly coated with coupling agent, and then the sensor was 
clamped on the surface of a test piece with a rubber band. Subsequently, during the whole loading 
stage, the energy released by a specimen during the destruction process was measured by the sensor 
in the form of acoustic energy. Then it was transmitted to the computer through the signal amplifier. 
Finally, the influence of the low-temperature performance of PAM was further investigated through 
the analysis of the relevant parameters. Figure 2 shows the low-temperature splitting test set-up. 

Figure 1. Gradation curves of three porous asphalt mixtures (PAMs).

2.2. Experimental Methods

2.2.1. Freeze-Thaw Cycle

Three groups of Marshall specimens with air voids of 18%, 21%, and 25% were prepared with
reference to the standard test methods of bitumen and bituminous mixtures for highway engineering
(JTG E20-2011) [28]. Each group had 75 specimens in total. Then, each group of specimens was
subjected to 0, 5, 10, 15, 20 F-T cycles respectively. Each time before a test piece was frozen, it was sealed
separately with a plastic bag, and then 15ml of water was poured into the bag. Then we immediately
put the test piece into the refrigerator. Each freeze-thaw cycle included freezing the test piece in a
−18 ◦C refrigerator for 16 h and then thawing it in 25 ◦C water for 8 h.

2.2.2. Low-Temperature Splitting Test

A low-temperature splitting test was used to characterize the changing low-temperature
performance of PAM with different air void under F-T cycles. In order to further understand
the damage effects of F-T cycles on specimens, acoustic emission technology was also used during the
splitting test. Acoustic emission technology, as a damage detection technology, has been gradually
applied to the field of asphalt mixtures in recent years [29,30]. During the experiment, the surface of
the acoustic emission sensor was evenly coated with coupling agent, and then the sensor was clamped
on the surface of a test piece with a rubber band. Subsequently, during the whole loading stage, the
energy released by a specimen during the destruction process was measured by the sensor in the form
of acoustic energy. Then it was transmitted to the computer through the signal amplifier. Finally, the
influence of the low-temperature performance of PAM was further investigated through the analysis
of the relevant parameters. Figure 2 shows the low-temperature splitting test set-up.
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2.2.3. Indirect Tensile and Compression Test at Room Temperature

The two tests were performed using an electro-hydraulic servo material testing machine. The
experimental temperature was 25 ◦C. Before the tests, the specimens were kept in the incubator for 5 h;
the loading rate was 1 mm/min. Both test results are expressed in terms of strength and failure strain.
According to T 0716-2011 and T 0713-2000 in the specifications [28], the calculation methods are shown
in Equations (1)–(4).

RT = 0.006287PT/h (1)

εT = XT(0.0307 + 0.0936µ)/(1.35 + 5µ) (2)

where RT is indirect tensile strength, PT is maximum force in the indirect tensile test, h is the height of
specimen, XT is the deformation in the horizontal direction, and εT is the indirect tensile failure strain.

Rc = 4P/πd2 (3)

εl = ∆l/l (4)

where Rc is compressive strength, P is maximum force in the compression test, d is the diameter of
specimen, ∆l is the deformation in the compressive test, and εl is the compressive failure strain.

2.2.4. Cantabro Particle Loss Test

The Cantabro particle loss test was used to characterize the effects of F-T cycles on the spalling
resistance of PAMs with different air voids. Before the test, all the test pieces were placed in a 20 ◦C
constant-temperature water tank for 20 h. Then we took out a test piece immediately, wiped off the
surface water gently, and marked the mass of the test piece as m0. The test piece was then placed in a
Los Angeles testing machine and rotated 300 revolutions. After the machine stopped, we weighed the
residual mass of the test piece as m1, and the Cantabro particle loss rate was calculated by Equation (5).

∆m = (m1 −m0)/m0 × 100% (5)

2.2.5. Dynamic Creep Test

According to the method in BS EN 12697-25 [31], the dynamic creep test was used to characterize
the effect of F-T cycles on the high-temperature performance of three PAMs. A servo pneumatic
multifunctional testing machine was used in the test (NU-14, Cooper Technologies Ltd, UK). All the
test pieces were kept in a 50 ◦C temperature box for 5 h. In addition, before the test started, a preload
of 15 kPa was applied to the test piece for 30 s to ensure that the tester indenter and the test piece were
tightly combined. The test loading frequency was 0.5 Hz, first loading for 1 s and then unloading
for 1 s. One cycle was 2 s and the load was 300 kPa. The total test time was 3600 s. Figure 3 shows
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the test site. Creep strain slope and creep modulus were used to characterize the high-temperature
performance of three PAMs. The two parameters were calculated by the Equations (6) and (7):

fc = (εn1 − εn2)/(n1 − n2) × 1000 (6)

En = σ/10εn (7)

where fc is the creep strain slope, and εn1, εn2 are the cumulative axial strain of the specimen after n1,
n2 loading cycles, n1 is 1800, and n2 is 400. En is the creep modulus, σ is applied stress, and εn is the
cumulative axial strain of the specimen after 1800 loading cycles.
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3. Results and Discussion

3.1. Low-Temperature Splitting Test

As shown in Figure 4, in order to analyze the damage effects of F-T cycles on three groups of
PAMs from the perspective of acoustic emission parameters, the load time-load curve, energy value
curve was obtained by analyzing the collected acoustic emission data. The energy value is a typical
parameter in acoustic emission phenomenon. The larger the energy value, the greater the energy
released by the specimen under load; that is, the more obvious the damage. Specifically, first, the entire
loading process was divided into three stages by the intensity of the energy values. The first stage:
no acoustic emission signal was generated during the loading process. It is shown that the test piece
did not suffer damage at this stage. Only deformation occurred, no energy was released. The second
stage: the acoustic emission signal began to appear intermittently. At this stage, the energy value of
the acoustic emission signal was relatively small. This indicates that some micro-damage began to
appear inside the specimen, and some micro-cracks occurred. As loading continued, the third stage
was reached. At this stage, acoustic emission signals increased significantly and the energy value
increased significantly. Obvious cracks appeared inside the specimen, eventually losing resistance and
causing damage.

In general, the F-T cycles had similar effects on the three groups of PAMs. That is, the first stage
was gradually shortened, and the third stage gradually increased. The occurrence of the second stage
gradually moved forward. Mixtures that experienced more F-T cycles began to damage at lower load
levels. This shows that the freeze-thaw cycle had a significant adverse effect on PAMs, which made the
mixtures more likely to cause early failure under the load.

Specifically, we determined the corresponding load levels when the first AE (acoustic emission)
signal and the AE signal with the maximum energy value appeared, and these were calibrated by
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the red dotted line. As shown in Figure 4, the load levels of the three groups of PAMs showed a
decreasing trend when the first acoustic emission signal appeared. For example, for the PAM-18 group,
the first acoustic emission event occurred at a load level of about 0.4 for the specimens without F-T
cycles. However, for a test piece that had undergone 20 F-T cycles, the first acoustic emission event
occurred when the load level was approximately 0.16; this shows that the F-T cycles advanced the
micro-damage of the specimens. In addition, the test piece without F-T cycles had an acoustic emission
event with maximum energy value when the load level was about 0.9; however, for the specimens
that had undergone 20 F-T cycles, an acoustic emission event with a maximum energy value occurred
when the load level was only about 0.75. This indicates that after the F-T cycles, the failure stage of
specimens during the loading process was advanced. The other two PAMs showed the same pattern.

The difference was the maximum energy value of the acoustic emission signal of the three groups
of PAMs under load. The average energy of PAM-18, PAM-21, and PAM-25 was 348.54, 561.48, and
1160.26 mv*µs, respectively. It can be seen that the larger the proportion of coarse aggregate, the greater
the energy released by the PAM when the internal cracks of the specimen were generated.

3.2. Indirect Tensile and Compression Experiments at Normal Temperature

3.2.1. Indirect Tensile Test

The effects of F-T cycles on the performance of each group of PAMs were characterized by
calculating the indirect tensile strength and failure strain. The specific experimental results are shown
in Figure 5.
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Figure 5. Normal temperature indirect tensile test results.

In Figure 5a,b, the histogram shows the indirect tensile strength and failure strain respectively.
Dotted lines indicate their change rates. First, as shown in Figure 5a, in general, the higher the air void,
the smaller the strength of the PAM. In addition, the indirect tensile strength of the three groups of
PAM decreased with the increase of the number of F-T cycles. When the number of F-T cycles reached
20, the strength of the PAM-18 decreased by 14.86%, while the PAM-21 and PAM-25 decreased by 20%
and 20.59%, respectively. This shows that under the freeze-thaw cycle conditions in this study, from
the perspective of indirect tensile strength, the PAM-18 group suffered less damage.

For failure strain, the larger the air void of the mixture, the smaller the failure strain, which shows
that the larger the internal air void of PAM, the smaller its deformation ability is. Further, with the
increase of the number of F-T cycles, the damage strain of the three PAMs gradually increased; e.g., the
PAM-18 group reached a rate of 26.32% when the number of F-T cycles reached 20. This phenomenon
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shows that although the larger the air void, the better the permeability of PAM, from the perspective of
indirect tensile strength and failure strain, too large an air void will aggravate the adverse effect of
freeze-thaw cycles on PAM.

3.2.2. Compression Test

As shown in Figure 6, compression strength and failure strain are used to represent the results of
compression testing. Similar to the splitting test, the larger the air void is, the smaller the compressive
strength of PAM is. In addition, with the increase of F-T cycles, the compressive strength of the three
PAMs decreased gradually. Specifically, there was no significant difference in the reduction rate after
the first 15 F-T cycles. Until the 20th freeze-thaw cycle, the strength reduction rate of the three groups
of PAMs had a significant difference. It can be seen that in the air void range of 18–25%, the larger the
air void, the greater the long-term freeze thaw effect on the mixture under compression.
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In addition, the failure strain of the three groups of PAMs increased with the number of F-T
cycles. It can be seen from Figure 6b that under the effect of 0–5 F-T cycles, the growth rates of the
compression failure strain of the three groups of PAMs are arranged in descending order of PAM-18,
PAM-21, PAM-25. After 15 cycles, the increasing order of the growth rate of failure strain was PAM-25,
PAM-21, PAM-18, which is different from the results of the splitting test. In the compression test, the
PAM with larger air voids showed greater strain growth rate under the action of F-T cycles. This
was due to different load application methods. When the specimens were compressed, there was a
gradual compaction process. Under the F-T cycles, the larger the air void of the specimen, the greater
the damage, which resulted in greater failure strain. This indicates that under compression load, the
failure strain of larger air void PAMs was more sensitive to F-T cycles.

3.3. Cantabro Particle Loss Test

It can be seen from Figure 7 that the air void is a very important index affecting the spalling
resistance of PAMs. For the specimens without F-T cycles, the Cantabro particle loss rate of the PAM-18
was only 3.01% and that of the PAM-21 was 6.92%, while for the PAM-25, the loss rate surged to
25.12%. It can be seen from this that when the air void was too large, the spalling resistance of the
PAM decreased rapidly.

In addition, the F-T cycles had a great impact on the Cantabro particle loss rate of PAMs. With
the increase of F-T cycles, the loss rate of the three mixtures increased gradually, and the larger the
air void, the greater the adverse effect. Specifically, after 20 F-T cycles, the Cantabro particle loss rate
for the PAM-18 increased from 3.01% to 4.97%. For the PAM-21, the loss rate increased from 6.92% to
11.17%; however, these two PAMs still meet the requirements of less than 15% in the specifications [25].
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However, for the PAM-25, the loss rate increased from 25.12% to 54.41%. It can be seen that if the air
void of PAM is too large, not only will the adhesion between the asphalt and aggregate be significantly
reduced, but the adverse effect of the F-T cycles on the cohesion of asphalt and aggregate will be more
obvious. Therefore, the air void of the PAM in seasonally frozen areas must not be too large.
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3.4. Dynamic Creep Test Results

By comparing results shown in Figure 8a–c, it can be seen that the larger air void of the PAM,
the larger the permanent deformation caused by the dynamic load. In addition, the F-T cycles had a
greater impact on the high-temperature creep properties of these three mixtures.
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In order to further analyze the effect of F-T cycles on the high-temperature performance of the three
groups of mixtures, creep strain slope and creep stiffness were used to characterize them, as shown in
Figure 9. The larger the creep strain slope was, the easier the deformation was, and the larger the creep
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stiffness was, the stronger the deformation resistance was. In general, the creep strain slope increased
as the air void of the mixture increased. For example, for specimens subjected to 10 F-T cycles, the
creep strain slope of PAM-18, PAM-21, and PAM-25 was 0.7, 0.93, and 2.98, respectively. Further, the
creep strain slope of the three groups of PAMs increased with the number of F-T cycles. In particular,
for the PAM-25 group, the creep strain slope increased dramatically after 20 F-T cycles. It can also be
seen from the creep curve in Figure 8c that the third stage of the creep process obviously occurred, and
the deformation of the test piece increased rapidly, and it can be considered that the test piece had
creep failure. This shows that the larger the air void of PAM, the greater the adverse effect of F-T cycles
was on its high-temperature creep performance. The creep stiffness index shows the same rule.
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4. Conclusions

In this paper, the influence of F-T cycles on the performance decay of porous asphalt mixtures with
air voids of 18%, 21%, and 25% was studied by performing a low-temperature splitting test, a normal
temperature splitting and compression test, a Cantabro particle loss test, and a dynamic creep test.
Conclusions can be described as follows:

1. Acoustic emission parameters well reflect the stress characteristics of the specimens during
the low-temperature splitting process. Under the effect of F-T cycles, the damage stage and
destruction stage of the three groups of PAMs were advanced. The larger the proportion of
coarse aggregate in the PAM, the greater the single energy released by the specimen during the
destruction process.

2. The indirect tensile strength of PAM decreases rapidly with the increase of air void and the
number of F-T cycles. In contrast, the failure strain increases with the increase of F-T cycles.
PAM-18 was the least affected by the F-T cycles. The results of compression experiments at normal
temperature showed similar rules.
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3. The air void is the main factor that affects the cohesiveness between aggregate and asphalt. The
larger the air void, the larger the Cantabro particle loss of the specimen, and the greater the
adverse effect of the freeze-thaw cycle on the adhesion of the aggregate to the asphalt. When the
air void reached 25%, the Cantabro particle loss rate of the specimen was far greater than the 15%
in the specifications, regardless of whether it suffered the F-T cycles or not.

4. Both the air void and F-T cycles are important factors affecting the high-temperature viscoelastic
properties of PAM. As the air void and the number of F-T cycles increased, the creep strain slope
of the three groups of PAMs gradually increased and the creep stiffness gradually decreased.
When the air void is greater than 21%, the adverse effects of F-T cycles become apparent.

5. For seasonal frozen regions that are often subjected to F-T cycles, the air void of PAM should be
minimized while ensuring drainage performance. It is recommended to keep the air void to 21%
or less to avoid early damage to the pavement.
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